File: aggregate.py

package info (click to toggle)
cf-python 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,996 kB
  • sloc: python: 51,733; ansic: 2,736; makefile: 78; sh: 2
file content (3122 lines) | stat: -rw-r--r-- 111,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
from numpy import argsort as numpy_argsort
from numpy import dtype   as numpy_dtype
from numpy import sort    as numpy_sort

from operator  import attrgetter, itemgetter
from itertools import izip

#from .ancillaryvariables  import AncillaryVariables
#from .comparison          import gt
from .coordinate          import AuxiliaryCoordinate
from .coordinatereference import CoordinateReference
from .field               import Field, FieldList
#from .fieldlist           import FieldList
from .query               import gt
from .units               import Units
from .functions           import (flat, RTOL, ATOL, equals, hash_array, allclose)
from .functions           import inspect as cf_inspect

from .data.data      import Data
from .data.filearray import FileArray

_dtype_float = numpy_dtype(float)

## --------------------------------------------------------------------
## Global properties, as defined in Appendix A of the CF conventions.
## --------------------------------------------------------------------
#_global_properties = set(('comment',
#                          'Conventions',
#                          'history',
#                          'institution',
#                          'references',
#                          'source',
#                          'title',
#                          ))

# --------------------------------------------------------------------
# Data variable properties, as defined in Appendix A of the CF
# conventions, without those which are not simple. And less
# 'long_name'.
# --------------------------------------------------------------------
_signature_properties = set(('add_offset',
                             'calendar',
                             'cell_methods',
                             '_FillValue',
                             'flag_masks',
                             'flag_meanings',
                             'flag_values',
                             'missing_value',
                             'scale_factor',
                             'standard_error_multiplier',
                             'standard_name',
                             'units',
                             'valid_max',
                             'valid_min',
                             'valid_range',
                             ))

#_standard_properties = _data_properties.union(_global_properties)

_no_units = Units()


class _HFLCache(object):
    '''

A cache for coordinate and cell measure hashes, first and last values
and first and last cell bounds

'''
    def __init__(self):
        self.hash = {}
        self.fl   = {}
        self.flb  = {}
    #--- End: def

    def inspect(self):
        '''

Inspect the object for debugging.

.. seealso:: `cf.inspect`

:Returns: 

    None

:Examples:

>>> f.inspect()

'''
        print cf_inspect(self)
    #--- End: def

#--- End: class


class _Meta(object):
    '''

A summary of a field.

This object contains everything you need to know in order to aggregate
the field.

'''
    #
    _canonical_units = {}

    #
    _canonical_cell_methods = []

    def __init__(self, f,
                 rtol=None, atol=None,
                 info=0,
                 relaxed_units=False,
                 allow_no_identity=False,
                 respect_valid=False,
                 equal_all=False,
                 exist_all=False,
                 equal=None,
                 exist=None,
                 ignore=None,
                 dimension=(),
                 relaxed_identities=False,
                 ncvar_identities=False):
        '''

**initialization**

:Parameters:

    f : cf.Field

    info : int, optional
        See the `aggregate` function for details.

    relaxed_units : bool, optional
        See the `aggregate` function for details.

    allow_no_identity : bool, optional
        See the `aggregate` function for details.

    rtol : float, optional
        See the `aggregate` function for details.

    atol : float, optional
        See the `aggregate` function for details.
   
    dimension : (sequence of) str, optional
        See the `aggregate` function for details.

:Examples:

'''
        self._nonzero     = False

        self.info         = info
        self.sort_indices = {}
        self.sort_keys    = {}
        self.cell_values  = False
        self.message      = ''

        strict_identities = not (relaxed_identities or ncvar_identities)
        self.strict_identities = strict_identities
        self.ncvar_identities  = ncvar_identities

        # Initialize the flag which indicates whether or not this
        # field has already been aggregated
        self.aggregated_field = False

        # ------------------------------------------------------------
        # Field
        # ------------------------------------------------------------
        self.field    = f
        self._hasData = f._hasData
        self.identity = f.name(identity=strict_identities,
                               ncvar=ncvar_identities)

        # ------------------------------------------------------------
        #
        # ------------------------------------------------------------
        signature_override = getattr(f, 'aggregate', None)
        if signature_override is not None:
            self.signature = signature_override
            self._nonzero = True
            return

        if self.identity is None:
            if not allow_no_identity and self._hasData:
                if info:
                    self.message = \
"no identity; consider setting relaxed_identities"
                return
        elif not self._hasData:
            if info:
                self.message = \
"no data array"
            return
        #--- End: if

        domain = f.domain
        items  = domain.items
 
        # ------------------------------------------------------------
        # Promote selected properties to 1-d, size 1 auxiliary
        # coordinates
        # ------------------------------------------------------------
        for property in dimension:
            value = f.getprop(property, None)
            if value is None:
                continue

            aux_coord = AuxiliaryCoordinate(properties={'long_name': property},
                                            attributes={'id': property},
                                            data=Data([value], units=''),
                                            copy=False)
            axis = domain.insert_axis(1)
#            axis = domain.new_axis_identifier()
#            print aux_coord, aux_coord.ndim, axis
            domain.insert_aux(aux_coord, axes=[axis], copy=False)
            
            f.delprop(property) ### dch COPY issue?
        #--- End: for

        self.units = self.canonical_units(f, self.identity,
                                          relaxed_units=relaxed_units)

        self.cell_methods = self.canonical_cell_methods(rtol=rtol, atol=atol)

        # ------------------------------------------------------------
        # Formula_terms
        # ------------------------------------------------------------
        coordrefs = items(role='r')
        if not coordrefs:
             self.coordrefs           = ()
             self.coordref_signatures = ()
        else:
            self.coordrefs           = coordrefs.values()
            self.coordref_signatures = sorted([cr.structural_signature()
                                               for cr in self.coordrefs])
            for s in self.coordref_signatures:
                if s[0] is None:
                    if info:
                        self.messsage = \
"%r field can't be aggregated due to it having an unidentifiable coordinate reference" % \
f.name('')
                    return
            #--- End: if
        #--- End: if

        # ------------------------------------------------------------
        # Ancillary variables
        # ------------------------------------------------------------
        if not self.set_ancillary_variables():
            return
           
        # ------------------------------------------------------------
        # Coordinate and cell measure arrays
        # ------------------------------------------------------------
        self.hash_values  = {}
        self.first_values = {}
        self.last_values  = {}
        self.first_bounds = {}
        self.last_bounds  = {}

        # Map axis canonical identities to their domain identifiers
        #
        # For example: {'time': 'dim2'}
        self.id_to_axis = {}
        
        # Map domain axis identifiers to their canonical identities
        #
        # For example: {'dim2': 'time'}
        self.axis_to_id = {}

        # Dictionaries mapping domain auxiliary coordinate identifiers
        # to their auxiliary coordiante objects
        aux_1d = items(role='a', ndim=1)
            
        # A set containing the identity of each domain coordinate
        #
        # For example: set(['time', 'height', 'latitude',
        # 'longitude'])
        self.all_coord_identities = set()

        self.axis = {}

        for axis in domain._axes_sizes:
    
            # List some information about each 1-d coordinate which
            # spans this axis. The order of elements is arbitrary, as
            # ultimately it will get sorted by each element's 'name'
            # key values.
            #
            # For example: [{'name': 'time', 'key': 'dim0', 'units':
            # <CF Units: ...>}, {'name': 'forecast_ref_time', 'key':
            # 'aux0', 'units': <CF Units: ...>}]
            info_dim = []

            dim_coord = domain.item(axis)

            if dim_coord is not None:
                # ----------------------------------------------------
                # 1-d dimension coordinate
                # ----------------------------------------------------
                identity = self.coord_has_identity_and_data(dim_coord)

                if identity is None:
                    return

                # Find the canonical units for this dimension
                # coordinate
                units = self.canonical_units(dim_coord, identity,
                                             relaxed_units=relaxed_units)
    
                info_dim.append(
                    {'identity' : identity,
                     'key'      : axis,
                     'units'    : units,
                     'hasbounds': dim_coord._hasbounds,
                     'coordrefs': self.find_coordrefs(axis, dim_coord)})
            #--- End: if
    
            # Find the 1-d auxiliary coordinates which span this axis
            aux_coords = {}
            for aux in aux_1d.keys():
                if axis in domain.item_axes(aux): #dimensions[aux]:
                    aux_coords[aux] = aux_1d.pop(aux)
            #--- End: for
    
            info_aux = []
            for aux, aux_coord in aux_coords.iteritems():
                # ----------------------------------------------------
                # 1-d auxiliary coordinate
                # ----------------------------------------------------
                identity = self.coord_has_identity_and_data(aux_coord)
                if identity is None:
                    return
    
                # Find the canonical units for this 1-d auxiliary
                # coordinate
                units = self.canonical_units(aux_coord, identity,
                                             relaxed_units=relaxed_units)

                info_aux.append(
                    {'identity' : identity,
                     'key'      : aux,
                     'units'    : units,
                     'hasbounds': aux_coord._hasbounds,
                     'coordrefs': self.find_coordrefs(aux, aux_coord)})
            #--- End: for
    
            # Sort the 1-d auxiliary coordinate information
            info_aux.sort(key=itemgetter('identity'))
    
            # Prepend the dimension coordinate information to the
            # auxiliary coordinate information
            info_1d_coord = info_dim + info_aux
            if not info_1d_coord:
                if info:
                    self.message ="\
axis has no one dimensional or scalar coordinates"
#"% field can't be aggregated due to an axis having no 1-d coordinates" %
#f.name(''))
                return
            #--- End: if

            # Find the canonical identity for this axis
            identity = info_1d_coord[0]['identity']
    
            self.axis[identity] = \
                {'ids'      : tuple([i['identity']  for i in info_1d_coord]),
                 'keys'     : tuple([i['key']       for i in info_1d_coord]),
                 'units'    : tuple([i['units']     for i in info_1d_coord]),
                 'hasbounds': tuple([i['hasbounds'] for i in info_1d_coord]),
                 'coordrefs': tuple([i['coordrefs'] for i in info_1d_coord])}
            
            if info_dim:
                self.axis[identity]['dim_coord_index'] = 0
            else:
                self.axis[identity]['dim_coord_index'] = None
    
            self.id_to_axis[identity] = axis
            self.axis_to_id[axis]     = identity
        #--- End: for
    
        # Create a sorted list of the axes' canonical identities
        #
        # For example: ['latitude', 'longitude', 'time']
        self.axis_ids = sorted(self.axis)

        # ------------------------------------------------------------
        # N-d auxiliary coordinates
        # ------------------------------------------------------------
        self.nd_aux = {}
        for aux, nd_aux_coord in items(role='a', ndim=gt(1)).iteritems():
           
            # Find this N-d auxiliary coordinate's identity
            identity = self.coord_has_identity_and_data(nd_aux_coord)
            if identity is None:
                return

