1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028
|
from numpy import argsort as numpy_argsort
from numpy import array as numpy_array
from numpy import ceil as numpy_ceil
from numpy import cos as numpy_cos
from numpy import count_nonzero as numpy_count_nonzero
from numpy import dtype as numpy_dtype
from numpy import e as numpy_e
from numpy import empty as numpy_empty
from numpy import exp as numpy_exp
from numpy import floor as numpy_floor
from numpy import ndarray as numpy_ndarray
from numpy import ndim as numpy_ndim
from numpy import log as numpy_log
from numpy import log10 as numpy_log10
from numpy import log2 as numpy_log2
from numpy import ones as numpy_ones
from numpy import reshape as numpy_reshape
from numpy import result_type as numpy_result_type
from numpy import rint as numpy_rint
from numpy import round as numpy_round
from numpy import seterr as numpy_seterr
from numpy import shape as numpy_shape
from numpy import sin as numpy_sin
from numpy import size as numpy_size
from numpy import tan as numpy_tan
from numpy import tile as numpy_tile
from numpy import trunc as numpy_trunc
from numpy import unique as numpy_unique
from numpy import unravel_index as numpy_unravel_index
from numpy import where as numpy_where
from numpy import vectorize as numpy_vectorize
from numpy import zeros as numpy_zeros
from numpy.ma import array as numpy_ma_array
from numpy.ma import count as numpy_ma_count
from numpy.ma import empty as numpy_ma_empty
from numpy.ma import is_masked as numpy_ma_is_masked
from numpy.ma import isMA as numpy_ma_isMA
from numpy.ma import masked as numpy_ma_masked
from numpy.ma import masked_all as numpy_ma_masked_all
from numpy.ma import masked_invalid as numpy_ma_masked_invalid
from numpy.ma import masked_where as numpy_ma_masked_where
from numpy.ma import MaskedArray as numpy_ma_MaskedArray
from numpy.ma import nomask as numpy_ma_nomask
from numpy.ma import ones as numpy_ma_ones
from numpy.ma import where as numpy_ma_where
from numpy.ma import zeros as numpy_ma_zeros
import operator
from functools import partial
from operator import mul as operator_mul
from math import ceil as math_ceil
from sys import byteorder, getrefcount
from itertools import izip
from itertools import product as itertools_product
from ..netcdf.filearray import NetCDFFileArray
from ..um.filearray import UMFileArray
from ..cfdatetime import st2dt, dt2rt, rt2dt, st2rt
from ..units import Units
from ..constants import masked as cf_masked
from ..functions import (CHUNKSIZE, FM_THRESHOLD, RTOL, ATOL, FREE_MEMORY,
SET_FREE_MEMORY,
parse_indices, _numpy_allclose, abspath,
pathjoin, hash_array, get_subspace, set_subspace,
broadcast_array)
from ..functions import inspect as cf_inspect
from ..functions import _section
from .filearray import FileArray, CreateArray
from .partition import Partition
from .partitionmatrix import PartitionMatrix
from .collapse_functions import *
# --------------------------------------------------------------------
# _seterr = How floating-point errors in the results of arithmetic
# operations are handled. These defaults are those of
# numpy 1.10.1.
# --------------------------------------------------------------------
_seterr = {'divide' : 'warn',
'invalid': 'warn',
'over' : 'warn',
'under' : 'ignore',
}
# --------------------------------------------------------------------
# _seterr_raise_to_ignore = As _seterr but with any values of 'raise'
# changed to 'ignore'.
# --------------------------------------------------------------------
_seterr_raise_to_ignore = _seterr.copy()
for key, value in _seterr.iteritems():
if value == 'raise':
_seterr_raise_to_ignore[key] = 'ignore'
# --------------------------------------------------------------------
# _mask_fpe[0] = Whether or not to automatically set
# FloatingPointError exceptions to masked values in
# arimthmetic.
# --------------------------------------------------------------------
_mask_fpe = [False]
_xxx = numpy_empty((), dtype=object)
_empty_set = set()
_units_None = Units()
_units_1 = Units('1')
_units_radians = Units('radians')
_dtype_object = numpy_dtype(object)
_dtype_float = numpy_dtype(float)
_cached_axes = {0: []}
def _initialise_axes(ndim):
'''
:Parameters:
ndim : int
:Returns:
out: list
:Examples:
>>> _initialise_axes(0)
[]
>>> _initialise_axes(1)
['dim1']
>>> _initialise_axes(3)
['dim1', 'dim2', 'dim3']
>>> _initialise_axes(3) is _initialise_axes(3)
True
'''
axes = _cached_axes.get(ndim, None)
if axes is None:
axes = ['dim%d' % i for i in xrange(ndim)]
_cached_axes[ndim] = axes
#--- End: if
return axes
#--- End: def
# ====================================================================
#
# Data object
#
# ====================================================================
class Data(object):
'''
An N-dimensional data array with units and masked values.
* Contains an N-dimensional, indexable and broadcastable array with
many similarities to a `numpy` array.
* Contains the units of the array elements.
* Supports masked arrays, regardless of whether or not it was
initialised with a masked array.
* Stores and operates on data arrays which are larger then the
available memory.
**Indexing**
A data array is indexable in a similar way to numpy array:
>>> d.shape
(12, 19, 73, 96)
>>> d[...].shape
(12, 19, 73, 96)
>>> d[slice(0, 9), 10:0:-2, :, :].shape
(9, 5, 73, 96)
There are three extensions to the numpy indexing functionality:
* Size 1 dimensions are never removed bi indexing.
An integer index i takes the i-th element but does not reduce the
rank of the output array by one:
>>> d.shape
(12, 19, 73, 96)
>>> d[0, ...].shape
(1, 19, 73, 96)
>>> d[:, 3, slice(10, 0, -2), 95].shape
(12, 1, 5, 1)
Size 1 dimensions may be removed with the `squeeze` method.
* The indices for each axis work independently.
When more than one dimension's slice is a 1-d boolean sequence or
1-d sequence of integers, then these indices work independently
along each dimension (similar to the way vector subscripts work in
Fortran), rather than by their elements:
>>> d.shape
(12, 19, 73, 96)
>>> d[0, :, [0, 1], [0, 13, 27]].shape
(1, 19, 2, 3)
* Boolean indices may be any object which exposes the numpy array
interface.
>>> d.shape
(12, 19, 73, 96)
>>> d[..., d[0, 0, 0]>d[0, 0, 0].min()]
**Cyclic axes**
**Miscellaneous**
A `Data` object is picklable.
A `Data` object is hashable, but note that, since it is mutable, its
hash value is only valid whilst the data array is not changed in
place.
'''
def __init__(self, data=None, units=None, fill_value=None, hardmask=True,
chunk=True, loadd=None, dt=False):
'''
**Initialization**
:Parameters:
data : array-like, optional
The data for the array.
units : str or Units, optional
The units of the data. By default the array elements are
dimensionless.
fill_value : optional
The fill value of the data. By default, or if None, the numpy
fill value appropriate to the array's data type will be used.
hardmask : bool, optional
If False then the mask is soft. By default the mask is hard.
chunk : bool, optional
If False then the data array will be stored in a single
partition. By default the data array will be partitioned if it
is larger than the chunk size, as returned by the
`cf.CHUNKSIZE` function.
dt : bool, optional
If True then strings (such as ``'1990-12-1 12:00'``) given by
the *data* argument are interpreted as date-times. By default
they are not interpreted as date-times.
loadd : dict, optional
Initialise the data array from a dictionary serialization of a
`cf.Data` object. All other arguments are ignored.
:Examples:
>>> d = cf.Data(5)
>>> d = cf.Data([1,2,3], units='K')
>>> import numpy
>>> d = cf.Data(numpy.arange(10).reshape(2,5), units=cf.Units('m/s'), fill_value=-999)
>>> d = cf.Data(tuple('fly'))
'''
empty_list = []
# The _flip attribute is an unordered subset of the data
# array's axis names. It is a subset of the axes given by the
# _axes attribute. It is used to determine whether or not to
# reverse an axis in each partition's sub-array during the
# creation of the partition's data array. DO NOT CHANGE IN
# PLACE.
self._flip = empty_list
# The _all_axes attribute must be None or a tuple
self._all_axes = None
self._hardmask = hardmask
# self._isdt = False
# The _HDF_chunks attribute is.... Is either None or a
# dictionary. DO NOT CHANGE IN PLACE.
self._HDF_chunks = None
if loadd is not None:
self.loadd(loadd)
return
# The _cyclic attribute contains the axes of the data array
# which are cyclic (and therefore allow cyclic slicing). It is
# a subset of the axes given by the _axes attribute. DO NOT
# CHANGE IN PLACE.
self._cyclic = _empty_set
units = Units(units)
self._Units = units
self._fill_value = fill_value
if data is None:
self._dtype = None
return
if not isinstance(data, FileArray):
check_free_memory = True
if isinstance(data, self.__class__):
self.loadd(data.dumpd())
return
if not isinstance(data, numpy_ndarray):
data = numpy_array(data)
if (data.dtype.kind == 'O' and not dt and
hasattr(data.item((0,)*data.ndim), 'timetuple')):
# We've been given one or more date-time objects
dt = True
else:
check_free_memory = False
#--- End: if
dtype = data.dtype
if dt or units.isreftime:
kind = dtype.kind
if kind == 'S':
# Convert date-time strings to reference time floats
if not units:
units = Units('days since 1970-1-1', units._calendar)
self._Units = units
data = st2rt(data, units, units)
dtype = data.dtype
elif kind == 'O':
# Convert date-time objects to reference time floats
if not units:
units = Units('days since 1970-1-1', units._calendar)
self._Units = units
data = dt2rt(data, None, units)
dtype = data.dtype
if not units.isreftime:
raise ValueError(
"Can't initialise a reference time array with units %r" % units)
# self._isdt = dtype.kind in 'SO'
#
# if self._isdt:
# if not units:
# units = Units('days since 1970-1-1', units._calendar)
# self._Units = units
# elif not units:
# raise ValueError(
# "Can't initialise a numeric reference-time array with %r" %
# units)
#
# if not units.isreftime:
# raise ValueError(
# "Can't initialise a date-time array with %r" % units)
#
# if dtype.kind == 'S':
# # Convert date-time strings to date-time objects
# data = st2dt(data, units)
# dtype = data.dtype
#
## dtype = _dtype_float
#--- End: if
shape = data.shape
ndim = data.ndim
axes = _initialise_axes(ndim)
matrix = _xxx.copy()
matrix[()] = Partition(location = [(0, n) for n in shape],
shape = list(shape),
axes = axes,
flip = empty_list,
Units = units,
subarray = data,
part = empty_list)
self.partitions = PartitionMatrix(matrix, empty_list)
self._dtype = dtype
self._ndim = ndim
self._shape = shape
self._size = data.size
# The _axes attribute is the ordered list of the data array's
# axis names. Each axis name is an arbitrary, unique
# string. DO NOT CHANGE IN PLACE.
self._axes = axes
if chunk:
self.chunk()
if check_free_memory and FREE_MEMORY() < FM_THRESHOLD():
self.to_disk()
#--- End: def
def __array__(self, *dtype):
'''
Returns a numpy array copy the data array.
If the data array is stored as date-time objects then a numpy array of
numeric reference times will be returned.
:Returns:
out: numpy.ndarray
The numpy array copy the data array.
:Examples:
>>> (d.array == numpy.array(d)).all()
True
'''
if not dtype:
return self.array
else:
return self.array.astype(dtype[0]) #, copy=False) OUght to work!
#--- End: def
def __contains__(self, value):
'''
Membership test operator ``in``
x.__contains__(y) <==> y in x
Returns True if the value is contained anywhere in the data array. The
value may be a `cf.Data` object.
:Examples:
>>> d = cf.Data([[0.0, 1, 2], [3, 4, 5]], 'm')
>>> 4 in d
True
>>> cf.Data(3) in d
True
>>> cf.Data([2.5], units='2 m') in d
True
>>> [[2]] in d
True
>>> numpy.array([[[2]]]) in d
True
>>> cf.Data(2, 'seconds') in d
False
'''
if isinstance(value, self.__class__):
self_units = self.Units
value_units = value.Units
if value_units.equivalent(self_units):
if not value_units.equals(self_units):
value = value.copy()
value.Units = self_units
elif value_units:
return False
value = value.unsafe_array
#--- End: if
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
partition.close()
if value in array:
return True
#--- End: for
return False
#--- End: def
@property
def subspace(self):
'''
Return a new object which will get or set a subspace of the array.
``e=d.subspace[indices]`` is equivalent to
``e=d[indices]``. ``d.subspace[indices]=x`` is equivalent to
``d[indices]=x``.
'''
return SubspaceData(self)
#--- End: def
def __data__(self):
'''
Returns a new reference to self.
'''
return self
#--- End: def
def __deepcopy__(self, memo):
'''
Used if copy.deepcopy is called.
