1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2017 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Preconditioners for linear systems that arise in Structure from
// Motion problems. VisibilityBasedPreconditioner implements:
//
// CLUSTER_JACOBI
// CLUSTER_TRIDIAGONAL
//
// Detailed descriptions of these preconditions beyond what is
// documented here can be found in
//
// Visibility Based Preconditioning for Bundle Adjustment
// A. Kushal & S. Agarwal, CVPR 2012.
//
// http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
//
// The two preconditioners share enough code that its most efficient
// to implement them as part of the same code base.
#ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
#define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
#include <memory>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "ceres/graph.h"
#include "ceres/linear_solver.h"
#include "ceres/pair_hash.h"
#include "ceres/preconditioner.h"
#include "ceres/sparse_cholesky.h"
namespace ceres {
namespace internal {
class BlockRandomAccessSparseMatrix;
class BlockSparseMatrix;
struct CompressedRowBlockStructure;
class SchurEliminatorBase;
// This class implements visibility based preconditioners for
// Structure from Motion/Bundle Adjustment problems. The name
// VisibilityBasedPreconditioner comes from the fact that the sparsity
// structure of the preconditioner matrix is determined by analyzing
// the visibility structure of the scene, i.e. which cameras see which
// points.
//
// The key idea of visibility based preconditioning is to identify
// cameras that we expect have strong interactions, and then using the
// entries in the Schur complement matrix corresponding to these
// camera pairs as an approximation to the full Schur complement.
//
// CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
// and considering all non-zero camera pairs within each cluster. The
// clustering in the current implementation is done using the
// Canonical Views algorithm of Simon et al. (see
// canonical_views_clustering.h). For the purposes of clustering, the
// similarity or the degree of interaction between a pair of cameras
// is measured by counting the number of points visible in both the
// cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
// were to permute the parameter blocks such that all the cameras in
// the same cluster occur contiguously, the preconditioner matrix will
// be a block diagonal matrix with blocks corresponding to the
// clusters. Thus in analogy with the Jacobi preconditioner we refer
// to this as the CLUSTER_JACOBI preconditioner.
//
// CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
// preconditioner by considering the interaction between clusters and
// identifying strong interactions between cluster pairs. This is done
// by constructing a weighted graph on the clusters, with the weight
// on the edges connecting two clusters proportional to the number of
// 3D points visible to cameras in both the clusters. A degree-2
// maximum spanning forest is identified in this graph and the camera
// pairs contained in the edges of this forest are added to the
// preconditioner. The detailed reasoning for this construction is
// explained in the paper mentioned above.
//
// Degree-2 spanning trees and forests have the property that they
// correspond to tri-diagonal matrices. Thus there exist a permutation
// of the camera blocks under which the CLUSTER_TRIDIAGONAL
// preconditioner matrix is a block tridiagonal matrix, and thus the
// name for the preconditioner.
//
// Thread Safety: This class is NOT thread safe.
//
// Example usage:
//
// LinearSolver::Options options;
// options.preconditioner_type = CLUSTER_JACOBI;
// options.elimination_groups.push_back(num_points);
// options.elimination_groups.push_back(num_cameras);
// VisibilityBasedPreconditioner preconditioner(
// *A.block_structure(), options);
// preconditioner.Update(A, nullptr);
// preconditioner.RightMultiply(x, y);
class CERES_NO_EXPORT VisibilityBasedPreconditioner
: public BlockSparseMatrixPreconditioner {
public:
// Initialize the symbolic structure of the preconditioner. bs is
// the block structure of the linear system to be solved. It is used
// to determine the sparsity structure of the preconditioner matrix.
//
// It has the same structural requirement as other Schur complement
// based solvers. Please see schur_eliminator.h for more details.
VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
Preconditioner::Options options);
VisibilityBasedPreconditioner(const VisibilityBasedPreconditioner&) = delete;
void operator=(const VisibilityBasedPreconditioner&) = delete;
~VisibilityBasedPreconditioner() override;
// Preconditioner interface
void RightMultiply(const double* x, double* y) const final;
int num_rows() const final;
friend class VisibilityBasedPreconditionerTest;
private:
bool UpdateImpl(const BlockSparseMatrix& A, const double* D) final;
void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
void InitStorage(const CompressedRowBlockStructure& bs);
void InitEliminator(const CompressedRowBlockStructure& bs);
LinearSolverTerminationType Factorize();
void ScaleOffDiagonalCells();
void ClusterCameras(const std::vector<std::set<int>>& visibility);
void FlattenMembershipMap(const std::unordered_map<int, int>& membership_map,
std::vector<int>* membership_vector) const;
void ComputeClusterVisibility(
const std::vector<std::set<int>>& visibility,
std::vector<std::set<int>>* cluster_visibility) const;
std::unique_ptr<WeightedGraph<int>> CreateClusterGraph(
const std::vector<std::set<int>>& visibility) const;
void ForestToClusterPairs(
const WeightedGraph<int>& forest,
std::unordered_set<std::pair<int, int>, pair_hash>* cluster_pairs) const;
void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
bool IsBlockPairInPreconditioner(int block1, int block2) const;
bool IsBlockPairOffDiagonal(int block1, int block2) const;
Preconditioner::Options options_;
// Number of parameter blocks in the schur complement.
int num_blocks_;
int num_clusters_;
// Sizes of the blocks in the schur complement.
std::vector<int> block_size_;
// Mapping from cameras to clusters.
std::vector<int> cluster_membership_;
// Non-zero camera pairs from the schur complement matrix that are
// present in the preconditioner, sorted by row (first element of
// each pair), then column (second).
std::set<std::pair<int, int>> block_pairs_;
// Set of cluster pairs (including self pairs (i,i)) in the
// preconditioner.
std::unordered_set<std::pair<int, int>, pair_hash> cluster_pairs_;
std::unique_ptr<SchurEliminatorBase> eliminator_;
// Preconditioner matrix.
std::unique_ptr<BlockRandomAccessSparseMatrix> m_;
std::unique_ptr<SparseCholesky> sparse_cholesky_;
};
} // namespace internal
} // namespace ceres
#endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
|