            # Find the canonical units
            units = self.canonical_units(nd_aux_coord, identity,
                                         relaxed_units=relaxed_units)
            
            # Find axes' canonical identities
            axes = [self.axis_to_id[axis] for axis in domain.item_axes(aux)]
            axes = tuple(sorted(axes))

            self.nd_aux[identity] = {
                'key'      : aux,
                'units'    : units,
                'axes'     : axes,
                'hasbounds': nd_aux_coord._hasbounds,
                'coordrefs': self.find_coordrefs(aux, nd_aux_coord)}
        #--- End: for
    
        # ------------------------------------------------------------
        # Cell measures
        # ------------------------------------------------------------
        self.msr = {}
        info_msr = {}
        for key, msr in items(role='m').iteritems():
            
            if not self.cell_measure_has_data_and_units(msr):
                return

            # Find the canonical units for this cell measure
            units = self.canonical_units(msr,
                                         msr.name(identity=strict_identities,
                                                  ncvar=ncvar_identities),
                                         relaxed_units=relaxed_units)
            
            # Find axes' canonical identities
            axes = [self.axis_to_id[axis] for axis in domain.item_axes(key)]
            axes = tuple(sorted(axes))
            
            if units in info_msr:
                # Check for ambiguous cell measures, i.e. those which
                # have the same units and span the same axes.
                for value in info_msr[units]:
                    if axes == value['axes']:
                        if info:
                           self.message = \
"duplicate %r cell measures" % msr.name('')
                        return
            else:
                info_msr[units] = []
            #--- End: if
    
            info_msr[units].append({'key' : key,
                                    'axes': axes})
        #--- End: for
    
        # For each cell measure's canonical units, sort the
        # information by axis identities.
        for units, value in info_msr.iteritems():
            value.sort(key=itemgetter('axes'))        
            self.msr[units] = {'keys': tuple([v['key']  for v in value]),
                               'axes': tuple([v['axes'] for v in value])}
        #--- End: for

        # ------------------------------------------------------------
        # Properties and attributes
        # ------------------------------------------------------------
        if not (equal or exist or equal_all or exist_all):
            self.properties = ()
        else:
            properties = f.properties
            for p in ignore:
                properties.pop(p, None)

            if equal:
                eq = dict([(p, properties[p]) for p in equal
                           if p in properties])
            else:
                eq = {}

            if exist:
                ex = [p for p in exist if p in properties]
            else:
                ex = []

            eq_all = {}
            ex_all = []

            if equal_all or exist_all:
                if equal_all:
                    if not equal and not exist:
                        eq_all = properties
                    elif equal and exist:
                        eq_all = dict([(p, properties[p]) for p in properties
                                       if p not in ex and p not in eq])
                    elif equal:
                        eq_all = dict([(p, properties[p]) for p in properties
                                       if p not in eq])
                    elif exist:
                        eq_all = dict([(p, properties[p]) for p in properties
                                       if p not in ex])
                
                elif exist_all:
                    if not equal and not exist:
                         ex_all = list(properties)
                    elif equal and exist:
                        ex_all = [p for p in properties
                                  if p not in ex and p not in eq]
                    elif equal:
                        ex_all = [p for p in properties if p not in eq]
                    elif exist:
                        ex_all = [p for p in properties if p not in ex]
            #--- End: if

            self.properties = tuple(sorted(ex_all + ex +
                                           eq_all.items() + eq.items()))
        #--- End: if

        # Attributes
        self.attributes = set(('file',))

        # ----------------------------------------------------------------
        # Still here? Then create the structural signature.
        # ----------------------------------------------------------------
        self.respect_valid = respect_valid
        self.structural_signature()

        # Initialize the flag which indicates whether or not this
        # field has already been aggregated
        self.aggregated_field = False

        self.sort_indices = {}
        self.sort_keys    = {}
  
        # Finally, set the object to True
        self._nonzero = True
    #--- End: def

    def __nonzero__(self):
        '''

x.__nonzero__() <==> bool(x)

'''
        return self._nonzero
    #--- End: if

    def __repr__(self):
        '''

x.__repr__() <==> repr(x)

'''
        return '<CF %s: %r>' % (self.__class__.__name__,
                                getattr(self, 'field', None))
    #--- End: def

    def __str__(self):
        '''

x.__str__() <==> str(x)

'''
        strings = []
        for attr in sorted(self.__dict__):
            strings.append('%s.%s = %r' % (self.__class__.__name__, attr,
                                           getattr(self, attr)))
            
        return '\n'.join(strings)
    #--- End: def

    def coordinate_values(self):
        '''
'''
        string =     ['First cell: '+str(self.first_values)]
        string.append('Last cell:  '+str(self.last_values))
        string.append('First bounds: '    +str(self.first_bounds))
        string.append('Last bounds:  '    +str(self.last_bounds))

        return '\n'.join(string)                           
    #--- End: def

    def copy(self):
        '''
'''
        new = _Meta.__new__(_Meta)
        new.__dict__ = self.__dict__.copy()
        new.field = new.field.copy()
        return new

    def canonical_units(self, variable, identity, relaxed_units=False):
        '''

Updates the `_canonical_units` attribute.

:Parameters:

    variable : cf.Variable

    identity : str

    relaxed_units : bool 
        See the `cf.aggregate` for details.

:Returns:

    out : cf.Units or None

:Examples:

'''
        var_units = variable.Units

        _canonical_units = self._canonical_units

        if identity in _canonical_units:
            if var_units:
                for u in _canonical_units[identity]:
                    if var_units.equivalent(u):
                        return u
                #--- End: for
    
                # Still here?
                _canonical_units[identity].append(var_units)

            elif relaxed_units or variable.dtype.kind == 'S':
                var_units = _no_units
        else:
            if var_units:
                _canonical_units[identity] = [var_units]                
            elif relaxed_units or variable.dtype.kind == 'S':
                var_units = _no_units
        #--- End: if

        # Still here?
        return var_units
    #--- End: def

    def canonical_cell_methods(self, rtol=None, atol=None):
        '''

Updates the `_canonical_cell_methods` attribute.

:Parameters:

    atol : float

    rtol : float

:Returns:

    out : cf.CellMethods or None

:Examples:

'''
        cell_methods = getattr(self.field, 'cell_methods', None)

        if cell_methods is None:
            return None

        _canonical_cell_methods = self._canonical_cell_methods

        for cm in _canonical_cell_methods:
            if cell_methods.equivalent(cm, rtol=rtol, atol=atol):
                return cm
        #--- End: for
               
        # Still here?
        _canonical_cell_methods.append(cell_methods)

        return cell_methods
    #--- End: def

    def cell_measure_has_data_and_units(self, msr):
        '''

:Parameters:

    msr : cf.CellMeasure

:Returns:

    out : bool

:Examples:

'''
        if not msr.Units:
            if self.info:
                self.message = \
"%r cell measure has no units" % msr.name('')
            return

        if not msr._hasData:
            if self.info:
                self.message = \
"%r cell measure has no data" % msr.name('')
            return

        return True
    #--- End: def

    def coord_has_identity_and_data(self, coord):
        '''

:Parameters:

    coord : cf.Coordinate

:Returns:

    out : str or None
        The coordinate object's identity, or None if there is no
        identity and/or no data.

:Examples:

'''
        identity = coord.name(identity=self.strict_identities,
                              ncvar=self.ncvar_identities)

        if identity is None:
            # Coordinate has no identity, but it may have a recognised
            # axis.
            for ctype in ('T', 'X', 'Y', 'Z'):
                if getattr(coord, ctype):
                    identity = ctype
                    break
        #--- End: if

        if identity is not None:
            all_coord_identities = self.all_coord_identities

            if identity in all_coord_identities:
                if self.info:
                    self.message = \
"multiple %r coordinates" % identity
                return None
            #--- End: if

            if coord._hasData or (coord._hasbounds and coord.bounds._hasData):
                all_coord_identities.add(identity)
                return identity
        #--- End: if

        if self.info:
            self.message = \
"%r coordinate has no identity or no data" % coord.name('')
            
        return None
    #--- End: def

    def set_ancillary_variables(self):
        '''

:Returns:

    out : dict or None

:Examples:

'''
        f_ancillary_variables = getattr(self.field, 'ancillary_variables',
                                        None)

        if f_ancillary_variables is None:
            self.ancillary_variables = {}
            return True

        ancillary_variables = {}
        for av in f_ancillary_variables:
            identity = av.name(identity=self.strict_identities,
                               ncvar=self.ncvar_identities)
            if identity in ancillary_variables:
                if self.info:
                    self.message = \
"multiple %r ancillary variables" % av.name('')
                return None
            #--- End: if
            ancillary_variables[identity] = av
        #--- End: for

        self.ancillary_variables = ancillary_variables
        return True
    #--- End: def                   

    def print_info(self, info, signature=True):
        '''
    
:Parameters:

    m : _Meta

    info : int

'''
        if info >= 2:
            if signature:
                print 'STRUCTURAL SIGNATURE:\n', self.string_structural_signature()
            if self.cell_values:
                print 'CANONICAL COORDINATES:\n', self.coordinate_values()
            
        if info >= 3:
            print 'COMPLETE AGGREGATION METADATA:\n', self
    #--- End: def

    def string_structural_signature(self):
        '''
'''
        keys = ('Identity', 
                'Units', 
                'Cell methods',
                'Data',
                'Properties', 
                'standard error multiplier',
                'valid_min',
                'valid_max',
                'valid_range',
                'Flags',
                'Ancillary variables',
                'Coordinate reference systems',
                '1-d coordinates',
                'Dimension coordinates', 
                'N-d coordinates',
                'Cell measures',
                )

        string = []

#        d = {}
        for key, value in zip(keys[:], self.signature[:]):
            if not (value == () or value is None):
                string.append('%s: %r' % (key, value))
        

#        return '{'+'\n'.join(string)+'}'
        return '\n'.join(string)
    #--- End: def

    def structural_signature(self):
        '''

:Returns:

    out : tuple

:Examples:

'''
        f = self.field    
      
        # Initialize the structual signature with:
        #
        # * the identity
        # * the canonical units
        # * the canonical cell methods
        # * whether or not there is a data array
        signature = [self.identity, self.units, self.cell_methods, self._hasData]
        signature_append = signature.append

        # Properties
        signature_append(self.properties)

        # standard_error_multiplier
        signature_append(f.getprop('standard_error_multiplier', None))

        # valid_min, valid_max, valid_range
        if self.respect_valid:
            signature.extend((f.getprop('valid_min'  , None),
                              f.getprop('valid_max'  , None),
                              f.getprop('valid_range', None)))
        else:
            signature.extend((None, None, None))            

        # Flags
        signature_append(getattr(f, 'Flags', None))
        
        # Add ancillary variables
        if self.ancillary_variables:
            signature_append(tuple(sorted(self.ancillary_variables)))
        else:
            signature_append(None)
        
