File: evaluation_callback_example.cc

package info (click to toggle)
ceres-solver 2.2.0%2Bdfsg-4.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,064 kB
  • sloc: cpp: 87,689; ansic: 3,060; python: 659; sh: 78; makefile: 73; xml: 21
file content (257 lines) | stat: -rw-r--r-- 9,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// This example illustrates the use of the EvaluationCallback, which can be used
// to perform high performance computation of the residual and Jacobians outside
// Ceres (in this case using Eigen's vectorized code) and then the CostFunctions
// just copy these computed residuals and Jacobians appropriately and pass them
// to Ceres Solver.
//
// The results of running this example should be identical to the results
// obtained by running curve_fitting.cc. The only difference between the two
// examples is how the residuals and Jacobians are computed.
//
// The observant reader will note that both here and curve_fitting.cc instead of
// creating one ResidualBlock for each observation one can just do one
// ResidualBlock/CostFunction for the entire problem. The reason for keeping one
// residual per observation is that it is what is needed if and when we need to
// introduce a loss function which is what we do in robust_curve_fitting.cc

#include <iostream>

#include "Eigen/Core"
#include "ceres/ceres.h"
#include "glog/logging.h"

// Data generated using the following octave code.
//   randn('seed', 23497);
//   m = 0.3;
//   c = 0.1;
//   x=[0:0.075:5];
//   y = exp(m * x + c);
//   noise = randn(size(x)) * 0.2;
//   y_observed = y + noise;
//   data = [x', y_observed'];

const int kNumObservations = 67;
// clang-format off
const double data[] = {
  0.000000e+00, 1.133898e+00,
  7.500000e-02, 1.334902e+00,
  1.500000e-01, 1.213546e+00,
  2.250000e-01, 1.252016e+00,
  3.000000e-01, 1.392265e+00,
  3.750000e-01, 1.314458e+00,
  4.500000e-01, 1.472541e+00,
  5.250000e-01, 1.536218e+00,
  6.000000e-01, 1.355679e+00,
  6.750000e-01, 1.463566e+00,
  7.500000e-01, 1.490201e+00,
  8.250000e-01, 1.658699e+00,
  9.000000e-01, 1.067574e+00,
  9.750000e-01, 1.464629e+00,
  1.050000e+00, 1.402653e+00,
  1.125000e+00, 1.713141e+00,
  1.200000e+00, 1.527021e+00,
  1.275000e+00, 1.702632e+00,
  1.350000e+00, 1.423899e+00,
  1.425000e+00, 1.543078e+00,
  1.500000e+00, 1.664015e+00,
  1.575000e+00, 1.732484e+00,
  1.650000e+00, 1.543296e+00,
  1.725000e+00, 1.959523e+00,
  1.800000e+00, 1.685132e+00,
  1.875000e+00, 1.951791e+00,
  1.950000e+00, 2.095346e+00,
  2.025000e+00, 2.361460e+00,
  2.100000e+00, 2.169119e+00,
  2.175000e+00, 2.061745e+00,
  2.250000e+00, 2.178641e+00,
  2.325000e+00, 2.104346e+00,
  2.400000e+00, 2.584470e+00,
  2.475000e+00, 1.914158e+00,
  2.550000e+00, 2.368375e+00,
  2.625000e+00, 2.686125e+00,
  2.700000e+00, 2.712395e+00,
  2.775000e+00, 2.499511e+00,
  2.850000e+00, 2.558897e+00,
  2.925000e+00, 2.309154e+00,
  3.000000e+00, 2.869503e+00,
  3.075000e+00, 3.116645e+00,
  3.150000e+00, 3.094907e+00,
  3.225000e+00, 2.471759e+00,
  3.300000e+00, 3.017131e+00,
  3.375000e+00, 3.232381e+00,
  3.450000e+00, 2.944596e+00,
  3.525000e+00, 3.385343e+00,
  3.600000e+00, 3.199826e+00,
  3.675000e+00, 3.423039e+00,
  3.750000e+00, 3.621552e+00,
  3.825000e+00, 3.559255e+00,
  3.900000e+00, 3.530713e+00,
  3.975000e+00, 3.561766e+00,
  4.050000e+00, 3.544574e+00,
  4.125000e+00, 3.867945e+00,
  4.200000e+00, 4.049776e+00,
  4.275000e+00, 3.885601e+00,
  4.350000e+00, 4.110505e+00,
  4.425000e+00, 4.345320e+00,
  4.500000e+00, 4.161241e+00,
  4.575000e+00, 4.363407e+00,
  4.650000e+00, 4.161576e+00,
  4.725000e+00, 4.619728e+00,
  4.800000e+00, 4.737410e+00,
  4.875000e+00, 4.727863e+00,
  4.950000e+00, 4.669206e+00,
};
// clang-format on