'''
return self.copy()
#--- End: def
# def __getstate__(self):
# '''
#
#Called when pickling.
#
#:Parameters:
#
# None
#
#:Returns:
#
# out: dict
# A dictionary of the instance's attributes
#
#:Examples:
#
#'''
# return dict([(attr, getattr(self, attr))
# for attr in self.__slots__ if hasattr(self, attr)])
# #--- End: def
# def __setstate__(self, odict):
# '''
#
#Called when unpickling.
#
#:Parameters:
#
# odict : dict
# The output from the instance's `__getstate__` method.
#
#:Returns:
#
# None
#
#'''
# for attr, value in odict.iteritems():
# setattr(self, attr, value)
# #--- End: def
def __hash__(self):
'''
The built-in function `hash`
Generating the hash temporarily realizes the entire array in memory,
which may not be possible for large arrays.
The hash value is dependent on the data type and shape of the data
array. If the array is a masked array then the hash value is
independent of the fill value and of data array values underlying any
masked elements.
The hash value may be different if regenerated after the data array
has been changed in place.
The hash value is not guaranteed to be portable across versions of
Python, numpy and cf.
:Returns:
out: int
The hash value.
:Examples:
>>> print d.array
[[0 1 2 3]]
>>> d.hash()
-8125230271916303273
>>> d[1, 0] = numpy.ma.masked
>>> print d.array
[[0 -- 2 3]]
>>> hash(d)
791917586613573563
>>> d.hardmask = False
>>> d[0, 1] = 999
>>> d[0, 1] = numpy.ma.masked
>>> d.hash()
791917586613573563
>>> d.squeeze()
>>> print d.array
[0 -- 2 3]
>>> hash(d)
-7007538450787927902
>>> d.dtype = float
>>> print d.array
[0.0 -- 2.0 3.0]
>>> hash(d)
-4816859207969696442
'''
return hash_array(self.unsafe_array)
#--- End: def
def __float__(self):
if self.size != 1:
raise TypeError(
"only length-1 arrays can be converted to Python scalars")
return float(self.datum())
#--- End: def
def __round__(self, *n):
if self.size != 1:
raise TypeError(
"only length-1 arrays can be converted to Python scalars")
return round(self.datum(), *n)
#--- End: def
def __int__(self):
if self.size != 1:
raise TypeError(
"only length-1 arrays can be converted to Python scalars")
return int(self.datum())
#--- End: def
def __iter__(self):
'''
Efficient iteration.
x.__iter__() <==> iter(x)
:Examples:
>>> d = cf.Data([1, 2, 3], 'metres')
>>> for e in d:
... print repr(e)
...
1
2
3
>>> d = cf.Data([[1, 2], [4, 5]], 'metres')
>>> for e in d:
... print repr(e)
...
<CF Data: [1, 2] metres>
<CF Data: [4, 5] metres>
>>> d = cf.Data(34, 'metres')
>>> for e in d:
... print repr(e)
..
TypeError: iteration over a 0-d Data
'''
ndim = self._ndim
if not ndim:
raise TypeError("Iteration over 0-d %s" % self.__class__.__name__)
elif ndim == 1:
if self.fits_in_memory(self.dtype.itemsize):
i = iter(self.unsafe_array)
while 1:
yield i.next()
else:
for n in xrange(self._size):
yield self[n].unsafe_array[0]
else:
# ndim > 1
for n in xrange(self._shape[0]):
yield self[n, ...].squeeze(0, i=True)
#--- End: def
def __len__(self):
'''
The built-in function `len`
x.__len__() <==> len(x)
:Examples:
>>> len(cf.Data([1, 2, 3]))
3
>>> len(cf.Data([[1, 2, 3]]))
1
>>> len(cf.Data([[1, 2, 3], [4, 5, 6]])
2
>>> len(cf.Data(1))
TypeError: len() of scalar Data
'''
shape = self._shape
if shape:
return shape[0]
raise TypeError("len() of scalar %s" % self.__class__.__name__)
#--- End: def
def __nonzero__(self):
'''
Truth value testing and the built-in operation `bool`
x.__nonzero__() <==> x != 0
:Examples:
>>> bool(cf.Data(1))
True
>>> bool(cf.Data([[False]]))
False
>>> bool(cf.Data([1, 2]))
ValueError: The truth value of Data with more than one element is ambiguous. Use d.any() or d.all()
'''
if self._size == 1:
return bool(self.unsafe_array)
raise ValueError(
"The truth value of Data with more than one element is ambiguous. Use d.any() or d.all()")
#--- End: def
def __repr__(self):
'''
The built-in function `repr`
x.__repr__() <==> repr(x)
'''
return '<CF %s: %s>' % (self.__class__.__name__, str(self))
#--- End: def
def __str__(self):
'''
The built-in function `str`
x.__str__() <==> str(x)
'''
self_units = self.Units
isreftime = self_units.isreftime
if not self_units or self_units.equals(_units_1):
units = None
elif not isreftime:
units = self_units.units
else:
units = getattr(self_units, 'calendar', '')
size = self._size
ndim = self._ndim
open_brackets = '[' * ndim
close_brackets = ']' * ndim
first = self.datum(0)
if size == 1:
if isreftime: # and not self._isdt:
# Convert reference time to date-time
first = rt2dt(first, self_units).item()
out = '%s%s%s' % (open_brackets, first, close_brackets)
else:
last = self.datum(-1)
if isreftime: # and not self._isdt:
# Convert reference times to date-times
first, last = rt2dt((first, last), self_units)
if size >= 3:
out = '%s%s, ..., %s%s' % (open_brackets, first,
last, close_brackets)
else:
out = '%s%s, %s%s' % (open_brackets, first,
last, close_brackets)
#--- End: if
if units:
out += ' %s' % units
return out
#--- End: def
def __getitem__(self, indices):
'''
Implement indexing
x.__getitem__(indices) <==> x[indices]
'''
size = self._size
if size == 1 or indices is Ellipsis:
return self.copy()
d = self
axes = d._axes
flip = d._flip
shape = d._shape
cyclic_axes = d._cyclic
indices, roll, flip_axes = _parse_indices(d, indices)
if roll:
for axis, shift in roll.iteritems():
if axes[axis] not in cyclic_axes:
raise IndexError(
"Can't take a cyclic slice of a non-cyclic axis (axis %d)" % axis)
d = d.roll(axis, shift)
#--- End: if
new_shape = tuple(map(_size_of_index, indices, shape))
new_size = long(reduce(operator_mul, new_shape, 1))
new = Data.__new__(Data)
new._shape = new_shape
new._size = new_size
new._ndim = d._ndim
new._fill_value = d._fill_value
new._hardmask = d._hardmask
# new._isdt = d._isdt
new._all_axes = d._all_axes
new._cyclic = cyclic_axes
new._axes = axes
new._flip = flip
new._dtype = d.dtype
new._HDF_chunks = d._HDF_chunks
new.Units = d.Units
partitions = d.partitions
new_partitions = PartitionMatrix(_overlapping_partitions(partitions,
indices,
axes,
flip),
partitions.axes)
if new_size != size:
new_partitions.set_location_map(axes)
new.partitions = new_partitions
# Flip axes
if flip_axes:
new.flip(flip_axes, i=True)
# Remove size 1 axes from the partition matrix
new_partitions.squeeze(i=True)
if cyclic_axes:
# Mark cyclic axes which have reduced size as non-cyclic
x = [axis
for axis, n0, n1 in izip(axes, shape, new_shape)
if axis in cyclic_axes and n1 != n0]
if x:
new._cyclic = cyclic_axes.difference(x)
#--- End: if
return new
#--- End: def
def __setitem__(self, indices, value):
'''
Implement indexed assignment
x.__setitem__(indices, y) <==> x[indices]=y
Assignment to data array elements defined by indices.
Elements of a data array may be changed by assigning values to a
subspace. See `__getitem__` for details on how to define subspace of
the data array.
**Missing data**
The treatment of missing data elements during assignment to a subspace
depends on the value of the `hardmask` attribute. If it is True then
masked elements will notbe unmasked, otherwise masked elements may be
set to any value.
In either case, unmasked elements may be set, (including missing
data).
Unmasked elements may be set to missing data by assignment to the
`cf.masked` constant or by assignment to a value which contains masked
elements.
.. seealso:: `cf.masked`, `hardmask`, `where`
:Examples:
'''
def _mirror_slice(index, size):
'''
Return a slice object which creates the reverse of the input
slice.
The step of the input slice must have a step of `.
:Parameters:
index : slice
A slice object with a step of 1.
size : int
:Returns:
out: slice
:Examples:
>>> s = slice(2, 6)
>>> t = _mirror_slice(s, 8)
>>> s, t
slice(2, 6), slice(5, 1, -1)
>>> range(8)[s]
[2, 3, 4, 5]
>>> range(8)[t]
[5, 4, 3, 2]
>>> range(7, -1, -1)[s]
[5, 4, 3, 2]
>>> range(7, -1, -1)[t]
[2, 3, 4, 5]
'''
start, stop, step = index.indices(size)
size -= 1
start = size - start
stop = size - stop
if stop < 0:
stop = None
return slice(start, stop, -1)
#--- End: def
pda_args = self.pda_args()
# ------------------------------------------------------------
# parse the indices
# ------------------------------------------------------------
indices, roll, flip_axes = _parse_indices(self, indices)
if roll:
for iaxis, shift in roll.iteritems():
self.roll(iaxis, shift, i=True)
scalar_value = False
if value is cf_masked:
scalar_value = True
else:
copied = False
if not isinstance(value, Data):
# Convert to the value to a Data object
value = type(self)(value, self.Units)
else:
if value.Units.equivalent(self.Units):
if not value.Units.equals(self.Units):
value = value.copy()
value.Units = self.Units
copied = True
elif not value.Units:
value = value.override_units(self.Units)
copied = True
else:
raise ValueError("Some bad units %r, %r" %
(self.Units, value.Units))
#--- End: if
# value2dt = self._isdt and not value._isdt
if value._size == 1:
scalar_value = True
# if value2dt:
# if not copied:
# value = value.copy()
# value.asdatetime()
value = value.datum(0)
#--- End: if
if scalar_value:
# --------------------------------------------------------
# The value is logically scalar
# --------------------------------------------------------
for partition in self.partitions.matrix.flat:
p_indices, shape = partition.overlaps(indices)
if p_indices is None:
# This partition does not overlap the indices
continue
array = partition.dataarray(**pda_args)
if value is cf_masked and not partition.masked:
# The assignment is masking elements, so turn a
# non-masked sub-array into a masked one.
array = array.view(numpy_ma_MaskedArray)
partition.subarray = array
set_subspace(array, p_indices, value)
partition.close()
#--- End: for
if roll:
for iaxis, shift in roll.iteritems():
self.roll(iaxis, -shift, i=True)
return
#--- End: if
# ------------------------------------------------------------
# Still here? Then the value is not logically scalar.
# ------------------------------------------------------------
data0_shape = self._shape
value_shape = value._shape
shape0 = map(_size_of_index, indices, data0_shape)
self_ndim = self._ndim
value_ndim = value._ndim
align_offset = self_ndim - value_ndim
if align_offset >= 0:
# self has more dimensions than other
shape0 = shape0[align_offset:]
shape1 = value_shape
ellipsis = None
flip_axes = [i-align_offset for i in flip_axes
if i >= align_offset]
else:
# value has more dimensions than self
v_align_offset = -align_offset
if value_shape[:v_align_offset] != [1] * v_align_offset:
# Can only allow value to have more dimensions then
# self if the extra dimensions all have size 1.
raise ValueError("Can't broadcast shape %r across shape %r" %
(value_shape, data0_shape))
shape1 = value_shape[v_align_offset:]
ellipsis = Ellipsis
align_offset = 0
#--- End: if
# Find out which of the dimensions of value are to be
# broadcast, and those which are not. Note that, as in numpy,
# it is not allowed for a dimension in value to be larger than
# a size 1 dimension in self
base_value_indices = []
non_broadcast_dimensions = []
for i, (a, b) in enumerate(izip(shape0, shape1)):
if b == 1:
base_value_indices.append(slice(None))
elif a == b and b != 1:
base_value_indices.append(None)
non_broadcast_dimensions.append(i)
else:
raise ValueError("Can't broadcast shape %r across shape %r" %
(shape1, shape0))
#--- End: for
previous_location = ((-1,),) * self_ndim
start = [0] * value_ndim
# save = pda_args['save']
keep_in_memory = pda_args['keep_in_memory']
value.to_memory()
for partition in self.partitions.matrix.flat:
p_indices, shape = partition.overlaps(indices)
if p_indices is None:
# This partition does not overlap the indices
continue
# --------------------------------------------------------
# Find which elements of value apply to this partition
# --------------------------------------------------------
value_indices = base_value_indices[:]
for i in non_broadcast_dimensions:
j = i + align_offset
location = partition.location[j][0]
reference_location = previous_location[j][0]
if location > reference_location:
stop = start[i] + shape[j]
value_indices[i] = slice(start[i], stop)
start[i] = stop
elif location == reference_location:
value_indices[i] = previous_slice[i]
elif location < reference_location:
stop = shape[j]
value_indices[i] = slice(0, stop)
start[i] = stop
#--- End: for
previous_location = partition.location
previous_slice = value_indices[:]
for i in flip_axes:
value_indices[i] = _mirror_slice(value_indices[i], shape1[i])
if ellipsis:
value_indices.insert(0, ellipsis)
# --------------------------------------------------------
#
# --------------------------------------------------------
# if value2dt:
# v = value[tuple(value_indices)].dtarray
# else:
v = value[tuple(value_indices)].varray
if keep_in_memory: #not save:
v = v.copy()
# Update the partition's data
array = partition.dataarray(**pda_args)
if not partition.masked and numpy_ma_isMA(v):
# The sub-array is not masked and the assignment is
# masking elements, so turn the non-masked sub-array
# into a masked one.
array = array.view(numpy_ma_MaskedArray)
partition.subarray = array
#--- End: if
set_subspace(array, p_indices, v)
partition.close()
#--- End: For
if roll:
# Unroll
for iaxis, shift in roll.iteritems():
self.roll(iaxis, -shift, i=True)
#--- End: def
def dumpd(self):
'''
Return a dictionary serialization of the data array.