        # Coordinate references
        signature_append(tuple(self.coordref_signatures))

        # 1-d coordinates for each axis. Note that self.axis_ids has
        # already been sorted.
        axis = self.axis        
        x = [(axis[identity]['ids'],
              axis[identity]['units'],
              axis[identity]['hasbounds'],
              axis[identity]['coordrefs']) for identity in self.axis_ids]
        signature_append(tuple(x))
        
        # Whether or not each axis has a dimension coordinate
        x = [False if axis[identity]['dim_coord_index'] is None else True
             for identity in self.axis_ids]
        signature_append(tuple(x))
        
        # N-d auxiliary coordinates
        nd_aux = self.nd_aux
        x = [(identity,
              nd_aux[identity]['units'],
              nd_aux[identity]['axes'],
              nd_aux[identity]['hasbounds'],
              nd_aux[identity]['coordrefs']) for identity in sorted(nd_aux)]
        signature_append(tuple(x))
        
        # Cell measures
        msr = self.msr
        x = [(units,
              msr[units]['axes']) for units in sorted(msr)]
        signature_append(tuple(x))
        
        self.signature = tuple(signature)
    #--- End: def

    def find_coordrefs(self, key, coord):
        '''

:Parameters:

    key : str
        The domain identifier of the coordinate object

    coord : cf.Coordinate

:Returns:

    out : tuple or None

:Examples:

>>> dim_coord
<CF DimensionCoordinate: ....>
>>> m.find_coordrefs('dim0', dim_coord)

>>> aux_coord
<CF AuxiliaryCoordinate: ....>
>>> m.find_coordrefs('aux1', aux_coord)

'''    
        coordrefs = self.coordrefs

        if not coordrefs:
            return None

        # Select the coordinate references which contain a pointer to
        # this coordinate
        names = [ref.name for ref in coordrefs if key in ref.coords]
        
        if not names:
            return None

        return tuple(sorted(names))
    #--- End: def

#--- End: class

def aggregate(fields,
              info=0,
              relaxed_units=False,
              no_overlap=False,
              contiguous=False,
              relaxed_identities=False,
              ncvar_identities=False,
              respect_valid=False,
              equal_all=False,
              exist_all=False,
              equal=None,
              exist=None,
              ignore=None,
              exclude=False,
              dimension=(),
              concatenate=True,
              copy=True, 
              axes=None,
              donotchecknonaggregatingaxes=False,
              allow_no_identity=False,
              shared_nc_domain=False
              ):
    '''

Aggregate fields into as few fields as possible.

The aggregation of fields may be thought of as the combination fields
into each other to create a new field that occupies a larger domain.

Using the CF aggregation rules, input fields are separated into
aggregatable groups and each group (which may contain just one field)
is then aggregated to a single field. These aggregated fields are
returned in a field list.

**Identities**

In order for aggregation to be possible, fields and their components
need to be unambiguously identifiable. By default, these identities
are taken from `!standard_name` CF properties or else `!id`
attributes. If both of these identifiers are absent then `!long_name`
CF properties or else `!ncvar` attributes may be used if the
*relaxed_identities* parameter is True.

:Parameters:

    fields : (sequence of) cf.Field or cf.FieldList
        The field or fields to aggregated.

    info : int, optional
        Print information about the aggregation process. If *info* is
        0 then no information is displayed.  If *info* is 1 or more
        then display information on which fields are unaggregatable,
        and why. If *info* is 2 or more then display the structural
        signatures of the fields and, when there is more than one
        field with the same structural signature, their canonical
        first and last coordinate values.  If *info* is 3 or more then
        display the fields' complete aggregation metadata. By default
        *info* is 0 and no information is displayed.

    no_overlap : bool, optional
        If True then require that aggregated fields have adjacent
        dimension coordinate object cells which do not overlap (but
        they may share common boundary values). Ignored if the
        dimension coordinates objects do not have bounds. See the
        *contiguous* parameter.

    contiguous : bool, optional
        If True then require that aggregated fields have adjacent
        dimension coordinate object cells which partially overlap or
        share common boundary values. Ignored if the dimension
        coordinate objects do not have bounds. See the *no_overlap*
        parameter.

    relaxed_units : bool, optional
        If True then assume that fields or domain items (such as
        coordinate objects) with the same identity (as returned by
        their `!identity` methods) but missing units all have
        equivalent but unspecified units, so that aggregation may
        occur. By default such fields are not aggregatable.

    allow_no_identity : bool, optional
        If True then treat fields with data arrays but with no
        identities (see the above notes) as having equal but
        unspecified identities, so that aggregation may occur. By
        default such fields are not aggregatable.

    relaxed_identities : bool, optional
        If True then allow fields and their components to be
        identified by their `!long_name` CF properties or else
        `!ncvar` attributes if their `!standard_name` CF properties or
        `!id` attributes are missing.

    ncvar_identities : bool, optional
        If True then Force fields and their components (such as
        coordinates) to be identified by their netCDF file variable
        names.

    shared_nc_domain : bool, optional
        If True then match axes between a field and its contained
        ancillary variable and coordinate reference fields via their
        netCDF dimension names and not via their domains.

    equal_all : bool, optional
        If True then require that aggregated fields have the same set
        of non-standard CF properties (including
        `~cf.Field.long_name`), with the same values. See the
        *concatenate* parameter.

    equal_ignore : (sequence of) str, optional
        Specify CF properties to omit from any properties specified by
        or implied by the *equal_all* and *equal* parameters.

    equal : (sequence of) str, optional
        Specify CF properties for which it is required that aggregated
        fields all contain the properties, with the same values. See
        the *concatenate* parameter.

    exist_all : bool, optional
        If True then require that aggregated fields have the same set
        of non-standard CF properties (including, in this case,
        long_name), but not requiring the values to be the same. See
        the *concatenate* parameter.

    exist_ignore : (sequence of) str, optional
        Specify CF properties to omit from the properties specified by
        or implied by the *exist_all* and *exist* parameters.

    exist : (sequence of) str, optional
        Specify CF properties for which it is required that aggregated
        fields all contain the properties, but not requiring the
        values to be the same. See the *concatenate* parameter.

    respect_valid : bool, optional
        If True then the CF properties `~cf.Field.valid_min`,
        `~cf.Field.valid_max` and `~cf.Field.valid_range` are taken
        into account during aggregation. By default these CF
        properties are ignored and are not set in the output fields.

    dimension : (sequence of) str, optional
        Create new axes for each input field which has one or more of
        the given properties. For each CF property name specified, if
        an input field has the property then, prior to aggregation, a
        new axis is created with an auxiliary coordinate whose datum
        is the property's value and the property itself is deleted
        from that field.

    concatenate : bool, optional
        If False then a CF property is omitted from an aggregated
        field if the property has unequal values across constituent
        fields or is missing from at least one constituent field. By
        default a CF property in an aggregated field is the
        concatenated collection of the distinct values from the
        constituent fields, delimited with the string
        ``' :AGGREGATED: '``.

    copy : bool, optional
        If False then do not copy fields prior to aggregation.
        Setting this option to False may change input fields in place,
        and the output fields may not be independent of the
        inputs. However, if it is known that the input fields are
        never to accessed again (such as in this case: ``f =
        cf.aggregate(f)``) then setting *copy* to False can reduce the
        time taken for aggregation.

    axes : (sequence of) str, optional
        Select axes to aggregate over. Aggregation will only occur
        over as large a subset as possible of these axes. Each axis is
        identified by the exact identity of a one dimensional
        coordinate object, as returned by its `!identity`
        method. Aggregations over more than one axis will occur in the
        order given. By default, aggregation will be over as many axes
        as possible.

    donotchecknonaggregatingaxes : bool, optional
        If True, and *axes* is set, then checks for consistent data
        array values will only be made for one dimensional coordinate
        objects which span the any of the given aggregating axes. This
        can reduce the time taken for aggregation, but if any those
        checks would have failed then this clearly allows the
        possibility of an incorrect result. Therefore, this option
        should only be used in cases for which it is known that the
        non-aggregating axes are in fact already entirely consistent.

:Returns:

    out : cf.FieldList
        The aggregated fields.
    
:Examples:

The following six fields comprise eastward wind at two different times
and for three different atmospheric heights for each time:

>>> f
[<CF Field: eastward_wind(latitude(73), longitude(96)>,
 <CF Field: eastward_wind(latitude(73), longitude(96)>,
 <CF Field: eastward_wind(latitude(73), longitude(96)>,
 <CF Field: eastward_wind(latitude(73), longitude(96)>,
 <CF Field: eastward_wind(latitude(73), longitude(96)>,
 <CF Field: eastward_wind(latitude(73), longitude(96)>]
>>> g = cf.aggregate(f)
>>> g
[<CF Field: eastward_wind(height(3), time(2), latitude(73), longitude(96)>]
>>> g[0].source
'Model A'
>>> g = cf.aggregate(f, dimension=('source',))
[<CF Field: eastward_wind(source(1), height(3), time(2), latitude(73), longitude(96)>]
>>> g[0].source
AttributeError: 'Field' object has no attribute 'source'

'''
    # Initialise the cache for coordinate and cell measure hashes,
    # first and last values and first and last cell bounds
    hfl_cache = _HFLCache()

    output_fields = FieldList()

    output_fields_append = output_fields.append

    if exclude:
        exclude = ' NOT'
    else:
        exclude = ''

    atol = ATOL()
    rtol = RTOL()

    if axes is not None and isinstance(axes, basestring):
        axes = (axes,)

    # Parse parameters
    strict_identities = not (relaxed_identities or ncvar_identities)

    if exist_all and equal_all:
        raise AttributeError("asdasdas  jnf0____")

    if equal or exist or ignore:
        properties = {'equal' : equal,
                      'exist' : exist, 
                      'ignore': ignore}
        
        for key, value in properties.iteritems():
            if not value:
                continue
        
            if isinstance(equal, basestring):
                # If it is a string then convert to a single element
                # sequence
                properties[key] = (value,)
            else:
                try:
                    value[0]
                except TypeError:
                    raise TypeError("Bad type of %r parameter: %r" % 
                                    (key, type(value)))
        #--- End: for
        
        equal  = properties['equal']
        exist  = properties['exist']
        ignore = properties['ignore']
        
        if equal and exist:
            if set(equal).intersection(exist):
                raise AttributeError("888888888888888 asdasdas  jnf0____")
        
        if ignore:
            ignore = _signature_properties.union(ignore)
        else:
            ignore = _signature_properties
    #--- End: if

    unaggregatable = False
    status = 0

    # ================================================================
    # Group together fields with the same structural signature
    # ================================================================
    signatures = {}
    for f in flat(fields):
        # ------------------------------------------------------------
        # Create the metadata summary, including the structural
        # signature
        # ------------------------------------------------------------
        meta = _Meta(f,
                     info=info, rtol=rtol, atol=atol,
                     relaxed_units=relaxed_units, 
                     allow_no_identity=allow_no_identity,
                     equal_all=equal_all,
                     exist_all=exist_all,
                     equal=equal,
                     exist=exist,
                     ignore=ignore,
                     dimension=dimension,
                     relaxed_identities=relaxed_identities,
                     ncvar_identities=ncvar_identities,
                     respect_valid=respect_valid)

        if not meta:
            unaggregatable = True
            status = 1

            if info:
                print(
"Unaggregatable %r field has%s been output: %s" % 
(f.name(''), exclude, meta.message))

            if not exclude:
                # This field does not have a structural signature, so
                # it can't be aggregated. Put it straight into the
                # output list and move on to the next input field.
                if not copy:
                    output_fields_append(f)
                else:
                    output_fields_append(f.copy())
            #--- End: if

            continue
        #--- End: if

        # ------------------------------------------------------------
        # This field has a structural signature, so append it to the
        # list of fields with the same structural signature.
        # ------------------------------------------------------------
        signatures.setdefault(meta.signature, []).append(meta)
    #--- End: for    

