File: bundle_adjuster.cc

package info (click to toggle)
ceres-solver 2.2.0%2Bdfsg-4.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,064 kB
  • sloc: cpp: 87,689; ansic: 3,060; python: 659; sh: 78; makefile: 73; xml: 21
file content (394 lines) | stat: -rw-r--r-- 17,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// An example of solving a dynamically sized problem with various
// solvers and loss functions.
//
// For a simpler bare bones example of doing bundle adjustment with
// Ceres, please see simple_bundle_adjuster.cc.
//
// NOTE: This example will not compile without gflags and SuiteSparse.
//
// The problem being solved here is known as a Bundle Adjustment
// problem in computer vision. Given a set of 3d points X_1, ..., X_n,
// a set of cameras P_1, ..., P_m. If the point X_i is visible in
// image j, then there is a 2D observation u_ij that is the expected
// projection of X_i using P_j. The aim of this optimization is to
// find values of X_i and P_j such that the reprojection error
//
//    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
//
// is minimized.
//
// The problem used here comes from a collection of bundle adjustment
// problems published at University of Washington.
// http://grail.cs.washington.edu/projects/bal

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <memory>
#include <string>
#include <thread>
#include <vector>

#include "bal_problem.h"
#include "ceres/ceres.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "snavely_reprojection_error.h"

// clang-format makes the gflags definitions too verbose
// clang-format off

DEFINE_string(input, "", "Input File name");
DEFINE_string(trust_region_strategy, "levenberg_marquardt",
              "Options are: levenberg_marquardt, dogleg.");
DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
              "subspace_dogleg.");

DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
            "refine each successful trust region step.");

DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
              "automatic, cameras, points, cameras,points, points,cameras");

DEFINE_string(linear_solver, "sparse_schur", "Options are: "
              "sparse_schur, dense_schur, iterative_schur, "
              "sparse_normal_cholesky, dense_qr, dense_normal_cholesky, "
              "and cgnr.");
DEFINE_bool(explicit_schur_complement, false, "If using ITERATIVE_SCHUR "
            "then explicitly compute the Schur complement.");
DEFINE_string(preconditioner, "jacobi", "Options are: "
              "identity, jacobi, schur_jacobi, schur_power_series_expansion, cluster_jacobi, "
              "cluster_tridiagonal.");
DEFINE_string(visibility_clustering, "canonical_views",
              "single_linkage, canonical_views");
DEFINE_bool(use_spse_initialization, false,
            "Use power series expansion to initialize the solution in ITERATIVE_SCHUR linear solver.");

DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
              "Options are: suite_sparse, accelerate_sparse, eigen_sparse, and "
              "cuda_sparse.");
DEFINE_string(dense_linear_algebra_library, "eigen",
              "Options are: eigen, lapack, and cuda");
DEFINE_string(ordering_type, "amd", "Options are: amd, nesdis");
DEFINE_string(linear_solver_ordering, "user",
              "Options are: automatic and user");

DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
            "rotations. If false, angle axis is used.");
DEFINE_bool(use_manifolds, false, "For quaternions, use a manifold.");
DEFINE_bool(robustify, false, "Use a robust loss function.");

DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
              "accuracy of each linear solve of the truncated newton step. "
              "Changing this parameter can affect solve performance.");

DEFINE_int32(num_threads, -1, "Number of threads. -1 = std::thread::hardware_concurrency.");
DEFINE_int32(num_iterations, 5, "Number of iterations.");
DEFINE_int32(max_linear_solver_iterations, 500, "Maximum number of iterations"
            " for solution of linear system.");
DEFINE_double(spse_tolerance, 0.1,
             "Tolerance to reach during the iterations of power series expansion initialization or preconditioning.");
DEFINE_int32(max_num_spse_iterations, 5,
             "Maximum number of iterations for power series expansion initialization or preconditioning.");
DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
            " nonmonotic steps.");

DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
              "perturbation.");
DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
              "translation perturbation.");
DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
              "perturbation.");
DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
             "of the pseudo random number generator used to generate "
             "the perturbations.");
DEFINE_bool(line_search, false, "Use a line search instead of trust region "
            "algorithm.");
DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");
DEFINE_int32(max_num_refinement_iterations, 0, "Iterative refinement iterations");
DEFINE_string(initial_ply, "", "Export the BAL file data as a PLY file.");
DEFINE_string(final_ply, "", "Export the refined BAL file data as a PLY "
              "file.");
// clang-format on

namespace ceres::examples {
namespace {

void SetLinearSolver(Solver::Options* options) {
  CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),
                                 &options->linear_solver_type));
  CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),
                                   &options->preconditioner_type));
  CHECK(StringToVisibilityClusteringType(
      CERES_GET_FLAG(FLAGS_visibility_clustering),
      &options->visibility_clustering_type));
  CHECK(StringToSparseLinearAlgebraLibraryType(
      CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),
      &options->sparse_linear_algebra_library_type));
  CHECK(StringToDenseLinearAlgebraLibraryType(
      CERES_GET_FLAG(FLAGS_dense_linear_algebra_library),
      &options->dense_linear_algebra_library_type));
  CHECK(
      StringToLinearSolverOrderingType(CERES_GET_FLAG(FLAGS_ordering_type),
                                       &options->linear_solver_ordering_type));
  options->use_explicit_schur_complement =
      CERES_GET_FLAG(FLAGS_explicit_schur_complement);
  options->use_mixed_precision_solves =
      CERES_GET_FLAG(FLAGS_mixed_precision_solves);
  options->max_num_refinement_iterations =
      CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);
  options->max_linear_solver_iterations =
      CERES_GET_FLAG(FLAGS_max_linear_solver_iterations);
  options->use_spse_initialization =
      CERES_GET_FLAG(FLAGS_use_spse_initialization);
  options->spse_tolerance = CERES_GET_FLAG(FLAGS_spse_tolerance);
  options->max_num_spse_iterations =
      CERES_GET_FLAG(FLAGS_max_num_spse_iterations);
}

void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
  const int num_points = bal_problem->num_points();
  const int point_block_size = bal_problem->point_block_size();
  double* points = bal_problem->mutable_points();

  const int num_cameras = bal_problem->num_cameras();
  const int camera_block_size = bal_problem->camera_block_size();
  double* cameras = bal_problem->mutable_cameras();

  if (options->use_inner_iterations) {
    if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "cameras") {
      LOG(INFO) << "Camera blocks for inner iterations";
      options->inner_iteration_ordering =
          std::make_shared<ParameterBlockOrdering>();
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            cameras + camera_block_size * i, 0);
      }
    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "points") {
      LOG(INFO) << "Point blocks for inner iterations";
      options->inner_iteration_ordering =
          std::make_shared<ParameterBlockOrdering>();
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            points + point_block_size * i, 0);
      }
    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
               "cameras,points") {
      LOG(INFO) << "Camera followed by point blocks for inner iterations";
      options->inner_iteration_ordering =
          std::make_shared<ParameterBlockOrdering>();
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            cameras + camera_block_size * i, 0);
      }
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            points + point_block_size * i, 1);
      }
    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
               "points,cameras") {
      LOG(INFO) << "Point followed by camera blocks for inner iterations";
      options->inner_iteration_ordering =
          std::make_shared<ParameterBlockOrdering>();
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            cameras + camera_block_size * i, 1);
      }
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(
            points + point_block_size * i, 0);
      }
    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
               "automatic") {
      LOG(INFO) << "Choosing automatic blocks for inner iterations";
    } else {
      LOG(FATAL) << "Unknown block type for inner iterations: "
                 << CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations);
    }
  }

  // Bundle adjustment problems have a sparsity structure that makes
  // them amenable to more specialized and much more efficient
  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
  // ITERATIVE_SCHUR solvers make use of this specialized
  // structure.
  //
  // This can either be done by specifying a
  // Options::linear_solver_ordering or having Ceres figure it out
  // automatically using a greedy maximum independent set algorithm.
  if (CERES_GET_FLAG(FLAGS_linear_solver_ordering) == "user") {
    auto* ordering = new ceres::ParameterBlockOrdering;

    // The points come before the cameras.
    for (int i = 0; i < num_points; ++i) {
      ordering->AddElementToGroup(points + point_block_size * i, 0);
    }

    for (int i = 0; i < num_cameras; ++i) {
      // When using axis-angle, there is a single parameter block for
      // the entire camera.
      ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    }

    options->linear_solver_ordering.reset(ordering);
  }
}

void SetMinimizerOptions(Solver::Options* options) {
  options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
  options->minimizer_progress_to_stdout = true;
  if (CERES_GET_FLAG(FLAGS_num_threads) == -1) {
    const int num_available_threads =
        static_cast<int>(std::thread::hardware_concurrency());
    if (num_available_threads > 0) {
      options->num_threads = num_available_threads;
    }
  } else {
    options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);
  }
  CHECK_GE(options->num_threads, 1);

  options->eta = CERES_GET_FLAG(FLAGS_eta);
  options->max_solver_time_in_seconds = CERES_GET_FLAG(FLAGS_max_solver_time);
  options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);
  if (CERES_GET_FLAG(FLAGS_line_search)) {
    options->minimizer_type = ceres::LINE_SEARCH;
  }