.. seealso:: `loadd`
:Returns:
out: dict
The serialization.
:Examples:
>>> d = cf.Data([[1, 2, 3]], 'm')
>>> d.dumpd()
{'Partitions': [{'location': [(0, 1), (0, 3)],
'subarray': array([[1, 2, 3]])}],
'Units': <CF Units: m>,
'_axes': ['dim0', 'dim1'],
'_pmshape': (),
'dtype': dtype('int64'),
'shape': (1, 3)}
>>> d.flip(1)
>>> d.transpose()
>>> d.Units *= 1000
>>> d.dumpd()
{'Partitions': [{'Units': <CF Units: m>,
'axes': ['dim0', 'dim1'],
'location': [(0, 3), (0, 1)],
'subarray': array([[1, 2, 3]])}],
'Units': <CF Units: 1000 m>,
'_axes': ['dim1', 'dim0'],
'_flip': ['dim1'],
'_pmshape': (),
'dtype': dtype('int64'),
'shape': (3, 1)}
>>> d.dumpd()
{'Partitions': [{'Units': <CF Units: m>,
'location': [(0, 1), (0, 3)],
'subarray': array([[1, 2, 3]])}],
'Units': <CF Units: 1000 m>,
'_axes': ['dim0', 'dim1'],
'_flip': ['dim1'],
'_pmshape': (),
'dtype': dtype('int64'),
'shape': (1, 3)}
>>> e = cf.Data(loadd=d.dumpd())
>>> e.equals(d)
True
'''
axes = self._axes
units = self.Units
dtype = self.dtype
cfa_data = {
'dtype' : dtype,
'Units' : units,
'shape' : self._shape,
'_axes' : axes[:],
'_pmshape': self._pmshape,
}
pmaxes = self._pmaxes
if pmaxes:
cfa_data['_pmaxes'] = pmaxes[:]
flip = self._flip
if flip:
cfa_data['_flip'] = flip[:]
fill_value = self._fill_value
if fill_value is not None:
cfa_data['fill_value'] = fill_value
cyclic = self._cyclic
if cyclic:
cfa_data['_cyclic'] = cyclic.copy()
HDF_chunks = self._HDF_chunks
if HDF_chunks:
cfa_data['_HDF_chunks'] = HDF_chunks.copy()
partitions = []
for index, partition in self.partitions.ndenumerate():
attrs = {}
p_subarray = partition.subarray
p_dtype = p_subarray.dtype
# Location in partition matrix
if index:
attrs['index'] = index
# Sub-array location
attrs['location'] = partition.location[:]
# Sub-array part
p_part = partition.part
if p_part:
attrs['part'] = p_part[:]
# Sub-array axes
p_axes = partition.axes
if p_axes != axes:
attrs['axes'] = p_axes[:]
# Sub-array units
p_Units = partition.Units
if p_Units != units:
attrs['Units'] = p_Units
# Sub-array flipped axes
p_flip = partition.flip
if p_flip:
attrs['flip'] = p_flip[:]
# --------------------------------------------------------
# File format specific stuff
# --------------------------------------------------------
if isinstance(p_subarray, NetCDFFileArray):
# ----------------------------------------------------
# NetCDF File Array
# ----------------------------------------------------
attrs['format'] = 'netCDF'
subarray = {}
for attr in ('file', 'shape'):
subarray[attr] = getattr(p_subarray, attr)
for attr in ('ncvar', 'varid'):
value = getattr(p_subarray, attr, None)
if value is not None:
subarray[attr] = value
#--- End: for
if p_dtype != dtype:
subarray['dtype'] = p_dtype
attrs['subarray'] = subarray
elif isinstance(p_subarray, UMFileArray):
# ----------------------------------------------------
# UM File Array
# ----------------------------------------------------
attrs['format'] = 'UM'
subarray = {}
for attr in ('file', 'shape',
'header_offset', 'data_offset', 'disk_length'):
subarray[attr] = getattr(p_subarray, attr)
#--- End: for
if p_dtype != dtype:
subarray['dtype'] = p_dtype
attrs['subarray'] = subarray
else:
attrs['subarray'] = p_subarray
#--- End: if
partitions.append(attrs)
#--- End: for
cfa_data['Partitions'] = partitions
return cfa_data
#--- End:s def
def loadd(self, d):
'''
Reset the data array in place from a dictionary serialization.
.. seealso:: `dumpd`
:Parameters:
d : dict
A dictionary serialization of a `cf.Data` object, as returned
by its `dumpd` method.
:Returns:
None
:Examples:
>>> d = cf.Data([[1, 2, 3]], 'm')
>>> e = cf.Data([6, 7, 8, 9], 's')
>>> e.loadd(d.dumpd())
>>> e.equals(d)
True
>>> e is d
False
>>> e = cf.Data(loadd=d.dumpd())
>>> e.equals(d)
True
'''
axes = list(d.get('_axes', ()))
shape = tuple(d.get('shape', ()))
units = d.get('Units', None)
if units is None:
units = Units()
dtype = d['dtype']
self._dtype = dtype
self.Units = units
self._axes = axes
self._flip = list(d.get('_flip', ()))
self._fill_value = d.get('fill_value', None)
self._shape = shape
self._ndim = len(shape)
self._size = long(reduce(operator_mul, shape, 1))
cyclic = d.get('_cyclic', None)
if cyclic:
self._cyclic = cyclic.copy()
else:
self._cyclic = _empty_set
HDF_chunks = d.get('_HDF_chunks', None)
if HDF_chunks:
self._HDF_chunks = HDF_chunks.copy()
else:
self._HDF_chunks = None
filename = d.get('file', None)
if filename is not None:
filename = abspath(filename)
base = d.get('base', None)
if base is not None:
base = abspath(base)
# ------------------------------------------------------------
# Initialise an empty partition array
# ------------------------------------------------------------
partition_matrix = PartitionMatrix(
numpy_empty(d.get('_pmshape', ()), dtype=object),
list(d.get('_pmaxes', ()))
)
pmndim = partition_matrix.ndim
# ------------------------------------------------------------
# Fill the partition array with partitions
# ------------------------------------------------------------
for attrs in d['Partitions']:
# Find the position of this partition in the partition
# matrix
if 'index' in attrs:
index = attrs['index']
if len(index) == 1:
index = index[0]
else:
index = tuple(index)
else:
index = (0,) * pmndim
location = attrs.get('location', None)
if location is not None:
location = location[:]
else:
# Default location
location = [[0, i] for i in shape]
partition = Partition(
location = location,
axes = attrs.get('axes', axes)[:],
flip = attrs.get('flip', [])[:],
Units = attrs.get('Units', units),
part = attrs.get('part', [])[:],
)
fmt = attrs.get('format', None)
if fmt is None:
# ----------------------------------------------------
# Subarray is effectively a numpy array in memory
# ----------------------------------------------------
partition.subarray = attrs['subarray']
else:
# ----------------------------------------------------
# Subarray is in a file on disk
# ----------------------------------------------------
partition.subarray = attrs['subarray']
if fmt not in ('netCDF', 'UM'):
raise TypeError(
"Don't know how to load sub-array from file format %r" %
fmt)
# Set the 'subarray' attribute
kwargs = attrs['subarray'].copy()
kwargs['shape'] = tuple(kwargs['shape'])
kwargs['ndim'] = len(kwargs['shape'])
kwargs['size'] = long(reduce(operator_mul, kwargs['shape'], 1))
kwargs.setdefault('dtype', dtype)
if 'file' in kwargs:
f = kwargs['file']
if f == '':
kwargs['file'] = filename
else:
if base is not None:
f = pathjoin(base, f)
kwargs['file'] = abspath(f)
else:
kwargs['file'] = filename
if fmt == 'netCDF':
partition.subarray = NetCDFFileArray(**kwargs)
elif fmt == 'UM':
partition.subarray = UMFileArray(**kwargs)
#--- End: if
# Put the partition into the partition array
partition_matrix[index] = partition
#--- End: for
# Save the partition array
self.partitions = partition_matrix
self.chunk()
#--- End: def
def ceil(self, i=False):
'''
Return the ceiling of the data array.
.. versionadded:: 1.0
.. seealso:: `floor`, `rint`, `trunc`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> print d.array
[-1.9 -1.5 -1.1 -1. 0. 1. 1.1 1.5 1.9]
>>> print d.ceil().array
[-1. -1. -1. -1. 0. 1. 2. 2. 2.]
'''
return self.func(numpy_ceil, out=True, i=i)
#---End: def
def chunk(self, chunksize=None):
'''
Partition the data array
:Parameters:
chunksize : int, optional
The
:Returns:
None
:Examples:
>>> d.chunk()
>>> d.chunk(100000)
'''
if not chunksize:
# Set the default chunk size
chunksize = CHUNKSIZE()
# Define the factor which, when multiplied by the size of a
# partition, determines how many chunks are in the partition.
factor = (self.dtype.itemsize + 1.0)/chunksize
if self._size*factor <= 1:
# Don't do any partitioning if the data array is already
# smaller than the chunk size. Note:
# self._size*factor=(no. bytes in array)/(no. bytes in a
# chunk)
return
# Initialise the dictionary relating each axisq to new
# partition boundaries for that axis
axes = self._axes
d = {}
# ------------------------------------------------------------
# Find any new partition boundaries for each axis
# ------------------------------------------------------------
for partition in self.partitions.matrix.flat:
# n_chunks = number of equal sized bits the partition
# needs to be split up into so that each bit's
# size is less than ther chunk size.
n_chunks = int(partition.size*factor + 0.5)
if n_chunks <= 1:
continue
for axis_size, location, axis in izip(partition.shape,
partition.location,
axes):
if axis_size == 1 or n_chunks <= 1:
continue
if axis_size <= n_chunks:
d[axis] = range(location[0]+1, location[1])
n_chunks = int(math_ceil(n_chunks/float(axis_size)))
else:
step = int(axis_size/n_chunks)
d[axis] = range(location[0]+step, location[1], step)
break
#--- End: if
#--- End: for
#--- End: for
# ------------------------------------------------------------
# Create any new partition boundaries for each axis
# ------------------------------------------------------------
for axis in axes[::-1]: #, extra_bounds in d.iteritems():
extra_bounds = d.get(axis, None)
if not extra_bounds:
continue
if axis not in self.partitions.axes:
# Create a new partition axis
self.partitions.expand_dims(axis, i=True)
# Create the new partitions
self.add_partitions(sorted(extra_bounds), axis)
#--- End: for
#--- End: def
def _asdatetime(self, i=False):
'''
Change the internal representation of data array elements from numeric
reference times to datatime-like objects.
If the calendar has not been set then the default CF calendar will be
used and the units' and the `calendar` attribute will be updated
accordingly.
If the internal representations are already datatime-like objects then
no change occurs.
.. versionadded:: 1.3
.. seealso:: `_asreftime`
:Parameters:
i: `bool`, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: `cf.Data`
:Examples:
>>> d._asdatetime()
'''
if i:
d = self
else:
d = self.copy()
units = self.Units
if d._isdatetime():
return d
if not units.isreftime:
raise ValueError(
"Can't convert {0!r} data to date-time objects".format(units))
pda_args = d.pda_args(func=rt2dt, dtype=None)
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
p_units = partition.Units
partition.Units = Units(p_units.units, p_units._utime.calendar)
partition.close()
#--- End: for
d.Units = Units(units.units, units._utime.calendar)
d._dtype = array.dtype
return d
#--- End: def
def _isdatetime(self):
return self.dtype.kind == 'O' and self.Units.isreftime
def _asreftime(self, i=False):
'''
Change the internal representation of data array elements from
datatime-like objects to numeric reference times.