    # ================================================================
    # Within each group of fields with the same structural signature,
    # aggregate as many fields as possible. Sort the signatures so
    # that independent aggregations of the same set of input fields
    # return fields in the same order.
    # ================================================================
    for signature in sorted(signatures):

        meta = signatures[signature]

        if info >= 2:
            # Print useful information
            meta[0].print_info(info)
            print ''
        #--- End: if

        if len(meta) == 1:
            # --------------------------------------------------------
            # There's only one field with this signature, so we can
            # add it straight to the output list and move on to the
            # next signature.
            # --------------------------------------------------------
            if not copy:       
                output_fields_append(meta[0].field) 
            else:
                output_fields_append(meta[0].field.copy()) 

#            if info >= 2:
#                meta[0].print_info(info)

#            if info:
#                print(
#"%r field can't be aggregated due to a unique structural signature" %
#meta[0].field.name(''))

            continue
        #--- End: if

        # ------------------------------------------------------------
        # Still here? Then there are 2 or more fields with this
        # signature which may be aggregatable. These fields need to be
        # passed through until no more aggregations are possible. With
        # each pass, the number of fields in the group will reduce by
        # one for each aggregation that occurs. Each pass represents
        # an aggregation in another axis.
        # ------------------------------------------------------------

        # ------------------------------------------------------------
        # For each axis's 1-d coordinates, create the canonical hash
        # value and the first and last cell values.
        # ------------------------------------------------------------
        if axes is None:
            # Aggregation will be over as many axes as possible
            aggregating_axes = meta[0].axis_ids
            _create_hash_and_first_values(meta, None, False, hfl_cache)

#def _create_hash_and_first_values(meta, axes, donotchecknonaggregatingaxes,
#                                  hfl_cache):
        else:    
            # Specific aggregation axes have been selected
            aggregating_axes = []
            axis_items = meta[0].axis.items()
            for axis in axes:
                coord = meta[0].field.coord(axis, exact=True)
                if coord is None:
                    continue

                coord_identity = coord.name(identity=strict_identities,
                                            ncvar=ncvar_identities)
                for identity, value in axis_items:
                    if (identity not in aggregating_axes and 
                        coord_identity in value['ids']):
                        aggregating_axes.append(identity)
                        break
            #--- End: for

            _create_hash_and_first_values(meta, aggregating_axes, 
                                          donotchecknonaggregatingaxes,
                                          hfl_cache)
        #--- End: if

        if info >= 2:
            # Print useful information
            for m in meta:
                m.print_info(info, signature=False)
            print ''
        #--- End: if

        # Take a shallow copy in case we abandon and want to output
        # the original, unaggregated fields.
        meta0 = meta[:]

        unaggregatable = False

        for axis in aggregating_axes:

            number_of_fields = len(meta)
            if number_of_fields == 1:
                break

            # --------------------------------------------------------
            # Separate the fields with the same structural signature
            # into groups such that either within each group the
            # fields' domains differ only long the axis or each group
            # contains only one field.
            #
            # Note that the 'a_identity' attribute is set in the
            # _group_fields function.
            # --------------------------------------------------------
            grouped_meta = _group_fields(meta, axis)

            if not grouped_meta:                
                if info:
                    print(
"Unaggregatable %r fields have%s been output: %s" % 
(meta[0].field.name(''), exclude, meta[0].message))

                unaggregatable = True
                break
            #--- End: if

            if len(grouped_meta) == number_of_fields:
                if info >= 3:
                    print(
"%r fields can't be aggregated along their %r axis" %
(meta[0].field.name(''), axis))
                continue

            # --------------------------------------------------------
            # Within each group, aggregate as many fields as possible.
            # --------------------------------------------------------
            for m in grouped_meta:

                if len(m) == 1:
                    continue
                
                # ----------------------------------------------------
                # Still here? The sort the fields in place by the
                # canonical first values of their 1-d coordinates for
                # the aggregating axis.
                # ----------------------------------------------------
                _sorted_by_first_values(m, axis)

                # ----------------------------------------------------
                # Check that the aggregating axis's 1-d coordinates
                # don't overlap, and don't aggregate anything in this
                # group if any do.
                # ----------------------------------------------------
                if not _ok_coordinate_arrays(m, axis, no_overlap, contiguous,
                                             info):
                    if info:
                        print(
"Unaggregatable %r fields have%s been output: %s" % 
(m[0].field.name(''), exclude, m[0].message))

                    unaggregatable = True
                    break
                #--- End: if

                # ----------------------------------------------------
                # Still here? Then pass through the fields
                # ----------------------------------------------------
                m0 = m[0].copy()

                for m1 in m[1:]:
                    m0 = _aggregate_2_fields(m0, m1,
                                             rtol=rtol, atol=atol,
                                             respect_valid=respect_valid,
                                             contiguous=contiguous,
                                             no_overlap=no_overlap,
                                             relaxed_units=relaxed_units,
                                             info=info,
                                             concatenate=concatenate,
                                             copy=(copy or not exclude),
                                             relaxed_identities=relaxed_identities,
                                             ncvar_identities=ncvar_identities,
                                             shared_nc_domain=shared_nc_domain)
                                                                 
                    if not m0:
                        # Couldn't aggregate these two fields, so
                        # abandon all aggregations on the fields with
                        # this structural signature, including those
                        # already done.
                        if info:
                            print(
"Unaggregatable %r fields have%s been output: %s" % 
(m1.field.name(''), exclude, m1.message))

                        unaggregatable = True
                        break
                #--- End: while

                m[:] = [m0]
            #--- End: for

            if unaggregatable:
                break

            # --------------------------------------------------------
            # Still here? Then the aggregation along this axis was
            # completely successful for each sub-group, so reassemble
            # the aggregated fields as a single list ready for
            # aggregation along the next axis.
            # --------------------------------------------------------
            meta = [m for gm in grouped_meta for m in gm]
        #--- End: for

        # Add fields to the output list
        if unaggregatable:
#            info > 0:
#                print ''
            status = 1
            if not exclude:
                if copy:       
                    output_fields.extend((m.field.copy() for m in meta0)) 
                else:
                    output_fields.extend((m.field for m in meta0)) 
        else:
            output_fields.extend((m.field for m in meta)) 
    #--- End: for

    aggregate.status = status

    if status and info > 0:
        print ''

    if  len(output_fields) == 1:
        return output_fields[0]
    else:
        return output_fields
#--- End: def

# --------------------------------------------------------------------
# Initialise the status
# --------------------------------------------------------------------
aggregate.status = 0

def _create_hash_and_first_values(meta, axes, donotchecknonaggregatingaxes,
                                  hfl_cache):
    '''

Updates each field's _Meta object.

:Parameters:

    meta : list of _Meta

    axes : None or list

    donotchecknonaggregatingaxes : bool

:Returns:

    None

'''
    for m in meta:
        domain = m.field.domain
        domain_dimensions = domain._axes

        m_sort_keys    = m.sort_keys
        m_sort_indices = m.sort_indices

        m_hash_values  = m.hash_values
        m_first_values = m.first_values
        m_last_values  = m.last_values

        m_id_to_axis = m.id_to_axis
        # --------------------------------------------------------
        # Create a hash value for each metadata array
        # --------------------------------------------------------
        
        # --------------------------------------------------------
        # 1-d coordinates
        # --------------------------------------------------------
        for identity in m.axis_ids:
#            print 'identity=', identity #dch

            if (axes is not None and donotchecknonaggregatingaxes and
                identity not in axes):
                x = [None] * len(m.axis[identity]['keys'])
                m_hash_values[identity]  = x
                m_first_values[identity] = x[:]
                m_last_values[identity]  = x[:]
                continue

            # Still here?
            m_axis_identity = m.axis[identity]

            axis = m_id_to_axis[identity]

            dim_coord = domain.get(axis, None)

            # Find the sort indices for this axis ...
            if dim_coord is not None:
                # ... which has a dimension coordinate
                m_sort_keys[axis] = axis
                if not domain.direction(axis):
                    # Axis is decreasing
                    sort_indices = slice(None, None, -1)
                    null_sort = False
                else:
                    # Axis is increasing
                    sort_indices = slice(None)
                    null_sort = True
             
            else:
                # ... which doesn't have a dimension coordinate but
                #     does have one or more 1-d auxiliary coordinates
                aux = m_axis_identity['keys'][0]
                sort_indices = numpy_argsort(domain.get(aux).unsafe_array)
                m_sort_keys[axis] = aux 
                null_sort = False
            #-- End: if
            m_sort_indices[axis] = sort_indices

            hash_values  = []
            first_values = []
            last_values  = []

            for key, canonical_units in izip(m_axis_identity['keys'],
                                             m_axis_identity['units']):

                coord = domain.get(key)
#                print repr(coord) #dch
                # Get the hash of the data array and its first and
                # last values
                h, f, l = _get_hfl(coord, canonical_units,
                                   sort_indices, null_sort,
                                   True, False, hfl_cache)
#                print h, f, l #dch

                first_values.append(f)
                last_values.append(l)
                
                if coord._hasbounds:                        
                    if coord.isdimension:
                        # Get the hash of the dimension coordinate
                        # bounds data array and its first and last
                        # cell values
                        hb, fb, lb = _get_hfl(coord.bounds, canonical_units,
                                              sort_indices, null_sort, 
                                              False, True, hfl_cache)
                        m.first_bounds[identity] = fb
                        m.last_bounds[identity]  = lb
                    else:
                        # Get the hash of the auxiliary coordinate
                        # bounds data array
                        hb  = _get_hfl(coord.bounds, canonical_units,
                                       sort_indices, null_sort,
                                       False, False, hfl_cache)
                    #--- End: if
                    h = (h, hb)
                #--- End: if
                
                hash_values.append(h)
##                else:
##                    coord_units = coord.Units
##    
##                    # Change the coordinate data type if required
##                    if coord.dtype.char not in ('d', 'S'):
##                        coord = coord.copy(_only_Data=True)
##                        coord.dtype = _dtype_float
##    
##                    # Change the coordinate's units to the canonical ones
##                    coord.Units = canonical_units
##    
##                    # Get the coordinate's data array
##                    if null_sort:
##                        array = coord.Data.unsafe_array
##                    else:
##                        array = coord.Data.array[sort_indices]
##    
##                    hash_value = hash_array(array)
##    
##                    first_values.append(array.item(0)) #[0])
##                    last_values.append(array.item(-1)) #[-1])
##    
##                    if coord._hasbounds:
##                        if null_sort:
##                            array = coord.bounds.Data.unsafe_array
##                        else:
##                            array = coord.bounds.Data.array[sort_indices, ...]
##    
##                        hash_value = (hash_value, hash_array(array))
##    
##                        if key[:3] == 'dim':  # can do better than this! DCH
##                            # Record the bounds of the first and last
##                            # (sorted) cells of a dimension coordinate
##                            # (don't need to do this for an auxiliary
##                            # coordinate).
##                            array0 = array[0, ...].copy()
##                            array0.sort()
##                            m.first_bounds[identity] = array0
##    
##                            array0 = array[-1, ...].copy()
##                            array0.sort()
##                            m.last_bounds[identity] = array0
##                    #--- End: if
##                        
##                    hash_values.append(hash_value)
##    
##                    # Reinstate the coordinate's original units
##                    coord.Units = coord_units
            #--- End: for
                
            m_hash_values[identity]  = hash_values
            m_first_values[identity] = first_values
            m_last_values[identity]  = last_values
        #--- End: for