  CHECK(StringToTrustRegionStrategyType(
      CERES_GET_FLAG(FLAGS_trust_region_strategy),
      &options->trust_region_strategy_type));
  CHECK(
      StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));
  options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);
}

void SetSolverOptionsFromFlags(BALProblem* bal_problem,
                               Solver::Options* options) {
  SetMinimizerOptions(options);
  SetLinearSolver(options);
  SetOrdering(bal_problem, options);
}

void BuildProblem(BALProblem* bal_problem, Problem* problem) {
  const int point_block_size = bal_problem->point_block_size();
  const int camera_block_size = bal_problem->camera_block_size();
  double* points = bal_problem->mutable_points();
  double* cameras = bal_problem->mutable_cameras();

  // Observations is 2*num_observations long array observations =
  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
  // and y positions of the observation.
  const double* observations = bal_problem->observations();
  for (int i = 0; i < bal_problem->num_observations(); ++i) {
    CostFunction* cost_function;
    // Each Residual block takes a point and a camera as input and
    // outputs a 2 dimensional residual.
    cost_function = (CERES_GET_FLAG(FLAGS_use_quaternions))
                        ? SnavelyReprojectionErrorWithQuaternions::Create(
                              observations[2 * i + 0], observations[2 * i + 1])
                        : SnavelyReprojectionError::Create(
                              observations[2 * i + 0], observations[2 * i + 1]);

    // If enabled use Huber's loss function.
    LossFunction* loss_function =
        CERES_GET_FLAG(FLAGS_robustify) ? new HuberLoss(1.0) : nullptr;

    // Each observation corresponds to a pair of a camera and a point
    // which are identified by camera_index()[i] and point_index()[i]
    // respectively.
    double* camera =
        cameras + camera_block_size * bal_problem->camera_index()[i];
    double* point = points + point_block_size * bal_problem->point_index()[i];
    problem->AddResidualBlock(cost_function, loss_function, camera, point);
  }

  if (CERES_GET_FLAG(FLAGS_use_quaternions) &&
      CERES_GET_FLAG(FLAGS_use_manifolds)) {
    Manifold* camera_manifold =
        new ProductManifold<QuaternionManifold, EuclideanManifold<6>>{};
    for (int i = 0; i < bal_problem->num_cameras(); ++i) {
      problem->SetManifold(cameras + camera_block_size * i, camera_manifold);
    }
  }
}

void SolveProblem(const char* filename) {
  BALProblem bal_problem(filename, CERES_GET_FLAG(FLAGS_use_quaternions));

  if (!CERES_GET_FLAG(FLAGS_initial_ply).empty()) {
    bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_initial_ply));
  }

  Problem problem;

  srand(CERES_GET_FLAG(FLAGS_random_seed));
  bal_problem.Normalize();
  bal_problem.Perturb(CERES_GET_FLAG(FLAGS_rotation_sigma),
                      CERES_GET_FLAG(FLAGS_translation_sigma),
                      CERES_GET_FLAG(FLAGS_point_sigma));

  BuildProblem(&bal_problem, &problem);
  Solver::Options options;
  SetSolverOptionsFromFlags(&bal_problem, &options);
  options.gradient_tolerance = 1e-16;
  options.function_tolerance = 1e-16;
  options.parameter_tolerance = 1e-16;
  Solver::Summary summary;
  Solve(options, &problem, &summary);
  std::cout << summary.FullReport() << "\n";

  if (!CERES_GET_FLAG(FLAGS_final_ply).empty()) {
    bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_final_ply));
  }
}

}  // namespace
}  // namespace ceres::examples

int main(int argc, char** argv) {
  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  if (CERES_GET_FLAG(FLAGS_input).empty()) {
    LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";
    return 1;
  }

  CHECK(CERES_GET_FLAG(FLAGS_use_quaternions) ||
        !CERES_GET_FLAG(FLAGS_use_manifolds))
      << "--use_manifolds can only be used with --use_quaternions.";
  ceres::examples::SolveProblem(CERES_GET_FLAG(FLAGS_input).c_str());
  return 0;
}