If the calendar has not been set then the default CF calendar will be
used and the units' and the `calendar` attribute will be updated
accordingly.
If the internal representations are already numeric reference times
then no change occurs.
.. versionadded:: 1.3
.. seealso:: `_asdatetime`
:Parameters:
i: `bool`, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: `cf.Data`
:Examples:
>>> d._asreftime()
'''
if i:
d = self
else:
d = self.copy()
units = d.Units
if not d._isdatetime():
if units.isreftime:
return d
else:
raise ValueError(
"Can't convert %r data to numeric reference times" %
units)
#--- End: if
pda_args = d.pda_args(func=dt2rt, dtype=None)
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
p_units = partition.Units
partition.Units = Units(p_units.units, p_units._utime.calendar)
partition.close()
#--- End: for
d.Units = Units(units.units, units._utime.calendar)
d._dtype = array.dtype
return d
#--- End: def
def _combined_units(self, data1, method, inplace):
'''
:Parameters:
data1 : cf.Data
method : str
The
inplace : bool
:Returns:
out: `cf.Data`, `cf.Data`, `cf.Units`
:Examples:
>>> d._combined_units(e, '__sub__')
>>> d._combined_units(e, '__imul__')
>>> d._combined_units(e, '__irdiv__')
>>> d._combined_units(e, '__lt__')
>>> d._combined_units(e, '__rlshift__')
>>> d._combined_units(e, '__iand__')
'''
method_type = method[-5:-2]
data0 = self
units0 = data0.Units
units1 = data1.Units
if not units0 and not units1:
return data0, data1, units0
if (units0.isreftime and units1.isreftime and
not units0.equivalent(units1)):
if units0._calendar and not units1._calendar:
data1 = data1._asdatetime()
data1.override_units(units0, i=True)
data1._asreftime(i=True)
units1 = units0
elif units1._calendar and not units0._calendar:
if not inplace:
inplace = True
data0 = data0.copy()
data0._asdatetime(i=True)
data0.override_units(units1, i=True)
data0._asreftime(i=True)
units0 = units1
#--- End: if
if method_type in ('_eq', '_ne', '_lt', '_le', '_gt', '_ge'):
#---------------------------------------------------------
# Operator is one of ==, !=, >=, >, <=, <
#---------------------------------------------------------
if units0.equivalent(units1):
# Units are equivalent
if not units0.equals(units1):
data1 = data1.copy()
data1.Units = units0
return data0, data1, _units_None
elif not units1 or not units0:
# At least one of the units is undefined
return data0, data1, _units_None
else:
raise ValueError(
"Can't compare {0!r} to {1!r}".format(units0, units1))
#--- End: if
# still here?
if method_type in ('and', '_or', 'ior', 'ror', 'xor', 'ift'):
#---------------------------------------------------------
# Operation is one of &, |, ^, >>, <<
#---------------------------------------------------------
if units0.equivalent(units1):
# Units are equivalent
if not units0.equals(units1):
data1 = data1.copy()
data1.Units = units0
return data0, data1, units0
elif not units1:
# units1 is undefined
return data0, data1, units0
elif not units0:
# units0 is undefined
return data0, data1, units1
else:
# Both units are defined and not equivalent
raise ValueError("Can't operate with %s on data with %r to %r" %
(method, units0, units1))
#--- End: if
# Still here?
if units0.isreftime:
#---------------------------------------------------------
# units0 is reference time
#---------------------------------------------------------
if method_type == 'sub':
if units1.isreftime:
if units0.equivalent(units1):
# Equivalent reference_times: the output units
# are time
if not units0.equals(units1):
data1 = data1.copy()
data1.Units = units0
return data0, data1, Units(_ut_unit=units0._ut_unit)
else:
# Non-equivalent reference_times: raise an
# exception
getattr(units0, method)(units1)
elif units1.istime:
# reference_time minus time: the output units are
# reference_time
time0 = Units(_ut_unit=units0._ut_unit)
if not units1.equals(time0):
data1 = data1.copy()
data1.Units = time0
return data0, data1, units0
elif not units1:
# reference_time minus no_units: the output units
# are reference_time
return data0, data1, units0
else:
# reference_time minus something not yet accounted
# for: raise an exception
getattr(units0, method)(units1)
elif method_type == 'add':
if units1.istime:
# reference_time plus time: the output units are
# reference_time
time0 = Units(_ut_unit=units0._ut_unit)
if not units1.equals(time0):
data1 = data1.copy()
data1.Units = time0
return data0, data1, units0
elif not units1:
# reference_time plus no_units: the output units
# are reference_time
return data0, data1, units0
else:
# reference_time plus something not yet accounted
# for: raise an exception
getattr(units0, method)(units1)
else:
# Raise an exception
getattr(units0, method)(units1)
elif units1.isreftime:
#---------------------------------------------------------
# units1 is reference time
#---------------------------------------------------------
if method_type == 'add':
if units0.istime:
# Time plus reference_time: the output units are
# reference_time
time1 = Units(_ut_unit=units1._ut_unit)
if not units0.equals(time1):
if not inplace:
data0 = data0.copy()
data0.Units = time1
return data0, data1, units1
elif not units0:
# No_units plus reference_time: the output units
# are reference_time
return data0, data1, units1
else:
# Raise an exception
getattr(units0, method)(units1)
#--- End: if
# Still here?
if method_type in ('mul', 'div'):
#---------------------------------------------------------
# Method is one of *, /, //
#---------------------------------------------------------
if not units1:
# units1 is undefined
return data0, data1, getattr(units0, method)(_units_1)
elif not units0:
# units0 is undefined
return data0, data1, getattr(_units_1, method)(units1)
# elif units0.equivalent(units1) and not units0.equals(units1):
# # Both units are defined and equivalent but not equal
# data1 = data1.copy()
# data1.Units = units0
# return data0, data1, getattr(units0, method)(units0)# !!!!!!! units0*units0 YOWSER
else:
# Both units are defined (note: if the units are
# noncombinable then this will raise an exception)
return data0, data1, getattr(units0, method)(units1)
#--- End: if
# Still here?
if method_type in ('sub', 'add', 'mod'):
#---------------------------------------------------------
# Operator is one of +, -
#---------------------------------------------------------
if units0.equivalent(units1):
# Units are equivalent
if not units0.equals(units1):
data1 = data1.copy()
data1.Units = units0
return data0, data1, units0
elif not units1:
# units1 is undefined
return data0, data1, units0
elif not units0:
# units0 is undefined
return data0, data1, units1
else:
# Both units are defined and not equivalent (note: if
# the units are noncombinable then this will raise an
# exception)
return data0, data1, getattr(units0, method)(units1)
#--- End: if
# Still here?
if method_type == 'pow':
if method == '__rpow__':
#-----------------------------------------------------
# Operator is __rpow__
#-----------------------------------------------------
if not units1:
# units1 is undefined
if not units0:
# units0 is undefined
return data0, data1, _units_None
elif units0.isdimensionless:
# units0 is dimensionless
if not units0.equals(_units_1):
if not inplace:
data0 = data0.copy()
data0.Units = _units_1
return data0, data1, _units_None
elif units1.isdimensionless:
# units1 is dimensionless
if not units1.equals(_units_1):
data1 = data1.copy()
data1.Units = _units_1
if not units0:
# units0 is undefined
return data0, data1, _units_1
elif units0.isdimensionless:
# units0 is dimensionless
if not units0.equals(_units_1):
if not inplace:
data0 = data0.copy()
data0.Units = _units_1
return data0, data1, _units_1
else:
# units1 is defined and is not dimensionless
if data0._size > 1:
raise ValueError("kkkkkkkkkjjjjjjjjjjjjjjjj")
if not units0:
return data0, data1, units1 ** data0.datum(0)
elif units0.isdimensionless:
# units0 is dimensionless
if not units0.equals(_units_1):
if not inplace:
data0 = data0.copy()
data0.Units = _units_1
return data0, data1, units1 ** data0.datum(0)
# --- End: if
# This will deliberately raise an exception
units1 ** units0
else:
#-----------------------------------------------------
# Operator is __pow__
#-----------------------------------------------------
if not units0:
# units0 is undefined
if not units1:
# units0 is undefined
return data0, data1, _units_None
elif units1.isdimensionless:
# units0 is dimensionless
if not units1.equals(_units_1):
data1 = data1.copy()
data1.Units = _units_1
return data0, data1, _units_None
elif units0.isdimensionless:
# units0 is dimensionless
if not units0.equals(_units_1):
if not inplace:
data0 = data0.copy()
data0.Units = _units_1
if not units1:
# units1 is undefined
return data0, data1, _units_1
elif units1.isdimensionless:
# units1 is dimensionless
if not units1.equals(_units_1):
data1 = data1.copy()
data1.Units = _units_1
return data0, data1, _units_1
else:
# units0 is defined and is not dimensionless
if data1._size > 1:
raise ValueError("kkkkkkkkkjjjjjjjjjjjjjjjj 8888888888888888")
if not units1:
return data0, data1, units0 ** data1.datum(0)
elif units1.isdimensionless:
# units1 is dimensionless
if not units1.equals(_units_1):
data1 = data1.copy()
data1.Units = _units_1
return data0, data1, units0 ** data1.datum(0)
#--- End: if
# This will deliberately raise an exception
units0 ** units1
#--- End: if
#--- End: if
# Still here?
raise ValueError("Can't operate with %s on data with %r to %r" %
(method, units0, units1))
#--- End: def
def _binary_operation(self, other, method):
'''Implement binary arithmetic and comparison operations with the numpy
broadcasting rules.
It is called by the binary arithmetic and comparison
methods, such as `__sub__`, `__imul__`, `__rdiv__`, `__lt__`, etc.
.. seealso:: `_unary_operation`
:Parameters:
other:
The object on the right hand side of the operator.
method: `str`
The binary arithmetic or comparison method name (such as
``'__imul__'`` or ``'__ge__'``).
:Returns:
new: `cf.Data`
A new data object, or if the operation was in place, the same
data object.
:Examples:
>>> d = cf.Data([0, 1, 2, 3])
>>> e = cf.Data([1, 1, 3, 4])
>>> f = d._binary_operation(e, '__add__')
>>> print f.array
[1 2 5 7]
>>> e = d._binary_operation(e, '__lt__')
>>> print e.array
[ True False True True]
>>> d._binary_operation(2, '__imul__')
>>> print d.array
[0 2 4 6]
'''
inplace = (method[2] == 'i')
method_type = method[-5:-2]
# ------------------------------------------------------------
# Ensure that other is an independent Data object
# ------------------------------------------------------------
if getattr(other, '_NotImplemented_RHS_Data_op', False):
# Make sure that
return NotImplemented
elif not isinstance(other, self.__class__):
other = type(self).asdata(other)
# if other._isdt and self.Units.isreftime:
# # Make sure that an array of date-time objects has the
# # right calendar.
# other.override_units(self.Units, i=True)
#--- End: if
data0 = self.copy()
data0, other, new_Units = data0._combined_units(other, method, True)
# ------------------------------------------------------------
# Bring other into memory, if appropriate.
# ------------------------------------------------------------
other.to_memory()