        # ------------------------------------------------------------
        # N-d auxiliary coordinates
        # ------------------------------------------------------------
        if donotchecknonaggregatingaxes:
            for aux in m.nd_aux.itervalues():
                aux['hash_value'] = None
        else:
            for aux in m.nd_aux.itervalues():
                key             = aux['key']
                canonical_units = aux['units']

                coord = domain.get(key)
                
                axes = [m_id_to_axis[identity] for identity in aux['axes']]
                domain_axes = domain_dimensions[key]
                if axes != domain_axes:
                    coord = coord.copy(_only_Data=True)                        
                    iaxes = [domain_axes.index(axis) for axis in axes]
                    coord.transpose(iaxes, i=True)
                #--- End: if
                
                sort_indices = tuple([m_sort_indices[axis] for axis in axes])
                    
                # Get the hash of the data array
                h = _get_hfl(coord, canonical_units, sort_indices, 
                             False, False, False, hfl_cache)
                
                if coord._hasbounds:
                    # Get the hash of the bounds data array
                    hb  = _get_hfl(coord.bounds, canonical_units,
                                   sort_indices,
                                   False, False, False, hfl_cache)
                    h = (h, hb)
                #--- End: if
                    
                aux['hash_value'] = h
##                else:
##                    coord_units = coord.Units
##                    
##                    # Change the coordinate data type if required
##                    if coord.dtype.char not in ('d', 'S'):
##                        coord = coord.copy(_only_Data=True)
##                        coord.dtype = _dtype_float
##                        copied = True
##                    else:
##                        copied = False
##                        
##                    # Change the coordinate's units to the canonical ones
##                    coord.Units = aux['units'] #canonical_units
##                    
##                    # Get the coordinate's data array
##                    array = coord.Data.array[sort_indices]
##                    
##                    hash_value = hash_array(array)
##                
##                    if coord._hasbounds:
##                        sort_indices.append(Ellipsis)
##                        array = coord.bounds.Data.array[sort_indices]
##                        hash_value = (hash_value, hash_array(array))
##                        
##                    aux['hash_value'] = hash_value
##                    
##                    # Reinstate the coordinate's original units
##                    coord.Units = coord_units
            #--- End: for
        #--- End: if
            
        # ------------------------------------------------------------
        # Cell measures
        # ------------------------------------------------------------
        if donotchecknonaggregatingaxes:
            for msr in m.msr.itervalues():            
                msr['hash_values'] = [None] * len(msr['keys'])
        else:
            for canonical_units, msr in m.msr.iteritems():                
                hash_values = []           
                for key, axes in izip(msr['keys'], msr['axes']):            
                    coord = domain.get(key) 
         
                    axes = [m_id_to_axis[identity] for identity in axes]
           
                    domain_axes = domain_dimensions[key]
                    if axes != domain_axes:
                        coord = coord.copy(_only_Data=True)
                        iaxes = [domain_axes.index(axis) for axis in axes]
                        coord.transpose(iaxes, i=True)
                    #--- End: if
 
                    sort_indices = [m_sort_indices[axis] for axis in axes]
                
##                    if qwerty: 
                    # Get the hash of the data array
                    h = _get_hfl(coord, canonical_units,
                                 tuple(sort_indices),
                                 False, False, False, hfl_cache)

                    hash_values.append(h)
##                    else:
##                        coord_units = coord.Units
## 
##                        # Change the coordinate data type if required
##                        if coord.dtype.char not in ('d', 'S'):
##                            coord = coord.copy(_only_Data=True)
##                            coord.dtype = _dtype_float
##                            copied = True
##                        else:
##                            copied = False
##                            
##                        # Change the coordinate's units to the canonical ones
##                        coord.Units = canonical_units
##                                  
##                        array = coord.Data.array[tuple(sort_indices)]
##                    
##                        hash_values.append(hash_array(array)) 
##                
##                        # Reinstate the coordinate's original units
##                        coord.Units = coord_units  
                #--- End: for
            
                msr['hash_values'] = hash_values
            #--- End: for
        #--- End: if

#        m.calculate_hash_values = set()
        m.cell_values = True
    #--- End: for
#--- End: def

def _get_hfl(v, canonical_units, sort_indices, null_sort, 
             first_and_last_values, first_and_last_bounds,
             hfl_cache):
    '''
Return the hash value, and optionally first and last values (or cell
bounds)
'''
    create_hash = True
    create_fl   = first_and_last_values
    create_flb  = first_and_last_bounds

    key = None

    d = v.Data

    if d._pmsize == 1:
        partition = d.partitions.matrix.item()
        if not partition.part:
            key = getattr(partition.subarray, 'file_pointer', None)
            if key is not None:
                hash_value = hfl_cache.hash.get(key, None)
                create_hash = hash_value is None

                if first_and_last_values:
                    first, last = hfl_cache.fl.get(key, (None, None))
                    create_fl = first is None

                if first_and_last_bounds:
                    first, last = hfl_cache.flb.get(key, (None, None))
                    create_flb = first is None
    #--- End: if
    
    if create_hash or create_fl or create_flb:
        # Change the data type if required
        if d.dtype.char not in ('d', 'S'):
            d = d.copy()
            d.dtype = _dtype_float
        
        # Change the units to the canonical ones
        units = d.Units
        d.Units = canonical_units
        
        # Get the data array
        if null_sort:
            array = d.unsafe_array
        else:
            array = d.array[sort_indices]
            
        # Reinstate the original units
        d.Units = units

        if create_hash:
#            if v.standard_name=='latitude':
#                print repr(array)
#            print  array.dtype
            hash_value = hash_array(array)
            hfl_cache.hash[key] = hash_value

        if create_fl:
            first = array.item(0)
            last  = array.item(-1)           
            hfl_cache.fl[key] = (first, last)

        if create_flb: 
            # Record the bounds of the first and last (sorted) cells
            first = numpy_sort(array[0, ...])
            last  = numpy_sort(array[-1, ...])
            hfl_cache.flb[key] = (first, last)
    #--- End: if

    if first_and_last_values or first_and_last_bounds:
        return hash_value, first, last
    else:
        return hash_value
#--- End: def

def _group_fields(meta, axis):
    '''

:Parameters:

    meta : list of _Meta

    axis : str
        The name of the axis to group for aggregation.

:Returns:

    out : list of cf.FieldList

'''
    axes = meta[0].axis_ids

    if axes:
        if axis in axes:
            # Move axis to the end of the axes list
            axes = axes[:]
            axes.remove(axis)
            axes.append(axis)
        #--- End: if

        sort_by_axis_ids = itemgetter(*axes)            
        def _hash_values(m):
            return sort_by_axis_ids(m.hash_values)
        
        meta.sort(key=_hash_values)
    #--- End: if

    # Create a new group of potentially aggregatable fields (which
    # contains the first field in the sorted list)
    m0 = meta[0]
    groups_of_fields = [[m0]]

    hash0 = m0.hash_values

    for m0, m1 in izip(meta[:-1], meta[1:]):

        #-------------------------------------------------------------
        # Count the number of axes which are different between the two
        # fields
        # -------------------------------------------------------------
        count = 0
        hash1 = m1.hash_values
        for identity, value in hash0.iteritems():
            if value != hash1[identity]:
                count += 1
                a_identity = identity                
        #--- End: for
        hash0 = hash1

        if count == 1:
            # --------------------------------------------------------
            # Exactly one axis has different 1-d coordinate values
            # --------------------------------------------------------
            if a_identity != axis:
                # But it's not the axis that we're trying currently to
                # aggregate over
                groups_of_fields.append([m1])
                continue

            # Still here? Then it is the axis that we're trying
            # currently to aggregate over.
            ok = True

            # Check the N-d auxiliary coordinates
            for identity, aux0 in m0.nd_aux.iteritems():
                if (a_identity not in aux0['axes'] and 
                    aux0['hash_value'] != m1.nd_aux[identity]['hash_value']):
                    # This matching pair of N-d auxiliary coordinates
                    # does not span the aggregating axis and they have
                    # different data array values
                    ok = False
                    break
            #--- End: for
            if not ok:
                groups_of_fields.append([m1])
                continue 
                
            # Still here? Then check the cell measures
            msr0 = m0.msr
            for units in msr0:
                for axes, hash_value0, hash_value1 in izip(
                    msr0[units]['axes'],
                    msr0[units]['hash_values'],
                    m1.msr[units]['hash_values']):
                    
                    if a_identity not in axes and hash_value0 != hash_value1:
                        # There is a matching pair of cell measures
                        # with these units which does not span the
                        # aggregating axis and they have different
                        # data array values
                        ok = False
                        break
            #--- End: for
            if not ok:
                groups_of_fields.append([m1])
                continue 

            # Still here? Then set the identity of the aggregating
            # axis
            m0.a_identity = a_identity
            m1.a_identity = a_identity
            
            # Append field1 to this group of potentially aggregatable
            # fields
            groups_of_fields[-1].append(m1)

        elif not count:
            # --------------------------------------------------------
            # Zero axes have different 1-d coordinate values, so don't
            # aggregate anything in this entire group.
            # --------------------------------------------------------
            meta[0].message = \
"indistinguishable coordinates or other domain information"
            return ()

        else:
            # --------------------------------------------------------
            # Two or more axes have different 1-d coordinate values,
            # so create a new sub-group of potentially aggregatable
            # fields which contains field1.
            # --------------------------------------------------------
            groups_of_fields.append([m1])
        #--- End: if
    #--- End: for

    return groups_of_fields
#--- End: def

def _sorted_by_first_values(meta, axis):
    '''

Sort fields inplace

:Parameters:

    meta : list of _Meta

    axis : str

:Returns:

    None

''' 
    sort_by_axis_ids = itemgetter(axis)

    def _first_values(m):
        return sort_by_axis_ids(m.first_values)
    #--- End: def

    meta.sort(key=_first_values)
#--- End: def

def _ok_coordinate_arrays(meta, axis, no_overlap, contiguous, info):
    '''

Return True if the aggregating axis's 1-d coordinates are all
aggregatable.