// This implementation of the EvaluationCallback interface also stores the
// residuals and Jacobians that the CostFunction copies their values from.
class MyEvaluationCallback : public ceres::EvaluationCallback {
 public:
  // m and c are passed by reference so that we have access to their values as
  // they evolve over time through the course of optimization.
  MyEvaluationCallback(const double& m, const double& c) : m_(m), c_(c) {
    x_ = Eigen::VectorXd::Zero(kNumObservations);
    y_ = Eigen::VectorXd::Zero(kNumObservations);
    residuals_ = Eigen::VectorXd::Zero(kNumObservations);
    jacobians_ = Eigen::MatrixXd::Zero(kNumObservations, 2);
    for (int i = 0; i < kNumObservations; ++i) {
      x_[i] = data[2 * i];
      y_[i] = data[2 * i + 1];
    }
    PrepareForEvaluation(true, true);
  }

  void PrepareForEvaluation(bool evaluate_jacobians,
                            bool new_evaluation_point) final {
    if (new_evaluation_point) {
      ComputeResidualAndJacobian(evaluate_jacobians);
      jacobians_are_stale_ = !evaluate_jacobians;
    } else {
      if (evaluate_jacobians && jacobians_are_stale_) {
        ComputeResidualAndJacobian(evaluate_jacobians);
        jacobians_are_stale_ = false;
      }
    }
  }

  const Eigen::VectorXd& residuals() const { return residuals_; }
  const Eigen::MatrixXd& jacobians() const { return jacobians_; }
  bool jacobians_are_stale() const { return jacobians_are_stale_; }

 private:
  void ComputeResidualAndJacobian(bool evaluate_jacobians) {
    residuals_ = -(m_ * x_.array() + c_).exp();
    if (evaluate_jacobians) {
      jacobians_.col(0) = residuals_.array() * x_.array();
      jacobians_.col(1) = residuals_;
    }
    residuals_ += y_;
  }

  const double& m_;
  const double& c_;
  Eigen::VectorXd x_;
  Eigen::VectorXd y_;
  Eigen::VectorXd residuals_;
  Eigen::MatrixXd jacobians_;

  // jacobians_are_stale_ keeps track of whether the jacobian matrix matches the
  // residuals or not, we only compute it if we know that Solver is going to
  // need access to it.
  bool jacobians_are_stale_ = true;
};

// As the name implies this CostFunction does not do any computation, it just
// copies the appropriate residual and Jacobian from the matrices stored in
// MyEvaluationCallback.
class CostAndJacobianCopyingCostFunction
    : public ceres::SizedCostFunction<1, 1, 1> {
 public:
  CostAndJacobianCopyingCostFunction(
      int index, const MyEvaluationCallback& evaluation_callback)
      : index_(index), evaluation_callback_(evaluation_callback) {}
  ~CostAndJacobianCopyingCostFunction() override = default;

  bool Evaluate(double const* const* parameters,
                double* residuals,
                double** jacobians) const final {
    residuals[0] = evaluation_callback_.residuals()(index_);
    if (!jacobians) return true;

    // Ensure that we are not using stale Jacobians.
    CHECK(!evaluation_callback_.jacobians_are_stale());

    if (jacobians[0] != nullptr)
      jacobians[0][0] = evaluation_callback_.jacobians()(index_, 0);
    if (jacobians[1] != nullptr)
      jacobians[1][0] = evaluation_callback_.jacobians()(index_, 1);
    return true;
  }

 private:
  int index_ = -1;
  const MyEvaluationCallback& evaluation_callback_;
};

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);

  const double initial_m = 0.0;
  const double initial_c = 0.0;
  double m = initial_m;
  double c = initial_c;

  MyEvaluationCallback evaluation_callback(m, c);
  ceres::Problem::Options problem_options;
  problem_options.evaluation_callback = &evaluation_callback;
  ceres::Problem problem(problem_options);
  for (int i = 0; i < kNumObservations; ++i) {
    problem.AddResidualBlock(
        new CostAndJacobianCopyingCostFunction(i, evaluation_callback),
        nullptr,
        &m,
        &c);
  }

  ceres::Solver::Options options;
  options.max_num_iterations = 25;
  options.linear_solver_type = ceres::DENSE_QR;
  options.minimizer_progress_to_stdout = true;

  ceres::Solver::Summary summary;
  ceres::Solve(options, &problem, &summary);
  std::cout << summary.BriefReport() << "\n";
  std::cout << "Initial m: " << initial_m << " c: " << initial_c << "\n";
  std::cout << "Final   m: " << m << " c: " << c << "\n";
  return 0;
}