# ------------------------------------------------------------
# Find which dimensions need to be broadcast in one or other
# of the arrays.
#
# Method:
#
# For each common dimension, the 'broadcast_indices' list
# will have a value of None if there is no broadcasting
# required (i.e. the two arrays have the same size along
# that dimension) or a value of slice(None) if broadcasting
# is required (i.e. the two arrays have the different sizes
# along that dimension and one of the sizes is 1).
#
# Example:
#
# If c.shape is (7,1,6,1,5) and d.shape is (6,4,1) then
# broadcast_indices will be
# [None,slice(None),slice(None)].
#
# The indices to d which correspond to a partition of c,
# are the relevant subset of partition.indices updated
# with the non None elements of the broadcast_indices
# list.
#
# In this example, if a partition of c were to have a
# partition.indices value of (slice(0,3), slice(0,1),
# slice(2,4), slice(0,1), slice(0,5)), then the relevant
# subset of these is partition.indices[2:] and the
# corresponding indices to d are (slice(2,4), slice(None),
# slice(None))
#
# ------------------------------------------------------------
data0_shape = data0._shape
data1_shape = other._shape
if data0_shape == data1_shape:
# self and other have the same shapes
broadcasting = False
align_offset = 0
ellipsis = None
new_shape = data0_shape
new_ndim = data0._ndim
new_axes = data0._axes
new_size = data0._size
else:
# self and other have different shapes
broadcasting = True
data0_ndim = data0._ndim
data1_ndim = other._ndim
align_offset = data0_ndim - data1_ndim
if align_offset >= 0:
# self has at least as many axes as other
shape0 = data0_shape[align_offset:]
shape1 = data1_shape
new_shape = data0_shape[:align_offset]
new_ndim = data0_ndim
new_axes = data0._axes
else:
# other has more axes than self
align_offset = -align_offset
shape0 = data0_shape
shape1 = data1_shape[align_offset:]
new_shape = data1_shape[:align_offset]
new_ndim = data1_ndim
if not data0_ndim:
new_axes = other._axes
else:
new_axes = []
existing_axes = self._all_axis_names()
for n in new_shape:
axis = data0._new_axis_identifier(existing_axes)
existing_axes.append(axis)
new_axes.append(axis)
#--- End: for
new_axes += data0._axes
#--- End: for
align_offset = 0
#--- End: if
broadcast_indices = []
for a, b in izip(shape0, shape1):
if a == b:
new_shape += (a,)
broadcast_indices.append(None)
continue
# Still here?
if a > 1 and b == 1:
new_shape += (a,)
elif b > 1 and a == 1:
new_shape += (b,)
else:
raise ValueError(
"Can't broadcast shape %s against shape %s" %
(data1_shape, data0_shape))
broadcast_indices.append(slice(None))
#--- End: for
new_size = long(reduce(operator_mul, new_shape, 1))
dummy_location = [None] * new_ndim
#---End: if
new_flip = []
# if broadcasting:
# max_size = 0
# for partition in data0.partitions.matrix.flat:
# indices0 = partition.indices
# indices1 = tuple([
# (index if not broadcast_index else broadcast_index)
# for index, broadcast_index in izip(
# indices0[align_offset:], broadcast_indices)
# ])
# indices1 = (Ellipsis,) + indices
#
# shape0 = partition.shape
# shape1 = [index.stop - index.start
# for index in parse_indices(other, indices1)]
#
# broadcast_size = 1
# for n0, n1 in izip_longest(shape0[::-1], shape1[::-1], fillvalue=1):
# if n0 > 1:
# broadcast_size *= n0
# else:
# broadcast_size *= n1
# #--- End: for
#
# if broadcast_size > max_size:
# max_size = broadcast_size
# #--- End: for
#
# chunksize = CHUNKSIZE()
# ffff = max_size*(new_dtype.itemsize + 1)
# if ffff > chunksize:
# data0.chunk(chunksize*(chunksize/ffff))
# #--- End: if
# ------------------------------------------------------------
# Create a Data object which just contains the metadata for
# the result. If we're doing a binary arithmetic operation
# then result will get filled with data and returned. If we're
# an augmented arithmetic assignment then we'll update self
# with this new metadata.
# ------------------------------------------------------------
#if new_shape != data0_shape:
# set_location_map = True
# new_size = self._size
# dummy_location = [None] * new_ndim
#else:
# set_location_map = False
# new_size = long(reduce(mul, new_shape, 1))
# if not set_location_map:
# new_size = long(reduce(mul, new_shape, 1))
# else:
# new_size = self._size
result = data0.copy()
result._shape = new_shape
result._ndim = new_ndim
result._size = new_size
result._axes = new_axes
# result._flip = new_flip
# Is the result an array of date-time objects?
# new_isdt = data0._isdt and new_Units.isreftime
# ------------------------------------------------------------
# Set the data type of the result
# ------------------------------------------------------------
if method_type in ('_eq', '_ne', '_lt', '_le', '_gt', '_ge'):
new_dtype = numpy_dtype(bool)
# elif not new_isdt:
else:
if 'true' in method:
new_dtype = numpy_dtype(float)
elif not inplace:
new_dtype = numpy_result_type(data0.dtype, other.dtype)
else:
new_dtype = data0.dtype
# else:
# new_dtype = _dtype_object
# ------------------------------------------------------------
# Set flags to control whether or not the data of result and
# self should be kept in memory
# ------------------------------------------------------------
keep_result_in_memory = result.fits_in_memory(new_dtype.itemsize)
keep_self_in_memory = data0.fits_in_memory(data0.dtype.itemsize)
if not inplace:
# When doing a binary arithmetic operation we need to
# decide whether or not to keep self's data in memory
revert_to_file = True
# save_self = not data0.fits_in_memory(data0.dtype.itemsize)
# keep_self_in_memory = data0.fits_in_memory(data0.dtype.itemsize)
else:
# When doing an augmented arithmetic assignment we don't
# need to keep self's original data in memory
revert_to_file = False
# save_self = False
# keep_self_in_memory = True
# dimensions = self._axes
# direction = self.direction
# units = self.Units
pda_args = data0.pda_args(keep_in_memory=keep_self_in_memory,
revert_to_file=revert_to_file)
# if data0._isdt:
# # If self is a datatime array then make sure that it gets
# # converted to a reference time array prior to the
# # operation
# pda_args['func'] = dt2rt
# pda_args['update'] = False
original_numpy_seterr = numpy_seterr(**_seterr)
# Think about dtype, here.
for partition_r, partition_s in izip(result.partitions.matrix.flat,
data0.partitions.matrix.flat):
indices = partition_s.indices
array0 = partition_s.dataarray(**pda_args)
if broadcasting:
indices = tuple([
(index if not broadcast_index else broadcast_index)
for index, broadcast_index in izip(
indices[align_offset:], broadcast_indices)
])
indices = (Ellipsis,) + indices
#--- End: if
# if other._isdt:
# # If other is a datatime array then make sure that it
# # gets converted to a reference time array prior to
# # the operation
# array1 = other[indices].rtarray
# else:
array1 = other[indices].array #unsafe_array
# UNRESOLVED ISSUE: array1 could be much larger than the chunk size.
if not inplace:
partition = partition_r
partition.update_inplace_from(partition_s)
else:
partition = partition_s
# --------------------------------------------------------
# Do the binary operation on this partition's data
# --------------------------------------------------------
try:
array0 = getattr(array0, method)(array1)
except FloatingPointError as error:
# Floating point point errors have been trapped
if _mask_fpe[0]:
# Redo the calculation ignoring the errors and
# then set invalid numbers to missing data
numpy_seterr(**_seterr_raise_to_ignore)
array0 = getattr(array0, method)(array1)
array0 = numpy_ma_masked_invalid(array0, copy=False)
numpy_seterr(**_seterr)
else:
# Raise the floating point error exception
raise FloatingPointError(error)
except TypeError as error:
if inplace:
raise TypeError(
"Incompatible result data type ({0!r}) for in-place {1!r} arithmetic".format(
numpy_result_type(array0.dtype, array1.dtype).name, array0.dtype.name))
else:
raise TypeError(error)
#--- End: try
# if new_isdt:
# # Convert result array to a date-time object array
# array0 = rt2dt(array0, data0.Units)
if array0 is NotImplemented:
array0 = numpy_zeros(partition.shape, dtype=bool)
if not inplace:
p_datatype = array0.dtype
if new_dtype != p_datatype:
new_dtype = numpy_result_type(p_datatype, new_dtype)
partition.subarray = array0
partition.Units = new_Units
partition.axes = new_axes
partition.flip = new_flip
partition.part = []
if broadcasting:
partition.location = dummy_location
partition.shape = list(array0.shape)
partition._original = False
partition._write_to_disk = False
partition.close(keep_in_memory=keep_result_in_memory)
if not inplace:
partition_s.close()
#--- End: for
# Reset numpy.seterr
numpy_seterr(**original_numpy_seterr)
if not inplace:
# result._isdt = False #new_isdt
result._Units = new_Units
result.dtype = new_dtype
result._flip = new_flip
if broadcasting:
result.partitions.set_location_map(result._axes)
return result
else:
# Update the metadata for the new master array in place
# data0._isdt = False #new_isdt
data0._shape = new_shape
data0._ndim = new_ndim
data0._size = new_size
data0._axes = new_axes
data0._flip = new_flip
data0._Units = new_Units
data0.dtype = new_dtype
if broadcasting:
data0.partitions.set_location_map(new_axes)
self.__dict__ = data0.__dict__
return self
#--- End: def
def _query_set(self, values, exact=True):
'''
'''
if not exact:
raise ValueError("Can't, as yet, regex on non string")
i = iter(values)
v = i.next()
out = (self == v)
for v in i:
out |= (self == v)
return out
# new = self.copy()
#
# pda_args = new.pda_args(revert_to_file=True)
#
# for partition in new.partitions.matrix.flat:
# array = partition.dataarray(**pda_args)
#
# i = iter(values)
# value = i.next()
# out = (array == value)
# for value in i:
# out |= (array == value)
#
# partition.subarray = out
# partition.close()
# #--- End: for
#
# new.dtype = bool
#
# return new
#--- End: def
def _query_contain(self, value):
'''
'''
return self == value
#--- End: def
def _query_wi(self, value0, value1):
'''
'''
return (self >= value0) & (self <= value1)
# new = self.copy()
#
# pda_args = new.pda_args(revert_to_file=True)
#
# for partition in new.partitions.matrix.flat:
# array = partition.dataarray(**pda_args)
# print array, new.Units, type(value0), value1
# partition.subarray = (array >= value0) & (array <= value1)
# partition.close()
# #--- End: for
#
# new.dtype = bool
#
# return new
#--- End: def
def _query_wo(self, value0, value1):
'''
'''
return (self < value0) | (self > value1)
# new = self.copy()
#
# pda_args = new.pda_args(revert_to_file=True)
#
# for partition in new.partitions.matrix.flat:
# array = partition.dataarray(**pda_args)
# partition.subarray = (array < value0) | (array > value1)
# partition.close()
# #--- End: for
#
# new.dtype = bool
#
# return new
#--- End: def
@classmethod
def concatenate(cls, data, axis=0, _preserve=True):
'''
Join a sequence of data arrays together.
:Parameters:
data: sequence of cf.Data
The data arrays to be concatenated. Concatenation is carried
out in the order given. Each data array must have equivalent
units and the same shape, except in the concatenation
axis. Note that scalar arrays are treated as if they were one
dimensionsal.
axis: int, optional
The axis along which the arrays will be joined. The default is
0. Note that scalar arrays are treated as if they were one
dimensionsal.
_preserve: bool, optional
If False then the time taken to do the concatenation is
reduced at the expense of changing the input data arrays given
by the *data* parameter in place and **these in place changes
will render the input data arrays unusable**. Therefore, only
set to False if it is 100% certain that the input data arrays
will not be accessed again. By default the input data arrays
are preserved.
:Returns:
out: cf.Data
The concatenated data array.
:Examples:
>>> d = cf.Data([[1, 2], [3, 4]], 'km')
>>> e = cf.Data([[5.0, 6.0]], 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[[ 1. 2. ]
[ 3. 4. ]
[ 0.005 0.006]]
>>> f.equals(cf.Data.concatenate((d, e), axis=-2))
True
>>> e = cf.Data([[5.0], [6.0]], 'metre')
>>> f = cf.Data.concatenate((d, e), axis=1)
>>> print f.array
[[ 1. 2. 0.005]
[ 3. 4. 0.006]]
>>> d = cf.Data(1, 'km')
>>> e = cf.Data(50.0, 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[ 1. 0.05]
>>> e = cf.Data([50.0, 75.0], 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[ 1. 0.05 0.075]
'''
data = tuple(data)
if len(data) < 2:
raise ValueError(
"Can't concatenate: Must provide two or data arrays")
data0 = data[0]
data = data[1:]
if _preserve:
data0 = data0.copy()
else:
# If data0 appears more than once in the input data arrays
# then we need to copy it
for d in data:
if d is data0:
data0 = data0.copy()
break
#--- End: if
# Turn a scalar array into a 1-d array
ndim = data0._ndim
if not ndim:
data0.expand_dims(i=True)
ndim = 1
# ------------------------------------------------------------
# Check that the axis, shapes and units of all of the input
# data arrays are consistent
# ------------------------------------------------------------
# if data0._isdt:
# data0.asreftime(i=True)
if axis < 0:
axis += ndim
if not 0 <= axis < ndim:
raise ValueError(
"Can't concatenate: Invalid axis (expected %d <= axis < %d)" %
(-ndim, ndim))
shape0 = data0._shape
units0 = data0.Units
axis_p1 = axis + 1
for data1 in data:
shape1 = data1._shape
if (shape0[axis_p1:] != shape1[axis_p1:] or
shape0[:axis] != shape1[:axis]):
raise ValueError(
"Can't concatenate: All the input array axes except for the concatenation axis must have the same size")
if not units0.equivalent(data1.Units):
raise ValueError(
"Can't concatenate: All the input arrays must have equivalent units")
# if data1._isdt:
# data1.asreftime(i=True)
#--- End: for
for i, data1 in enumerate(data):
if _preserve:
data1 = data1.copy()
else:
# If data1 appears more than once in the input data
# arrays then we need to copy it
for d in data[i+1:]:
if d is data1:
data1 = data1.copy()
break
#--- End: if
# Turn a scalar array into a 1-d array
if not data1._ndim:
data1.expand_dims(i=True)
shape1 = data1._shape
# ------------------------------------------------------------
# 1. Make sure that the internal names of the axes match
# ------------------------------------------------------------
axis_map = {}
if data1._pmsize < data0._pmsize:
for axis1, axis0 in izip(data1._axes, data0._axes):
axis_map[axis1] = axis0
data1._change_axis_names(axis_map)
else:
for axis1, axis0 in izip(data1._axes, data0._axes):
axis_map[axis0] = axis1
data0._change_axis_names(axis_map)
#--- End: if
# ------------------------------------------------------------
# Find the internal name of the concatenation axis
# ------------------------------------------------------------
Paxis = data0._axes[axis]