It is assumed that the input metadata objects have already been sorted
by the canonical first values of their 1-d coordinates.

:Parameters:

    meta : list of _Meta

    axis : str
        Find the canonical identity of the aggregating axis.

    no_overlap : bool
        See the `aggregate` function for details.

    contiguous : bool
        See the `aggregate` function for details.

    NOT : str

:Returns:

    out : bool

:Examples:

>>> if not _ok_coordinate_arrays(meta, True, False)
...     print "Don't aggregate"

'''
    m = meta[0]

    dim_coord_index = m.axis[axis]['dim_coord_index']

    if dim_coord_index is not None:
        # ------------------------------------------------------------
        # The aggregating axis has a dimension coordinate
        # ------------------------------------------------------------
        # Check for overlapping dimension coordinate cell centres
        dim_coord_index0 = dim_coord_index

        for m0, m1 in izip(meta[:-1], meta[1:]):
            dim_coord_index1 = m1.axis[axis]['dim_coord_index']
            if (m0.last_values[axis][dim_coord_index0] >=
                m1.first_values[axis][dim_coord_index1]):
                # Found overlap
                if info:
                    meta[0].message = \
"%r dimension coordinate values overlap (%s >= %s)" % \
(m.axis[axis]['ids'][dim_coord_index],
 m0.last_values[axis][dim_coord_index0],
 m1.first_values[axis][dim_coord_index1])
#
#
#"%r fields can't be aggregated due to their %r dimension coordinate values over#lapping (%s >= %s)" % 
#(m.field.name(''),
# m.axis[axis]['ids'][dim_coord_index],
# m0.last_values[axis][dim_coord_index0],
# m1.first_values[axis][dim_coord_index1]))
                return

            dim_coord_index0 = dim_coord_index1        
        #--- End: for

        if axis in m.first_bounds:
            # --------------------------------------------------------
            # The dimension coordinates have bounds
            # --------------------------------------------------------
            if no_overlap:
                for m0, m1 in izip(meta[:-1], meta[1:]):
                    if (m1.first_bounds[axis][0] <
                        m0.last_bounds[axis][1]):
                        # Do not aggregate anything in this group
                        # because overlapping has been disallowed and
                        # the first cell from field1 overlaps with the
                        # last cell from field0.
                        if info:
                            meta[0].message = \
"%r dimension coordinate bounds values overlap (%s < %s)" % \
(m.axis[axis]['ids'][dim_coord_index],
 m1.first_bounds[axis][0],
 m0.last_bounds[axis][1])
#                            print(
#"%r fields can't be aggregated due to their %r dimension coordinate bounds valu#es overlapping (%s < %s)" %
#(m.field.name(''),
# m.axis[axis]['ids'][dim_coord_index],
# m1.first_bounds[axis][0],
# m0.last_bounds[axis][1]
# ))
                        return
                #--- End: for

            else:
                for m0, m1 in izip(meta[:-1], meta[1:]):
                    m0_last_bounds  = m0.last_bounds[axis]        
                    m1_first_bounds = m1.first_bounds[axis]
                    if (m1_first_bounds[0] <= m0_last_bounds[0] or
                        m1_first_bounds[1] <= m0_last_bounds[1]):
                        # Do not aggregate anything in this group
                        # because, even though overlapping has been
                        # allowed, the first cell from field1 overlaps
                        # in an unreasonable way with the last cell
                        # from field0.
                        if info:
                            meta[0].message = \
"%r dimension coordinate bounds values overlap by too much (%s <= %s)" % \
(m.axis[axis]['ids'][dim_coord_index],
 m1_first_bounds[0], m0_last_bounds[0],
 m1_first_bounds[1], m0_last_bounds[1])
#                             print(
#"%r fields can't be aggregated due to their %r dimension coordinate bounds valu#es overlapping by too much (%s <= %s)" %
#(m.field.name(''),
# m.axis[axis]['ids'][dim_coord_index],
# m1_first_bounds[0], m0_last_bounds[0],
# m1_first_bounds[1], m0_last_bounds[1]
# ))
                        return
                #--- End: for
            #--- End: if

            if contiguous:
                for m0, m1 in izip(meta[:-1], meta[1:]):
                    if (m0.last_bounds[axis][1] <
                        m1.first_bounds[axis][0]):
                        # Do not aggregate anything in this group
                        # because contiguous coordinates have been
                        # specified and the first cell from field1 is
                        # not contiguous with the last cell from
                        # field0.
                        if info:
                            meta[0].message = \
"%r dimension coordinate cells are not contiguous (%s < %s)" % \
(m.axis[axis]['ids'][dim_coord_index],
 m0.last_bounds[axis][1], 
 m1.first_bounds[axis][0])
#                            print(
#"%r fields can't be aggregated due to their %r dimension coordinate cells not b#eing contiguous (%s < %s)" %
#(m.field.name(''),
# m.axis[axis]['ids'][dim_coord_index],
# m0.last_bounds[axis][1], 
# m1.first_bounds[axis][0]
# ))
                        return
                #--- End: for
            #--- End: if
        #--- End: if

    else:
        # ------------------------------------------------------------
        # The aggregating axis does not have a dimension coordinate,
        # but it does have at least one 1-d auxiliary coordinate.
        # ------------------------------------------------------------
        # Check for duplicate auxiliary coordinate values
        for i, identity in enumerate(meta[0].axis[axis]['ids']):
            set_of_1d_aux_coord_values    = set()
            number_of_1d_aux_coord_values = 0
            for m in meta:
                aux = m.axis[axis]['keys'][i]
                array = m.field.domain.get(aux).array
                set_of_1d_aux_coord_values.update(array)
                number_of_1d_aux_coord_values += array.size
                if len(set_of_1d_aux_coord_values) != number_of_1d_aux_coord_values:
                    if info:
                        meta[0].message = \
"no %r dimension coordinates and %r auxiliary coordinates have duplicate values" % \
(identity, identity)
#                          print(
#"%r fields can't be aggregated due to their %r axes having no dimension coordin#ates and their %r auxiliary coordinates have duplicate values" %
#(m.field.name(''),
# identity,
# identity))
                    return
            #--- End: for
        #--- End: for
    #--- End: if
 
    # ----------------------------------------------------------------
    # Still here? Then the aggregating axis does not overlap between
    # any of the fields.
    # ----------------------------------------------------------------
    return True
#--- End: def

def _aggregate_2_fields(m0, m1,
                        rtol=None, atol=None,
                        info=0,    
                        respect_valid=False,
                        relaxed_units=False,
                        no_overlap=False, 
                        contiguous=False,
                        concatenate=True,
                        copy=True,
                        relaxed_identities=False,
                        ncvar_identities=False,
                        shared_nc_domain=False):
    '''

:Parameters:

    m0 : _Meta

    m1 : _Meta

    contiguous : bool, optional
        See the `aggregate` function for details.
   
    rtol : float, optional
        See the `aggregate` function for details.

    atol : float, optional
        See the `aggregate` function for details.
   
    info : int, optional
        See the `aggregate` function for details.
   
    no_overlap : bool, optional
        See the `aggregate` function for details.
  
    relaxed_units : bool, optional
        See the `aggregate` function for details.

    relaxed_identities : bool, optional
        See the `aggregate` function for details.

    ncvar_identities : bool, optional
        See the `aggregate` function for details.

:Returns:

    out : _Meta or bool
  
''' 
#    if copy and not m0.aggregated_field:
#        m0.field = m0.field.copy()

    a_identity = m0.a_identity
    
    # ----------------------------------------------------------------
    # Aggregate coordinate references
    # ----------------------------------------------------------------
    if m0.coordref_signatures:
        t = _aggregate_coordrefs(m0, m1,
                                 axis=a_identity,
                                 rtol=rtol, atol=atol,
                                 respect_valid=respect_valid,
                                 relaxed_units=relaxed_units,
                                 no_overlap=no_overlap, info=info,
                                 contiguous=contiguous,
                                 relaxed_identities=relaxed_identities,
                                 ncvar_identities=ncvar_identities,
                                 shared_nc_domain=shared_nc_domain)
        if not t:
            return
    else:
        t = None
  
    # ----------------------------------------------------------------
    # Aggregate ancillary variables
    # ----------------------------------------------------------------
    if m0.ancillary_variables:
        av = _aggregate_ancillary_variables(m0, m1,
                                            axis=a_identity,
                                            rtol=rtol, atol=atol,
                                            respect_valid=respect_valid,
                                            relaxed_units=relaxed_units,
                                            no_overlap=no_overlap,
                                            info=info,
                                            contiguous=contiguous,
                                            relaxed_identities=relaxed_identities,
                                            ncvar_identities=ncvar_identities,
                                            shared_nc_domain=shared_nc_domain)
        if not av:
            return
    else:
        av = None
 
    # Still here?
    field0 = m0.field
    field1 = m1.field
    if copy:
        field1 = field1.copy()

    domain0 = field0.domain
    domain1 = field1.domain

    if t:
        # ------------------------------------------------------------
        # Update coordinate references
        # ------------------------------------------------------------
        for key, ref in t.iteritems():
            domain0.insert_ref(ref, key=key, copy=False, replace=True)
    #--- End: if

    if av:
        # ------------------------------------------------------------
        # Update ancillary variables
        # ------------------------------------------------------------
        field0.ancillary_variables = av

    # ----------------------------------------------------------------
    # Map the axes of field1 to those of field0
    # ----------------------------------------------------------------
    dim1_name_map = {}
    for identity in m0.axis_ids:
        dim1_name_map[m1.id_to_axis[identity]] = m0.id_to_axis[identity]
        
    dim0_name_map = {}
    for axis1, axis0 in dim1_name_map.iteritems():
        dim0_name_map[axis0] = axis1        

    # ----------------------------------------------------------------
    # In each field, find the identifier of the aggregating axis.
    # ----------------------------------------------------------------
    adim0 = m0.id_to_axis[a_identity]
    adim1 = m1.id_to_axis[a_identity]

    # ----------------------------------------------------------------
    # Make sure that, along the aggregating axis, field1 runs in the
    # same direction as field0
    # ----------------------------------------------------------------
    direction0 = domain0.direction(adim0)
    if domain1.direction(adim1) != direction0:
        field1.flip(adim1, i=True)

