1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
unit Rivers;
{***********************************************************
Project: C-evo External Map Generator
Copyright: 2024 P Blackman
License: GPLv3+
Unit to support the generation of rivers (diffusion model).
***********************************************************}
interface
uses MapTiles, CevoMap, Classes;
type
tRivers = class
private
const Fudge = 7; // Fudge factor to help avoid local maximums when running rivers.
type
tNeighbours = array [1..4] of tCell;
tRData =
record
AltReal: integer;
River: boolean;
end;
tMyTiles = array [1..LxMax, 1..LyMax] of tRData;
private
fMap: tMap;
fRMap: tMyTiles;
fPercentage: integer;
fWidthSlots : array of integer;
fHeightSlots : array of integer;
protected
function RiverNeighbours (W, H: integer): integer;
function NextRiverTile(W, H: integer; out NW, NH: integer): boolean;
function GetNeighbours(W, H: integer): tNeighbours;
function OutOfRange(N: tcell): boolean;
function GetCoastalTiles(W, H: integer): integer;
function RunRiver(SW, SH: integer): integer;
function NearToRiver(W, H: integer): boolean;
function Estuary(W, H: integer): boolean;
function SeaTiles(W, H: integer): integer;
function BestStart(out SW, SH: integer): boolean;
function Getland : integer;
procedure RandomSequence(var MyArray : array of integer);
public
procedure Generate;
procedure Loaddata(Map: tMap);
procedure Free;
constructor Create(Percentage: integer);
end;
implementation
uses SysUtils;
constructor tRivers.Create(Percentage: integer);
begin
inherited Create;
fPercentage := Percentage;
fRMap := default(tMyTiles);
end;
procedure tRivers.Free;
begin
SetLength (fWidthSlots, 0);
SetLength (fHeightSlots, 0);
inherited Free;
end;
{ Note, some neighbours will be out of height range }
{ Need to wrap width in round world }
function tRivers.GetNeighbours(W, H: integer): tNeighbours;
var MyBors: tNeighbours;
begin
if Odd(H) then
begin
MyBors[1].wid := fmap.WrapCheck(Pred(W));
MyBors[2].wid := W;
MyBors[3].wid := W;
MyBors[4].wid := fmap.WrapCheck(Pred(W));
end
else
begin
MyBors[1].wid := W;
MyBors[2].wid := fmap.WrapCheck(Succ(W));
MyBors[3].wid := fmap.WrapCheck(Succ(W));
MyBors[4].wid := W;
end;
MyBors[1].hgt := H - 1;
MyBors[2].hgt := H - 1;
MyBors[3].hgt := H + 1;
MyBors[4].hgt := H + 1;
result := MyBors;
end;
function tRivers.OutOfRange(N: tcell): boolean;
begin
result := (N.wid < 1) or (N.wid > fMap.Width) or (N.hgt < 1) or
(N.hgt > fMap.Height);
end;
function tRivers.RiverNeighbours (W, H: integer): integer;
var MyBors: tNeighbours;
N : Integer;
begin
MyBors := Getneighbours(W, H);
Result := 0;
for N := 1 to 4 do
if OutOfRange(MyBors[N]) then
{Skip it}
else
if fRMap[MyBors[N].Wid, MyBors[N].Hgt].River then
inc (Result);
end;
function tRivers.NextRiverTile(W, H: integer; out NW, NH: integer): boolean;
var MyBors: tNeighbours;
N,Myhgt,nbhgt,lwhgt: integer;
begin
result := False;
lwhgt := 1000; // Arbitrary large number;
NW := 0;
NH := 0;
Myhgt := fRMap[W, H].AltReal;
MyBors := Getneighbours(W, H);
for N := 1 to 4 do
if OutOfRange(MyBors[N]) then
{Skip it}
else
if fRMap[MyBors[N].Wid, MyBors[N].Hgt].River then
// Already a river tile
else
begin
nbhgt := fRMap[MyBors[N].Wid, MyBors[N].Hgt].Altreal;
if (MyHgt <= nbhgt + Fudge) and (nbhgt < lwhgt)
and (SeaTiles(MyBors[N].Wid, MyBors[N].Hgt) = 0)
and (RiverNeighbours (MyBors[N].Wid, MyBors[N].Hgt) < 3) then