# ------------------------------------------------------------
# 2. Make sure that the aggregating axis is an axis of the
# partition matrix of both arrays and that the partition
# matrix axes are the same in both arrays (although, for
# now, they may have different orders)
#
# Note:
#
# a) This may involve adding new partition matrix axes to
# either or both of data0 and data1.
#
# b) If the aggregating axis needs to be added it is inserted
# as the outer (slowest varying) axis to reduce the
# likelihood of having to (expensively) transpose the
# partition matrix.
# ------------------------------------------------------------
for f, g in izip((data0, data1),
(data1, data0)):
g_pmaxes = g.partitions.axes
if Paxis in g_pmaxes:
g_pmaxes = g_pmaxes[:]
g_pmaxes.remove(Paxis)
f_partitions = f.partitions
f_pmaxes = f_partitions.axes
for pmaxis in g_pmaxes[::-1] + [Paxis]:
if pmaxis not in f_pmaxes:
f_partitions.expand_dims(pmaxis, i=True)
# if Paxis not in f_partitions.axes:
# f_partitions.expand_dims(Paxis, i=True)
#--- End: for
# ------------------------------------------------------------
# 3. Make sure that aggregating axis is the outermost (slowest
# varying) axis of the partition matrix of data0
# ------------------------------------------------------------
ipmaxis = data0.partitions.axes.index(Paxis)
if ipmaxis:
data0.partitions.swapaxes(ipmaxis, 0, i=True)
# ------------------------------------------------------------
# 4. Make sure that the partition matrix axes of data1 are in
# the same order as those in data0
# ------------------------------------------------------------
pmaxes1 = data1.partitions.axes
ipmaxes = [pmaxes1.index(pmaxis) for pmaxis in data0.partitions.axes]
data1.partitions.transpose(ipmaxes, i=True)
# --------------------------------------------------------
# 5. Create new partition boundaries in the partition
# matrices of data0 and data1 so that their partition
# arrays may be considered as different slices of a
# common, larger hyperrectangular partition array.
#
# Note:
#
# * There is no need to add any boundaries across the
# concatenation axis.
# --------------------------------------------------------
boundaries0 = data0.partition_boundaries()
boundaries1 = data1.partition_boundaries()
for dim in data0.partitions.axes[1:]:
# Still here? Then see if there are any partition matrix
# boundaries to be created for this partition dimension
bounds0 = boundaries0[dim]
bounds1 = boundaries1[dim]
symmetric_diff = set(bounds0).symmetric_difference(bounds1)
if not symmetric_diff:
# The partition boundaries for this partition
# dimension are already the same in data0 and data1
continue
# Still here? Then there are some partition boundaries to
# be created for this partition dimension in data0 and/or
# data1.
for f, g, bf, bg in ((data0, data1, bounds0, bounds1),
(data1, data0, bounds1, bounds0)):
extra_bounds = [i for i in bg if i in symmetric_diff]
f.add_partitions(extra_bounds, dim)
#--- End: for
#--- End: for
# ------------------------------------------------------------
# 6. Concatenate data0 and data1 partition matrices
# ------------------------------------------------------------
if data0._flip != data1._flip:
data0._move_flip_to_partitions()
data1._move_flip_to_partitions()
matrix0 = data0.partitions.matrix
matrix1 = data1.partitions.matrix
new_pmshape = list(matrix0.shape)
new_pmshape[0] += matrix1.shape[0]
# Initialise an empty partition matrix with the new shape
new_matrix = numpy_empty(new_pmshape, dtype=object)
# Insert the data0 partition matrix
new_matrix[:matrix0.shape[0]] = matrix0
# Insert the data1 partition matrix
new_matrix[matrix0.shape[0]:] = matrix1
data0.partitions.matrix = new_matrix
# Update the location map of the partition matrix of data0
data0.partitions.set_location_map((Paxis,), (axis,))
# ------------------------------------------------------------
# 7. Update the size, shape and dtype of data0
# ------------------------------------------------------------
data0._size += long(data1._size)
shape0 = list(shape0)
shape0[axis] += shape1[axis]
data0._shape = tuple(shape0)
dtype0 = data0.dtype
dtype1 = data1.dtype
if dtype0 != dtype1:
data0.dtype = numpy_result_type(dtype0, dtype1)
#--- End: for
# ------------------------------------------------------------
# Done
# ------------------------------------------------------------
return data0
#--- End: def
def concatenate2(self, data, axis=0, i=False, _preserve=True):
'''
Join a sequence of data arrays together.
:Parameters:
data : sequence of cf.Data
The data arrays to be concatenated. Concatenation is carried
out in the order given. Each data array must have equivalent
units and the same shape, except in the concatenation
axis. Note that scalar arrays are treated as if they were one
dimensionsal.
axis : int, optional
The axis along which the arrays will be joined. The default is
0. Note that scalar arrays are treated as if they were one
dimensionsal.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
_preserve : bool, optional
If False then the time taken to do the concatenation is
reduced at the expense of changing the input data arrays given
by the *data* parameter in place and **these in place changes
will render the input data arrays unusable**. Therefore, only
set to False if it is 100% certain that the input data arrays
will not be accessed again. By default the input data arrays
are preserved.
:Returns:
out: cf.Data
The concatenated data array.
:Examples:
>>> d = cf.Data([[1, 2], [3, 4]], 'km')
>>> e = cf.Data([[5.0, 6.0]], 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[[ 1. 2. ]
[ 3. 4. ]
[ 0.005 0.006]]
>>> f.equals(cf.Data.concatenate((d, e), axis=-2))
True
>>> e = cf.Data([[5.0], [6.0]], 'metre')
>>> f = cf.Data.concatenate((d, e), axis=1)
>>> print f.array
[[ 1. 2. 0.005]
[ 3. 4. 0.006]]
>>> d = cf.Data(1, 'km')
>>> e = cf.Data(50.0, 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[ 1. 0.05]
>>> e = cf.Data([50.0, 75.0], 'metre')
>>> f = cf.Data.concatenate((d, e))
>>> print f.array
[ 1. 0.05 0.075]
'''
data = tuple(data)
if len(data) < 1:
raise ValueError(
"Can't concatenate: Must provide two or data arrays")
data0 = self
if _preserve:
data0 = data0.copy()
else:
# If data0 appears more than once in the input data arrays
# then we need to copy it
for d in data:
if d is data0:
data0 = data0.copy()
break
#--- End: if
# Turn a scalar array into a 1-d array
ndim = data0._ndim
if not ndim:
data0.expand_dims(i=True)
ndim = 1
# ------------------------------------------------------------
# Check that the axis, shapes and units of all of the input
# data arrays are consistent
# ------------------------------------------------------------
if axis < 0:
axis += ndim
if not 0 <= axis < ndim:
raise ValueError(
"Can't concatenate: Invalid axis (expected %d <= axis < %d)" %
(-ndim, ndim))
shape0 = data0._shape
units0 = data0.Units
axis_p1 = axis + 1
for data1 in data:
shape1 = data1._shape
if (shape0[axis_p1:] != shape1[axis_p1:] or
shape0[:axis] != shape1[:axis]):
raise ValueError(
"Can't concatenate: All the input array axes except for the concatenation axis must have the same size")
if not units0.equivalent(data1.Units):
raise ValueError(
"Can't concatenate: All the input arrays must have equivalent units")
#--- End: for
for i, data1 in enumerate(data):
if _preserve:
data1 = data1.copy()
else:
# If data1 appears more than once in the input data
# arrays then we need to copy it
for d in data[i+1:]:
if d is data1:
data1 = data1.copy()
break
#--- End: if
# Turn a scalar array into a 1-d array
if not data1._ndim:
data1.expand_dims(i=True)
shape1 = data1._shape
# ------------------------------------------------------------
# 1. Make sure that the internal names of the axes match
# ------------------------------------------------------------
axis_map = {}
if data1._pmsize < data0._pmsize:
for axis1, axis0 in izip(data1._axes, data0._axes):
axis_map[axis1] = axis0
data1._change_axis_names(axis_map)
else:
for axis1, axis0 in izip(data1._axes, data0._axes):
axis_map[axis0] = axis1
data0._change_axis_names(axis_map)
#--- End: if
# ------------------------------------------------------------
# Find the internal name of the concatenation axis
# ------------------------------------------------------------
Paxis = data0._axes[axis]
# ------------------------------------------------------------
# 2. Make sure that the aggregating axis is an axis of the
# partition matrix of both arrays and that the partition
# matrix axes are the same in both arrays (although, for
# now, they may have different orders)
#
# Note:
#
# a) This may involve adding new partition matrix axes to
# either or both of data0 and data1.
#
# b) If the aggregating axis needs to be added it is inserted
# as the outer (slowest varying) axis to reduce the
# likelihood of having to (expensively) transpose the
# partition matrix.
# ------------------------------------------------------------
for f, g in izip((data0, data1),
(data1, data0)):
g_pmaxes = g.partitions.axes
if Paxis in g_pmaxes:
g_pmaxes = g_pmaxes[:]
g_pmaxes.remove(Paxis)
f_partitions = f.partitions
f_pmaxes = f_partitions.axes
for pmaxis in g_pmaxes[::-1] + [Paxis]:
if pmaxis not in f_pmaxes:
f_partitions.expand_dims(pmaxis, i=True)
# if Paxis not in f_partitions.axes:
# f_partitions.expand_dims(Paxis, i=True)
#--- End: for
# ------------------------------------------------------------
# 3. Make sure that aggregating axis is the outermost (slowest
# varying) axis of the partition matrix of data0
# ------------------------------------------------------------
ipmaxis = data0.partitions.axes.index(Paxis)
if ipmaxis:
data0.partitions.swapaxes(ipmaxis, 0, i=True)
# ------------------------------------------------------------
# 4. Make sure that the partition matrix axes of data1 are in
# the same order as those in data0
# ------------------------------------------------------------
pmaxes1 = data1.partitions.axes
ipmaxes = [pmaxes1.index(pmaxis) for pmaxis in data0.partitions.axes]
data1.partitions.transpose(ipmaxes, i=True)
# ------------------------------------------------------------
# 5. Create new partition boundaries in the partition
# matrices of data0 and data1 so that their partition
# arrays may be considered as different slices of a common,
# larger hyperrectangular partition array.
#
# Note:
#
# * There is no need to add any boundaries across the
# concatenation axis.
# ------------------------------------------------------------
boundaries0 = data0.partition_boundaries()
boundaries1 = data1.partition_boundaries()
for dim in data0.partitions.axes[1:]:
# Still here? Then see if there are any partition matrix
# boundaries to be created for this partition dimension
bounds0 = boundaries0[dim]
bounds1 = boundaries1[dim]
symmetric_diff = set(bounds0).symmetric_difference(bounds1)
if not symmetric_diff:
# The partition boundaries for this partition
# dimension are already the same in data0 and data1
continue
# Still here? Then there are some partition boundaries to
# be created for this partition dimension in data0 and/or
# data1.
for f, g, bf, bg in ((data0, data1, bounds0, bounds1),
(data1, data0, bounds1, bounds0)):
extra_bounds = [i for i in bg if i in symmetric_diff]
f.add_partitions(extra_bounds, dim)
#--- End: for
#--- End: for
# ------------------------------------------------------------
# 6. Concatenate data0 and data1 partition matrices
# ------------------------------------------------------------
if data0._flip != data1._flip:
data0._move_flip_to_partitions()
data1._move_flip_to_partitions()
matrix0 = data0.partitions.matrix
matrix1 = data1.partitions.matrix
new_pmshape = list(matrix0.shape)
new_pmshape[0] += matrix1.shape[0]
# Initialise an empty partition matrix with the new shape
new_matrix = numpy_empty(new_pmshape, dtype=object)
# Insert the data0 partition matrix
new_matrix[:matrix0.shape[0]] = matrix0
# Insert the data1 partition matrix
new_matrix[matrix0.shape[0]:] = matrix1
data0.partitions.matrix = new_matrix
# Update the location map of the partition matrix of data0
data0.partitions.set_location_map((Paxis,), (axis,))
# ------------------------------------------------------------
# 7. Update the size, shape and dtype of data0
# ------------------------------------------------------------
data0._size += long(data1._size)
shape0 = list(shape0)
shape0[axis] += shape1[axis]
data0._shape = tuple(shape0)
dtype0 = data0.dtype
dtype1 = data1.dtype
if dtype0 != dtype1:
data0.dtype = numpy_result_type(dtype0, dtype1)
#--- End: for
# ------------------------------------------------------------
# Done
# ------------------------------------------------------------
return data0
#--- End: def
def _move_flip_to_partitions(self):
'''
This does not change the master array.