    # ----------------------------------------------------------------
    # Find matching pairs of coordinates and cell measures which span
    # the aggregating axis
    # ----------------------------------------------------------------
    # 1-d coordinates
    spanning_variables = [(key0, key1, domain0.get(key0), domain1.get(key1))
                          for key0, key1 in izip(m0.axis[a_identity]['keys'],
                                                 m1.axis[a_identity]['keys'])] 
   
    hash_values0 = m0.hash_values[a_identity]
    hash_values1 = m1.hash_values[a_identity]
    for i, (hash0, hash1) in enumerate(izip(hash_values0, hash_values1)):
        try:
            hash_values0[i].append(hash_values1[i])
        except AttributeError:
            hash_values0[i] = [hash_values0[i], hash_values1[i]]
    #--- End: for

    # N-d auxiliary coordinates
    for identity in m0.nd_aux:
        aux0 = m0.nd_aux[identity]
        aux1 = m1.nd_aux[identity]
        if a_identity in aux0['axes']:
            key0 = aux0['key']
            key1 = aux1['key']
            spanning_variables.append((key0, key1,
                                       domain0.get(key0),
                                       domain1.get(key1)))

            hash_value0 = aux0['hash_value']
            hash_value1 = aux1['hash_value']
            try:
                hash_value0.append(hash_value1)
            except AttributeError:
                aux0['hash_value'] = [hash_value0, hash_value1]
    #--- End: for
    
    # Cell measures                
    for units in m0.msr:
        hash_values0 = m0.msr[units]['hash_values']
        hash_values1 = m1.msr[units]['hash_values']
        for i, (axes, key0, key1) in enumerate(izip(m0.msr[units]['axes'],
                                                    m0.msr[units]['keys'],
                                                    m1.msr[units]['keys'])):
            if a_identity in axes:
                spanning_variables.append((key0, key1,
                                           domain0.get(key0),
                                           domain1.get(key1)))

                try:
                    hash_values0[i].append(hash_values1[i])
                except AttributeError:
                    hash_values0[i] = [hash_values0[i], hash_values1[i]]
    #--- End: for

    # ----------------------------------------------------------------
    # For each matching pair of coordinates and cell measures which
    # span the aggregating axis, insert the one from field1 into the
    # one from field0
    # ----------------------------------------------------------------
    domain_axes = domain0._axes
    for key0, key1, item0, item1 in spanning_variables:
        item_axes0 = domain0.item_axes(key0)
        item_axes1 = domain1.item_axes(key1)

        # Ensure that the axis orders are the same in both items
        iaxes = [item_axes1.index(dim0_name_map[axis0]) for axis0 in item_axes0]
        item1.transpose(iaxes, i=True)

        # Find the position of the concatenating axis
        axis = item_axes0.index(adim0)

        if direction0:
            # The fields are increasing along the aggregating axis
            item0.Data = Data.concatenate((item0.Data, item1.Data), axis,
                                          _preserve=False)
            if item0._hasbounds:            
                item0.bounds.Data = Data.concatenate((item0.bounds.Data,
                                                      item1.bounds.Data),
                                                     axis, _preserve=False)
        else:
            # The fields are decreasing along the aggregating axis
            item0.Data = Data.concatenate((item1.Data, item0.Data), axis,
                                          _preserve=False)
            if item0._hasbounds:            
                item0.bounds.Data = Data.concatenate((item1.bounds.Data,
                                                      item0.bounds.Data),
                                                     axis, _preserve=False)
    #--- End: for        
        
    # ----------------------------------------------------------------
    # Insert the data array from field1 into the data array of field0
    # ----------------------------------------------------------------
    if m0._hasData:
        data_axes0 = domain0.data_axes()
        data_axes1 = domain1.data_axes()

        # Ensure that both data arrays span the same axes, including
        # the aggregating axis.
        for axis1 in data_axes1:
            axis0 = dim1_name_map[axis1]
            if axis0 not in data_axes0:
                field0.expand_dims(0, axis0, i=True)
                data_axes0.append(axis0)

        for axis0 in data_axes0:
            axis1 = dim0_name_map[axis0]
            if axis1 not in data_axes1:
                field1.expand_dims(0, axis1, i=True)
                
        # Find the position of the concatenating axis
        if adim0 not in data_axes0:
            # Insert the aggregating axis at position 0 because is not
            # already spanned by either data arrays
            field0.expand_dims(0, adim0, i=True)
            field1.expand_dims(0, adim1, i=True)
            axis = 0
        else:            
            axis = data_axes0.index(adim0)

        # Ensure that the axis orders are the same in both fields
        transpose_axes1 = [dim0_name_map[axis0] for axis0 in data_axes0]
        if transpose_axes1 != data_axes1:
            field1.transpose(transpose_axes1, i=True)

        if direction0:
            # The fields are increasing along the aggregating axis
            field0.Data = Data.concatenate((field0.Data, field1.Data), axis,
                                           _preserve=False)
        else:
            # The fields are decreasing along the aggregating axis
            field0.Data = Data.concatenate((field1.Data, field0.Data), axis,
                                           _preserve=False)
    #--- End: if

    # Update the size of the aggregating axis in field0
    domain0._axes_sizes[adim0] += domain1._axes_sizes[adim1]

    # Make sure that field0 has a standard_name, if possible.
    if getattr(field0, 'id', None) is not None:
        standard_name = field1.getprop('standard_name', None)
        if standard_name is not None:
            field0.standard_name = standard_name
            del field0.id
    #--- End: if

    #-----------------------------------------------------------------
    # Update the properties in field0
    #-----------------------------------------------------------------
    for prop in set(field0._simple_properties()) | set(field1._simple_properties()):
        value0 = field0.getprop(prop, None)
        value1 = field1.getprop(prop, None)
        
        if prop in ('valid_min', 'valid_max', 'valid_range'):
            if not m0.respect_valid:
                try:
                    field0.delprop(prop) 
                except AttributeError:
                    pass
            #--- End: if
            continue
        #--- End: if
             
        if prop == '_FillValue' or prop == 'missing_value':
            continue
        
        # Still here?  
        if equals(value0, value1):
            continue
               
        if concatenate:
            if value1 is not None:
                if value0 is not None:
                    field0.setprop(prop, '%s :AGGREGATED: %s' % (value0, value1))
                else:
                    field0.setprop(prop, ' :AGGREGATED: %s' % value1)
        else:
            if value0 is not None:
                field0.delprop(prop)            
    #--- End: for

    #-----------------------------------------------------------------
    # Update the attributes in field0
    #-----------------------------------------------------------------
    for attr in m0.attributes | m1.attributes:
        value0 = getattr(field0, attr, None)
        value1 = getattr(field1, attr, None)
        if equals(value0, value1):
            continue

        if concatenate:
            if value1 is not None:
                if value0 is not None:
                    setattr(field0, attr, '%s :AGGREGATED: %s' % (value0, value1))
                else:
                    setattr(field0, attr, ' :AGGREGATED: %s' % value1)
        else:
            m0.attributes.discard(attr)
            if value0 is not None:
                delattr(field0, attr)
    #--- End: for

    # Note that the field in this _Meta object has already been
    # aggregated
    m0.aggregated_field = True

    # ----------------------------------------------------------------
    # Return the _Meta object containing the aggregated field
    # ----------------------------------------------------------------
    return m0
#--- End: def

def _aggregate_coordrefs(m0, m1,
                         axis=None,
                         rtol=None, atol=None, 
                         respect_valid=False,
                         relaxed_units=False,
                         no_overlap=False,
                         info=0,
                         contiguous=False,
                         relaxed_identities=False,
                         ncvar_identities=False,
                         shared_nc_domain=False):
    '''

Aggregate fields in coordinate references.

:Parameters:

    m0 : _Meta

    m1 : _Meta

    no_overlap : bool, optional
        See the `aggregate` function for details.

    contiguous : bool, optional
        See the `aggregate` function for details.
   
    rtol : float, optional
        See the `aggregate` function for details.

    atol : float, optional
        See the `aggregate` function for details.
   
    info : int, optional
        See the `aggregate` function for details.
   
    relaxed_units : bool, optional
        See the `aggregate` function for details.

:Returns:

    out : dict

'''
#    axis = m0.a_identity

    field0 = m0.field
    field1 = m1.field

    out = {}

    for signature in m0.coordref_signatures:
        name = signature[0]

        key, coordref0 = field0.refs(name, exact=True).popitem()

        coordref1 = field1.ref(name, exact=True)

        # Initialize the new coordinate reference
        new_coordref = CoordinateReference(name=name)
          
        for term in set(coordref0).union(coordref1):

            value0 = coordref0.get(term, None)
            value1 = coordref1.get(term, None)

            if value1 is None and value0 is None:
                # ----------------------------------------------------
                # Both terms are undefined
                # ----------------------------------------------------
                continue

            if value1 is None:
                t, u, m, value = coordref0, coordref1, m0, value0
            elif value0 is None:
                t, u, m, value = coordref1, coordref0, m1, value1
            else:
                t = None

            if t is not None:
                # ----------------------------------------------------
                # Exactly one term is undefined
                # ----------------------------------------------------
                if term in t.coord_terms:
                    # Term is a coordinate
                    value = m.field.item(t[term], exact=True)
                    if value is None:
                        continue
                #--- End: if

                default = t.default_value(term)
                if default is None:
                    if info:
                        m1.message = \
"%r %s %r parameter has no default value" % (name, t.type, term)
                    return

                if isinstance(value, Field):
                    x = _Meta(value, info=info,
                              relaxed_units=relaxed_units,
                              allow_no_identity=True,
                              relaxed_identities=relaxed_identities,
                              ncvar_identities=ncvar_identities,
                              respect_valid=respect_valid)
                        
                    if not x:
                        if info:
                            m1.message = \
"%r %s %r parameter is a field with no structural signature" % \
(name, t.type, term)
                        return
                #--- End: if

                if not allclose(value, default, rtol=rtol, atol=atol):
                    if info:
                        m1.message = \
"%r %s %r parameters have non-equivalent values" % (name, t.type, term)
                    return

                # Update the new coordinate reference
                if term in t.coord_terms:
                    new_coordref.setcoord(term, t[term])
                else:
                    new_coordref[term] = value

                continue

            else:
                t = coordref0
            #--- End: if

            coord0 = term in coordref0.coord_terms
            coord1 = term in coordref1.coord_terms

            if coord0 and coord1:
                # ----------------------------------------------------
                # Both terms are coordinates
                # ---------------------------------------------------- 
                coord0 = field0.item(value0, exact=True)
                coord1 = field1.item(value1, exact=True)

                coord0_name = coord0.name(identity=m0.strict_identities,
                                          ncvar=m0.ncvar_identities)
                coord1_name = coord1.name(identity=m1.strict_identities,
                                          ncvar=m1.ncvar_identities)

                if (coord0 is None or
                    coord1 is None or
                    coord0_name != coord1_name):
                    if info:
                        m1.message = \
"%r %s %r parameters are unaggregatable coordinates" % \
(name, t.type, term)
                    return