begin
{ Found a lowest higher or equal neighbour, that is not on the coast }
result := True;
NW := MyBors[N].Wid;
NH := MyBors[N].Hgt;
lwhgt := nbhgt;
end;
end;
end;
function tRivers.GetCoastalTiles(W, H: integer): integer;
var N,NW,NH: integer;
begin
result := 0;
for N := 1 to 8 do
begin
fMap.SetNeighbour(W, H, N, NW, NH);
if fRMap[NW, NH].AltReal = -1 then
Inc(result);
end;
end;
function tRivers.NearToRiver(W, H: integer): boolean;
var N,NW,NH: integer;
begin
result := False;
for N := 0 to 20 do
begin
// Nothing to do with cities, but convenient to use this function
fMap.GetCityNeighbour(W, H, N, NW, NH);
if (NH > 0) and (NH <= fMap.Height) then
if fRMap[NW, NH].River then
result := True;
end;
end;
function tRivers.Estuary(W, H: integer): boolean;
var C : Integer;
begin
if SeaTiles (W,H) = 1 then
C := GetCoastalTiles(W, H)
else
C := 0;
Estuary := C in [1,2,3];
end;
function tRivers.SeaTiles(W, H: integer): integer;
var N: integer;
MyBors: tNeighbours;
begin
result := 0;
MyBors := GetNeighbours(W, H);
for N := 1 to 4 do
if OutofRange(MyBors[N]) then
// skip
else
if fRMap[MyBors[N].Wid, MyBors[N].hgt].ALtReal = -1 then
Inc(result);
end;
function tRivers.BestStart(out SW, SH: integer): boolean;
var GCT,CS,W,H,WS,HS: integer;
begin
result := False;
SW := 0;
SH := 0;
CS := 9; // Impossible result
// slots indexed from 0, Map indexed from 1
for W := 0 to fMap.Width-1 do
begin
WS := fWidthSlots[W] +1;
for H := 0 to fMap.Height-1 do
begin
HS := fHeightSlots[H] +1;
if NearToRiver(WS, HS) then
// Space out River starts
else
if Estuary(WS, HS) then
begin
GCT := GetCoastalTiles(WS, HS);
if (GCT > 0) and (GCT < CS) then
if (GCT = 1) and (CS < 9) then
// Try avoid starting river from a puddle
else
begin
// Best so far
SW := WS;
SH := HS;
CS := GCT;
result := True;
end;
end;
end;
end;
end;
function tRivers.RunRiver(SW, SH: integer): integer;
var NW,NH: integer;
begin
fRMap[SW, SH].River := True;
fMap.Tiles[SW, SH].River := True;
result := 1;
while NextRiverTile(SW, SH, NW, NH) do
begin
SW := NW;
SH := NH;
fRMap[SW, SH].River := True;
fMap.Tiles[SW, SH].River := True;
Inc(result);
end;
//Writeln('Run River ', result);
end;
function tRivers.Getland : integer;
var W,H: integer;
begin
result := 0;
for W := 1 to fMap.Width do
for H := 1 to fMap.Height do
if fRMap[W, H].AltReal <> -1 then
Inc(result);
end;
procedure tRivers.Generate;
var SW,SH,Target: integer;
begin
Target := (GetLand * fPercentage) div 100;
while Target > 0 do
if BestStart(SW, SH) then
Target := Target - RunRiver(SW, SH)
else
Target := 0 // Terminate loop
end;
procedure tRivers.RandomSequence(var MyArray : array of integer);
var I,J,tmp : integer;
begin
for I := low(MyArray) to high(MyArray) do
MyArray[I] := I;
// Shuffle by swaping each element with a random one
for I := low(MyArray) to high(MyArray) do
begin
tmp := MyArray[I];
J := Random(high(MyArray)+1);
MyArray[I] := MyArray[J];
MyArray[J] := tmp;
end;
end;
procedure tRivers.LoadData(Map: tMap);
var W,H: integer;
begin
fMap := Map;
for W := 1 to fMap.Width do
for H := 1 to fMap.Height do
if fMap.GetVal(Altitude, W, H) < fMap.SeaLevel then
{ Ocean tile }
fRMap[W, H].AltReal := -1
else
fRMap[W, H].AltReal := fMap.GetVal(Altitude, W, H) - fMap.SeaLevel;
SetLength (fWidthSlots, fMap.Width);
SetLength (fHeightSlots, fMap.Height);
RandomSequence (fWidthSlots);
RandomSequence (fHeightSlots);
end;
end.
|