'''
flip = self._flip
if not flip:
return
for partition in self.partitions.matrix.flat:
p_axes = partition.axes
p_flip = partition.flip[:]
for axis in flip:
if axis in p_flip:
p_flip.remove(axis)
elif axis in p_axes:
p_flip.append(axis)
#--- End: for
partition.flip = p_flip
#--- End: for
self._flip = []
#--- End: def
def _parse_axes(self, axes, method):
'''
:Parameters:
axes : (sequence of) int
The axes of the data array. May be one of, or a sequence of
any combination of zero or more of:
* The integer position of a dimension in the data array
(negative indices allowed).
method : str
:Returns:
out: list
:Examples:
'''
ndim = self._ndim
if isinstance(axes, (int, long)):
axes = (axes,)
axes2 = []
for axis in axes:
if 0 <= axis < ndim:
axes2.append(axis)
elif -ndim <= axis < 0:
axes2.append(axis + ndim)
else:
raise ValueError(
"Can't %s: Invalid axis: %r" % (method, axis))
#--- End: for
# Check for duplicate axes
n = len(axes2)
if n > 1 and n > len(set(axes2)):
raise ValueError("Can't %s: Duplicate axis (%s)" %
(method, axes2))
return axes2
#--- End: def
def _unary_operation(self, operation):
'''
Implement unary arithmetic operations.
It is called by the unary arithmetic methods, such as
__abs__().
.. seealso:: `_binary_operation`
:Parameters:
operation : str
The unary arithmetic method name (such as "__invert__").
:Returns:
new : Data
A new Data array.
:Examples:
>>> d = cf.Data([[1, 2, -3, -4, -5]])
>>> e = d._unary_operation('__abs__')
>>> print e.array
[[1 2 3 4 5]]
>>> e = d.__abs__()
>>> print e.array
[[1 2 3 4 5]]
>>> e = abs(d)
>>> print e.array
[[1 2 3 4 5]]
'''
self.to_memory()
new = self.copy()
pda_args = new.pda_args()
for partition in new.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
partition.subarray = getattr(operator, operation)(array)
partition.close()
#--- End: for
return new
#--- End: def
def __add__(self, other):
'''
The binary arithmetic operation ``+``
x.__add__(y) <==> x+y
'''
return self._binary_operation(other, '__add__')
#--- End: def
def __iadd__(self, other):
'''
The augmented arithmetic assignment ``+=``
x.__iadd__(y) <==> x+=y
'''
return self._binary_operation(other, '__iadd__')
#--- End: def
def __radd__(self, other):
'''
The binary arithmetic operation ``+`` with reflected operands
x.__radd__(y) <==> y+x
'''
return self._binary_operation(other, '__radd__')
#--- End: def
def __sub__(self, other):
'''
The binary arithmetic operation ``-``
x.__sub__(y) <==> x-y
'''
return self._binary_operation(other, '__sub__')
#--- End: def
def __isub__(self, other):
'''
The augmented arithmetic assignment ``-=``
x.__isub__(y) <==> x-=y
'''
return self._binary_operation(other, '__isub__')
#--- End: def
def __rsub__(self, other):
'''
The binary arithmetic operation ``-`` with reflected operands
x.__rsub__(y) <==> y-x
'''
return self._binary_operation(other, '__rsub__')
#--- End: def
def __mul__(self, other):
'''
The binary arithmetic operation ``*``
x.__mul__(y) <==> x*y
'''
return self._binary_operation(other, '__mul__')
#--- End: def
def __imul__(self, other):
'''
The augmented arithmetic assignment ``*=``
x.__imul__(y) <==> x*=y
'''
return self._binary_operation(other, '__imul__')
#--- End: def
def __rmul__(self, other):
'''
The binary arithmetic operation ``*`` with reflected operands
x.__rmul__(y) <==> y*x
'''
return self._binary_operation(other, '__rmul__')
#--- End: def
def __div__(self, other):
'''
The binary arithmetic operation ``/``
x.__div__(y) <==> x/y
'''
return self._binary_operation(other, '__div__')
#--- End: def
def __idiv__(self, other):
'''
The augmented arithmetic assignment ``/=``
x.__idiv__(y) <==> x/=y
'''
return self._binary_operation(other, '__idiv__')
#--- End: def
def __rdiv__(self, other):
'''
The binary arithmetic operation ``/`` with reflected operands
x.__rdiv__(y) <==> y/x
'''
return self._binary_operation(other, '__rdiv__')
#--- End: def
def __floordiv__(self, other):
'''
The binary arithmetic operation ``//``
x.__floordiv__(y) <==> x//y
'''
return self._binary_operation(other, '__floordiv__')
#--- End: def
def __ifloordiv__(self, other):
'''
The augmented arithmetic assignment ``//=``
x.__ifloordiv__(y) <==> x//=y
'''
return self._binary_operation(other, '__ifloordiv__')
#--- End: def
def __rfloordiv__(self, other):
'''
The binary arithmetic operation ``//`` with reflected operands
x.__rfloordiv__(y) <==> y//x
'''
return self._binary_operation(other, '__rfloordiv__')
#--- End: def
def __truediv__(self, other):
'''
The binary arithmetic operation ``/`` (true division)
x.__truediv__(y) <==> x/y
'''
return self._binary_operation(other, '__truediv__')
#--- End: def
def __itruediv__(self, other):
'''
The augmented arithmetic assignment ``/=`` (true division)
x.__itruediv__(y) <==> x/=y
'''
return self._binary_operation(other, '__itruediv__')
#--- End: def
def __rtruediv__(self, other):
'''
The binary arithmetic operation ``/`` (true division) with reflected
operands
x.__rtruediv__(y) <==> y/x
'''
return self._binary_operation(other, '__rtruediv__')
#--- End: def
def __pow__(self, other, modulo=None):
'''
The binary arithmetic operations ``**`` and ``pow``
x.__pow__(y) <==> x**y
'''
if modulo is not None:
raise NotImplementedError("3-argument power not supported for '%s'" %
self.__class__.__name__)
return self._binary_operation(other, '__pow__')
#--- End: def
def __ipow__(self, other, modulo=None):
'''
The augmented arithmetic assignment ``**=``
x.__ipow__(y) <==> x**=y
'''
if modulo is not None:
raise NotImplementedError("3-argument power not supported for '%s'" %
self.__class__.__name__)
return self._binary_operation(other, '__ipow__')
#--- End: def
def __rpow__(self, other, modulo=None):
'''
The binary arithmetic operations ``**`` and ``pow`` with reflected
operands
x.__rpow__(y) <==> y**x
'''
if modulo is not None:
raise NotImplementedError("3-argument power not supported for %r" %
self.__class__.__name__)
return self._binary_operation(other, '__rpow__')
#--- End: def
def __mod__(self, other):
'''
The binary arithmetic operation ``%``
x.__mod__(y) <==> x % y
'''
return self._binary_operation(other, '__mod__')
#--- End: def
def __imod__(self, other):
'''
The binary arithmetic operation ``%=``
x.__imod__(y) <==> x %= y
'''
return self._binary_operation(other, '__imod__')
#--- End: def
def __rmod__(self, other):
'''
The binary arithmetic operation ``%`` with reflected operands
x.__rmod__(y) <==> y % x
'''
return self._binary_operation(other, '__rmod__')
#--- End: def
def __eq__(self, other):
'''
The rich comparison operator ``==``
x.__eq__(y) <==> x==y
'''
return self._binary_operation(other, '__eq__')
#--- End: def
def __ne__(self, other):
'''
The rich comparison operator ``!=``
x.__ne__(y) <==> x!=y
'''
return self._binary_operation(other, '__ne__')
#--- End: def
def __ge__(self, other):
'''
The rich comparison operator ``>=``
x.__ge__(y) <==> x>=y
'''
return self._binary_operation(other, '__ge__')
#--- End: def
def __gt__(self, other):
'''
The rich comparison operator ``>``
x.__gt__(y) <==> x>y
'''
return self._binary_operation(other, '__gt__')
#--- End: def
def __le__(self, other):
'''
The rich comparison operator ``<=``
x.__le__(y) <==> x<=y
'''
return self._binary_operation(other, '__le__')
#--- End: def
def __lt__(self, other):
'''
The rich comparison operator ``<``
x.__lt__(y) <==> x<y
'''
return self._binary_operation(other, '__lt__')
#--- End: def
def __and__(self, other):
'''
The binary bitwise operation ``&``
x.__and__(y) <==> x&y
'''
return self._binary_operation(other, '__and__')
#--- End: def
def __iand__(self, other):
'''
The augmented bitwise assignment ``&=``
x.__iand__(y) <==> x&=y
'''
return self._binary_operation(other, '__iand__')
#--- End: def
def __rand__(self, other):
'''
The binary bitwise operation ``&`` with reflected operands
x.__rand__(y) <==> y&x
'''
return self._binary_operation(other, '__rand__')
#--- End: def
def __or__(self, other):
'''
The binary bitwise operation ``|``
x.__or__(y) <==> x|y
'''
return self._binary_operation(other, '__or__')
#--- End: def
def __ior__(self, other):
'''
The augmented bitwise assignment ``|=``
x.__ior__(y) <==> x|=y
'''
return self._binary_operation(other, '__ior__')
#--- End: def
def __ror__(self, other):
'''
The binary bitwise operation ``|`` with reflected operands
x.__ror__(y) <==> y|x
'''
return self._binary_operation(other, '__ror__')
#--- End: def
def __xor__(self, other):
'''
The binary bitwise operation ``^``
x.__xor__(y) <==> x^y
'''
return self._binary_operation(other, '__xor__')
#--- End: def
def __ixor__(self, other):
'''
The augmented bitwise assignment ``^=``
x.__ixor__(y) <==> x^=y
'''
return self._binary_operation(other, '__ixor__')
#--- End: def
def __rxor__(self, other):
'''
The binary bitwise operation ``^`` with reflected operands
x.__rxor__(y) <==> y^x
'''
return self._binary_operation(other, '__rxor__')
#--- End: def
def __lshift__(self, y):
'''
The binary bitwise operation ``<<``
x.__lshift__(y) <==> x<<y
'''
return self._binary_operation(y, '__lshift__')
#--- End: def
def __ilshift__(self, y):
'''
The augmented bitwise assignment ``<<=``
x.__ilshift__(y) <==> x<<=y
'''
return self._binary_operation(y, '__ilshift__')
#--- End: def
def __rlshift__(self, y):
'''
The binary bitwise operation ``<<`` with reflected operands
x.__rlshift__(y) <==> y<<x
'''
return self._binary_operation(y, '__rlshift__')
#--- End: def
def __rshift__(self, y):
'''
The binary bitwise operation ``>>``
x.__lshift__(y) <==> x>>y
'''
return self._binary_operation(y, '__rshift__')
#--- End: def
def __irshift__(self, y):
'''
The augmented bitwise assignment ``>>=``
x.__irshift__(y) <==> x>>=y
'''
return self._binary_operation(y, '__irshift__')
#--- End: def
def __rrshift__(self, y):
'''
The binary bitwise operation ``>>`` with reflected operands
x.__rrshift__(y) <==> y>>x
'''
return self._binary_operation(y, '__rrshift__')
#--- End: def
def __abs__(self):
'''
The unary arithmetic operation ``abs``
x.__abs__() <==> abs(x)
'''
return self._unary_operation('__abs__')
#--- End: def
def __neg__(self):
'''
The unary arithmetic operation ``-``
x.__neg__() <==> -x
'''
return self._unary_operation('__neg__')
#--- End: def
def __invert__(self):
'''
The unary bitwise operation ``~``
x.__invert__() <==> ~x
'''
return self._unary_operation('__invert__')
#--- End: def
def __pos__(self):
'''
The unary arithmetic operation ``+``
x.__pos__() <==> +x
'''
return self._unary_operation('__pos__')
#--- End: def
def _all_axis_names(self):
'''
Return a set of all the dimension names in use by the data array.
Note that the output set includes dimensions of individual partitions
which are not dimensions of the master data array.
:Returns:
out: list of str
The axis names.
:Examples:
>>> d._axes
['dim1', 'dim0']
>>> d.partitions.info('_dimensions')
[['dim0', 'dim0'],
['dim1', 'dim0', 'dim2']]
>>> d._all_axis_names()
set(['dim2', dim0', 'dim1'])
'''
all_axes = self._all_axes
if not all_axes:
return self._axes[:]
else:
return list(all_axes)
#--- End: def
def _change_axis_names(self, axis_map):
'''
Change the axis names.
The axis names are arbitrary, so mapping them to another arbitrary
collection does not change the data array values, units, nor axis
order.