                # Update the new coordinate reference
                new_coordref.setcoord(term, value0)
                continue

            if coord0 or coord1:
                # ----------------------------------------------------
                # Exactly one term is a coordinate
                # ----------------------------------------------------
                if info:
                    m1.message = \
"%r %s %r parameters are not all coordinates" % (name, t.type, term)
                return
            
            is_field0 = isinstance(value0, Field)
            is_field1 = isinstance(value1, Field)

            if not is_field0 and not is_field1:
                # ----------------------------------------------------
                # Neither term is a field
                # ----------------------------------------------------
                if not allclose(value0, value1, rtol=rtol, atol=atol):
                    # The values are not equivalent                    
                    if info:
                        m1.message = \
"%r %s %r parameters have non-equivalent values" % (name, t.type, term)
                    return

                # Update the new coordinate reference
                new_coordref[term] = value0
                continue

            if is_field0 != is_field1:
                # ----------------------------------------------------
                # Exactly one term is a field
                # ----------------------------------------------------
                if info:
                    m1.message = \
"%r %s %r parameters are not all fields" % (name, t.type, term)
                return
            
            # --------------------------------------------------------
            # Both terms are fields
            # --------------------------------------------------------

            if shared_nc_domain:
                role = '%r %s %r' % (name, t.type, term)
                value0, message0 = _share_nc_domain(value0, field0, role)
                if message0:
                    if info:
                        m0.message = message0
                    return
                #--- End: if
                value1, message1 = _share_nc_domain(value1, field1, role)
                if message1:
                    if info:
                        m1.message = message1
                    return
                #--- End: if
            #--- End: if

            x0 = _Meta(value0, info=info,
                       relaxed_units=relaxed_units,
                       allow_no_identity=True,
                       relaxed_identities=relaxed_identities,
                       ncvar_identities=ncvar_identities,
                       respect_valid=respect_valid)
            x1 = _Meta(value1, info=info,
                       relaxed_units=relaxed_units, 
                       allow_no_identity=True,
                       relaxed_identities=relaxed_identities,
                       ncvar_identities=ncvar_identities,
                       respect_valid=respect_valid)

            if not (x0 and x1):
                # At least one field doesn't have a structual
                # signature
                if info:
                    m1.message = \
"%r %s %r parameter is a field with no structural signature" % \
(name, t.type, term)
                return
            #--- End: if

            if axis not in x0.axis and axis not in x1.axis:
                # Neither field spans the aggregating axis ...
                if value0.equivalent_data(value1, rtol=rtol, atol=atol):
                    # ... and the fields have equivalent data
                    # arrays. Therefore we don't need to do any
                    # aggregation.
                    # Update the new coordinate reference
                    new_coordref[term] = value0
                    continue
                else:
                    # ... and the fields do not have equivalent data
                    if info:
                        m1.message = \
"%r %s %r parameters are fields with non-equivalent values" % \
(name, t.type, term)
                    return
            #--- End: if

            if not (axis in x0.axis and axis in x1.axis):
                # Only one of the fields spans the aggregating axis
                if info:
                    m1.message = \
"%r %s %r parameters are unaggregatable fields" % (name, t.type, term)
#                    print(
#"%r fields can't be aggregated due to their %r %s %r parameters being fields wh#ich are not aggregatable" %
#(field0.name(''), name, t.type, term))
                return
            #--- End: if
            
            # Both fields span the aggregating axis, so try to
            # aggregate them.
            new_value = aggregate((value0, value1),
                                  info=info,
                                  no_overlap=no_overlap,
                                  contiguous=contiguous,
                                  respect_valid=respect_valid,
                                  relaxed_units=relaxed_units,
                                  allow_no_identity=True,
                                  axes=axis,
                                  relaxed_identities=relaxed_identities,
                                  ncvar_identities=ncvar_identities)

            if len(new_value) == 2:
                # Couldn't aggregate them (because we got two fields
                # back instead of one)
                if info:
                    m1.message = \
"%r %s %r parameters are unaggregatable fields" % (name, t.type, term)
#                    print(
#"%r fields can't be aggregated due to their %r %s %r parameters being fields wh#ich are not aggregatable" %
#(field0.name(''), name, t.type, term))
                return
            #--- End: if

            # Successfully aggregated the coordinate reference fields
            coordref0[term] = new_value[0]             # DCH: Why?????????
            # Update the new coordinate reference
            new_coordref[term] = new_value[0]
        #---End: for

        out[key] = new_coordref
    #---End: for

    return out
#--- End: def

def _aggregate_ancillary_variables(m0, m1,
                                   axis=None,
                                   rtol=None, atol=None,
                                   respect_valid=False,
                                   relaxed_units=False,
                                   no_overlap=False,
                                   info=0,
                                   contiguous=False,
                                   relaxed_identities=False,
                                   ncvar_identities=False,
                                   shared_nc_domain=False):
    '''

Aggregate the ancillary variable fields.

:Parameters:

    m0 : _Meta

    m1 : _Meta

    no_overlap : bool, optional
        See the `aggregate` function for details.

    contiguous : bool, optional
        See the `aggregate` function for details.
   
    rtol : float, optional
        See the `aggregate` function for details.

    atol : float, optional
        See the `aggregate` function for details.
   
    info : int, optional
        See the `aggregate` function for details.
   
    relaxed_units : bool, optional
        See the `aggregate` function for details.

    relaxed_identities : bool, optional
        See the `aggregate` function for details.

    ncvar_identities : bool, optional
        See the `aggregate` function for details.

:Returns:

    out : cf.FieldList or bool

'''
    field0 = m0.field
    field1 = m1.field

    ancillary_variables = m0.ancillary_variables

#    new_ancillary_variables = AncillaryVariables()
    new_ancillary_variables = FieldList()

    for identity, ancil0 in ancillary_variables.iteritems():
        ancil1 = m1.ancillary_variables[identity]

        if shared_nc_domain:
            ancil0, message0 = _share_nc_domain(ancil0, field0, 'ancillary variable')
            if message0:
                if info:
                    m0.message = message0
                return
            #--- End: if
            ancil1, message1 = _share_nc_domain(ancil1, field1, 'ancillary variable')
            if message1:
                if info:
                    m1.message = message1
                return
            #--- End: if
        #--- End: if

        x0 = _Meta(ancil0, info=info, relaxed_units=relaxed_units,
                   allow_no_identity=False,
                   relaxed_identities=relaxed_identities,
                   ncvar_identities=ncvar_identities,
                   respect_valid=respect_valid)
        x1 = _Meta(ancil1, info=info, relaxed_units=relaxed_units,
                   allow_no_identity=False,
                   relaxed_identities=relaxed_identities,
                   ncvar_identities=ncvar_identities,
                   respect_valid=respect_valid)
        
        if not (x0 and x1):
            # At least one field doesn't have a structual signature
            if info:
                m1.message = \
"%r ancillary variable is a field with no structural signature" % \
ancil0.name('')
            return
        #--- End: if
            
        if axis not in x0.axis and axis not in x1.axis:
            # Neither field spans the aggregating axis ...
            if ancil0.equivalent_data(ancil1, rtol=rtol, atol=atol,
                                      traceback=False):
                # ... and the fields are equivalent
                new_ancillary_variables.append(ancil0)
                continue
            else:
                # ... and the fields are not equivalent
                if info: 
                    m1.message = \
"2 %r ancillary variable fields have non-equivalent values" % ancil0.name('')

                return
        #--- End: if

        # Still here?    
        if not (axis in x0.axis and axis in x1.axis):
            if info:
                m1.message = \
"3 %r ancillary variable fields are unaggregatable" % ancil0.name('')

            return
        #--- End: if
            
        # Both fields span the aggregating axis
        if (ancil0.axis_size(axis, exact=True) == 1 and
            ancil1.axis_size(axis, exact=True) == 1 and
            field0.axis_size(axis, exact=True) > 1 or
            field1.axis_size(axis, exact=True) > 1):
            # The aggregating axis has size 1 in both ancillary fields
            # and size > 1 in at least one parent field
            if ancil0.equivalent(ancil1, rtol=rtol, atol=atol):
                ancillary_variables[identity] = ancil0 ### WHY??
                new_ancillary_variables.append(ancil0)
                continue
        #--- End: if

        # Still here? Then try to aggregate the ancillary fields.
        new_value = aggregate((ancil0, ancil1), info=info, 
                              no_overlap=no_overlap, contiguous=contiguous,
                              respect_valid=respect_valid,
                              relaxed_units=relaxed_units,
                              allow_no_identity=True,
                              axes=axis,
                              relaxed_identities=relaxed_identities,
                              ncvar_identities=ncvar_identities)
        
        if len(new_value) == 2:
            # We got two fields back instead of one, therefore they
            # couldn't be aggregated.
            if info:
                m1.message = \
"4 %r ancillary variable fields are unaggregatable" % ancil0.name('')

            return
        #--- End: if

        # Update the m0.ancillary_variable dictionary, because it
        # needs to contain the aggregated field.
        ancillary_variables[identity] = new_value[0]

        new_ancillary_variables.append(new_value[0])
    #---End: for

    return new_ancillary_variables
#--- End: def

def _share_nc_domain(child, field, role):
    '''

perhaps this should be `cf.Field.share_nc_domain`, as it may be useful
in general.

'''
    child_axis_to_ncdim = getattr(child.domain, 'nc_dimensions', {})
    if len(set(child_axis_to_ncdim.values())) != len(child_axis_to_ncdim):
        message = \
"%s %s field can't share domain with its parent field (ambiguous netCDF dimension names)" % \
(role, child.name(''))
        return None, message
    #--- End: if

    field_axis_to_ncdim = getattr(field.domain, 'nc_dimensions', {})
    n_axes = len(field_axis_to_ncdim)
    field_ncdim_to_axis = dict([(v, k) for k, v in field_axis_to_ncdim.iteritems()])
    if len(field_ncdim_to_axis) != n_axes:
        message = \
"%s %s field can't share domain with its parent field (ambiguous netCDF dimension names)" % \
(role, child.name(''))
        return None, message
    #--- End: if

    # Remove all items from the childlary field
    new_child = child.copy()
    new_child.remove_items()

    for c_axis in child.data_axes():
        # Find the parent field axis (f_axis) which correposnds to the
        # child field axis (c_axis)

        c_ncdim = child_axis_to_ncdim.get(c_axis, None)
        f_axis = field_ncdim_to_axis.get(c_ncdim, None)
        if f_axis is None:
            message = \
"%s %s field can't share domain with its parent field (axis has no netCDF dimension name)" % \
(role, child.name(''))
            return None, message
        #--- End: if
            
        # Copy 1-d dimension and auxiliary coordinates from the parent
        # field to the child field
        for coord in field.coords(axes=f_axis, ndim=1).itervalues():
            if coord.isdimension:
                new_child.insert_dim(coord, axis=c_axis)
            else:                        
                new_child.insert_aux(coord, axes=(c_axis,))
        #--- End: for
    #--- End: for

    return new_child, None
#--- End: def