:Examples:
'''
# Find any axis names which are not mapped. If there are any,
# then update axis_map.
all_axes = self._all_axes
if all_axes:
d = set(all_axes).difference(axis_map)
if d:
axis_map = axis_map.copy()
existing_axes = all_axes[:]
for axis in d:
if axis in axis_map.itervalues():
axis_map[axis] = self._new_axis_identifier(existing_axes)
existing_axes.append(axis)
else:
axis_map[axis] = axis
#--- End: for
#--- End: if
if all([axis0==axis1 for axis0, axis1 in axis_map.iteritems()]):
# Return without doing anything if the mapping is null
return
# Axes
self._axes = [axis_map[axis] for axis in self._axes]
# All axes
if all_axes:
self._all_axes = tuple([axis_map[axis] for axis in all_axes])
# Flipped axes
flip = self._flip
if flip:
self._flip = [axis_map[axis] for axis in flip]
# HDF chunks
chunks = self._HDF_chunks
if chunks:
self._HDF_chunks = dict([(axis_map[axis], size)
for axis, size in chunks.iteritems()])
# Partitions in the partition matrix
self.partitions.change_axis_names(axis_map)
#--- End: def
def _collapse(self, func, fpartial, ffinalise, axes=None, squeeze=False,
weights=None, mtol=1, units=None, i=False, **kwargs):
'''
Collapse the data array in place.
:Parameters:
func : function
fpartial : function
ffinalize : function
axes : (sequence of) int, optional
The axes to be collapsed. By default flattened input is
used. Each axis is identified by its integer position. No axes
are collapsed if *axes* is an empty sequence.
squeeze : bool, optional
If False then the axes which are collapsed are left in the
result as axes with size 1. In this case the result will
broadcast correctly against the original array. By default
collapsed axes are removed.
weights : *optional*
kwargs : *optional*
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
'''
if i:
d = self
else:
d = self.copy()
ndim = d._ndim
self_axes = d._axes
self_shape = d._shape
original_self_axes = self_axes[:]
if axes is None:
# Collapse all axes
axes = range(ndim)
n_collapse_axes = ndim
n_non_collapse_axes = 0
Nmax = d._size
elif not axes and axes != 0:
# Collapse no axes
return d
else:
# Collapse some (maybe all) axes
axes = d._parse_axes(axes, '_collapse')
n_collapse_axes = len(axes)
n_non_collapse_axes = ndim - n_collapse_axes
Nmax = 1
for i in axes:
Nmax *= self_shape[i]
#--- End: if
#-------------------------------------------------------------
# Parse the weights.
#
# * Change the keys from dimension names to the integer
# positions of the dimensions.
#
# * Make sure all non-null weights are Data objects.
# ------------------------------------------------------------
if weights is not None:
if not isinstance(weights, dict):
# If the shape of the weights is not the same as the
# shape of the data array then the weights are assumed
# to span the collapse axes in the order in which they
# are given
if numpy_shape(weights) == self_shape:
weights = {tuple(self_axes): weights}
else:
weights = {tuple([self_axes[i] for i in axes]): weights}
else:
weights = weights.copy()
weights_axes = set()
for key, value in weights.items():
del weights[key]
key = d._parse_axes(key, 'asdasds12983487')
if weights_axes.intersection(key):
raise ValueError("Duplicate weights axis")
weights_axes.update(key)
weights[tuple([self_axes[i] for i in key])] = value
#--- End: for
if not weights_axes.intersection(axes):
# Ignore all of the weights if none of them span
# any collapse axes
weights = {}
#--- End: if
for key, weight in weights.items():
if weight is None or numpy_size(weight) == 1:
# Ignore undefined weights and size 1 weights
del weights[key]
continue
weight_ndim = numpy_ndim(weight)
if weight_ndim != len(key):
raise ValueError(
"Can't collapse: Incorrect number of weights axes (%d != %d)" %
(weight.ndim, len(key)))
if weight_ndim > ndim:
raise ValueError(
"Can't collapse: Incorrect number of weights axes (%d > %d)" %
(weight.ndim, ndim))
for n, axis in izip(numpy_shape(weight), key):
if n != self_shape[self_axes.index(axis)]:
raise ValueError(
"Can't collapse: Incorrect weights shape %r" %
numpy_shape(weight))
#--- End :for
# Convert weight to a data object, if necessary.
weight = type(self).asdata(weight)
if weight.dtype.char == 'S':
# Ignore string-valued weights
del weights[key]
continue
weights[key] = weight
#--- End: for
#--- End: if
if axes != range(n_non_collapse_axes, ndim):
transpose_iaxes = [i for i in range(ndim) if i not in axes] + axes
d.transpose(transpose_iaxes, i=True)
#--- End: if
if weights:
# Optimize when weights span only non-partitioned axes
# (do this before permuting the order of the weight
# axes to be consistent with the order of the data
# axes)
weights = d._collapse_optimize_weights(weights)
# Permute the order of the weight axes to be
# consistent with the order of the data axes
self_axes = d._axes
for key, w in weights.items():
key1 = tuple([axis for axis in self_axes if axis in key])
if key1 != key:
w = w.transpose([key.index(axis) for axis in key1])
del weights[key]
ikey = tuple([self_axes.index(axis) for axis in key1])
weights[ikey] = w
#--- End: for
# Add the weights to kwargs
kwargs['weights'] = weights
#--- End: if
#-------------------------------------------------------------
# Initialise the output data array
#-------------------------------------------------------------
new = d[(Ellipsis,) + (0,)*n_collapse_axes]
# new._auxiliary_mask = None # pending .....
for partition in new.partitions.matrix.flat:
del partition.subarray
d.to_memory()
# save = not new.fits_in_memory(new.dtype.itemsize)
keep_in_memory = new.fits_in_memory(new.dtype.itemsize)
datatype = d.dtype
if units is None:
new_units = new.Units
else:
new_units = units
p_axes = new._axes[:n_non_collapse_axes]
p_units = new_units
c_slice = (slice(None),) * n_collapse_axes
for partition in new.partitions.matrix.flat:
partition.axes = p_axes
partition.flip = []
partition.part = []
partition.Units = p_units
if squeeze:
partition.location = partition.location[:n_non_collapse_axes]
partition.shape = partition.shape[:n_non_collapse_axes]
indices = partition.indices[:n_non_collapse_axes] + c_slice
partition.subarray = d._collapse_subspace(
func, fpartial, ffinalise,
indices, n_non_collapse_axes, n_collapse_axes,
Nmax, mtol, **kwargs)
p_datatype = partition.subarray.dtype
if datatype != p_datatype:
datatype = numpy_result_type(p_datatype, datatype)
partition.close(keep_in_memory=keep_in_memory)
#--- End: for
new._all_axes = None
new._flip = []
new.dtype = datatype
new._Units = new_units
if squeeze:
new._axes = p_axes
new._ndim = ndim - n_collapse_axes
new._shape = new._shape[:new._ndim]
else:
new_axes = new._axes
if new_axes != original_self_axes:
iaxes = [new_axes.index(axis) for axis in original_self_axes]
new.transpose(iaxes, i=True)
# ------------------------------------------------------------
# Update d in place
# ------------------------------------------------------------
d.__dict__ = new.__dict__
# ------------------------------------------------------------
# Return
# ------------------------------------------------------------
return d
#--- End: def
def _collapse_subspace(self, func, fpartial, ffinalise, indices,
n_non_collapse_axes, n_collapse_axes,
Nmax, mtol, weights=None, **kwargs):
'''
Collapse a subspace of a data array.
If set, *weights* and *kwargs* are passed to the function call. If
there is a *weights* keyword argument then this should either evaluate
to False or be a dictionary of weights for at least one of the data
dimensions.
:Parameters:
func : function
fpartial : function
ffinalise : function
indices: tuple
The indices of the master array which would create the
subspace.
n_non_collapse_axes : int
The number of data array axes which are not being
collapsed. It is assumed that they are in the slowest moving
positions.
n_collapse_axes : int
The number of data array axes which are being collapsed. It is
assumed that they are in the fastest moving positions.
weights : dict, optional
kwargs : *optional*
:Returns:
out: list
:Examples:
'''
ndim = self._ndim
master_shape = self.shape
data = self[indices]
# if data._pmndim and data.fits_in_memory(data.dtype.itemsize):
# data.varray
# True iff at least two, but not all, axes are to be
# collapsed.
reshape = 1 < n_collapse_axes < ndim
out = None
if n_collapse_axes == ndim:
# All axes are to be collapsed
kwargs.pop('axis', None)
else:
# At least one axis, but not all axes, are to be
# collapsed. It is assumed that the collapse axes are in
# the last (fastest varying) positions (-1, -2, ...). We
# set kwargs['axis']=-1 (actually we use the +ve integer
# equivalent of -1) if there is more then one collapse
# axis because, in this case (i.e. reshape is True), we
# will reshape everything.
kwargs['axis'] = ndim - n_collapse_axes
masked = False
sub_samples = 0
pda_args = data.pda_args(revert_to_file=True) #, readonly=True)
for i, partition in enumerate(data.partitions.matrix.flat):
array = partition.dataarray(**pda_args)
p_masked = partition.masked
if p_masked:
masked = True
if array.mask.all():
# The array is all missing data
partition.close()
continue
# Still here? Then there are some non-missing sub-array
# elements.
if weights is not None:
w = self._collapse_create_weights(array, partition.indices,
indices,
master_shape, weights,
n_non_collapse_axes,
n_collapse_axes)
wmin = w.min()
if wmin < 0:
raise ValueError("Can't collapse with negative weights")
if wmin == 0:
# Mask the array where the weights are zero
array = numpy_ma_masked_where(w==0, array, copy=True)
if array.mask.all():
# The array is all missing data
partition.close()
continue
#--- End: if
kwargs['weights'] = w
#--- End: if
partition.close()
if reshape:
# At least two, but not all, axes are to be collapsed
# => we need to reshape the array and the weights.
shape = array.shape
ndim = array.ndim
new_shape = shape[:n_non_collapse_axes]
new_shape += (reduce(operator_mul, shape[n_non_collapse_axes:]),)
array = numpy_reshape(array.copy(), new_shape)
if weights is not None:
w = kwargs['weights']
if w.ndim < ndim:
# The weights span only collapse axes (as
# opposed to spanning all axes)
new_shape = (w.size,)
kwargs['weights'] = numpy_reshape(w, new_shape)
#--- End: if
p_out = func(array, masked=p_masked, **kwargs)
if out is None:
if data.partitions.size == i + 1:
# There is exactly one partition so we are done
out = p_out
break
out = fpartial(p_out)
else:
out = fpartial(out, p_out)
sub_samples += 1
#--- End: for
if out is not None:
# Finalise
N, out = ffinalise(out, sub_samples)
out = self._collapse_mask(out, masked, N, Nmax, mtol)
else:
# no data - return all masked
out = numpy_ma_masked_all(data.shape[:n_non_collapse_axes],
data.dtype)
return out
#--- End: def
@staticmethod
def _collapse_mask(array, masked, N, Nmax, mtol):
'''
:Parameters:
array : numpy array
masked : bool
N : numpy array-like
Nmax : int
mtol : numpy array-like
:Returns:
out: numpy array
'''
if masked and mtol < 1:
x = N < (1-mtol)*Nmax
if x.any():
# array = numpy_ma_where(x, numpy_ma_masked, array)
array = numpy_ma_masked_where(x, array, copy=False)
#--- End: if
return array
#--- End: def
@staticmethod
def _collapse_create_weights(array, indices, master_indices, master_shape,
master_weights, n_non_collapse_axes,
n_collapse_axes):
'''
:Parameters:
array : numpy array
indices : tuple
master_indices : tuple
master_shape : tuple
master_weights : dict
n_non_collapse_axes : int
The number of array axes which are not being collapsed. It is
assumed that they are in the slowest moving positions.
n_collapse_axes : int
The number of array axes which are being collapsed. It is
assumed that they are in the fastest moving positions.
:Returns:
out: numpy array or None
:Examples:
'''
array_shape = array.shape
array_ndim = array.ndim
weights_indices = []
for master_index, index, size in izip(master_indices,
indices,
master_shape):
start , stop , step = master_index.indices(size)
size1, mod = divmod(stop-start-1, step)
start1, stop1, step1 = index.indices(size1+1)
size2, mod = divmod(stop1-start1, step1)
if mod != 0:
size2 += 1
start += start1 * step
step *= step1
stop = start + (size2-1)*step + 1
weights_indices.append(slice(start, stop, step))
#--- End: for
base_shape = (1,) * array_ndim
masked = False
zero_weights = False
weights = []
for key, weight in master_weights.iteritems():
shape = list(base_shape)
index = []
for i in key:
shape[i] = array_shape[i]
index.append(weights_indices[i])
#--- End: for
weight = weight[tuple(index)].unsafe_array
zero_weights = zero_weights or (weight.min() <= 0)
masked = masked or numpy_ma_isMA(weight)
if weight.ndim != array_ndim:
# Make sure that the weight has the same number of
# dimensions as the array
weight = weight.reshape(shape)
weights.append(weight)
#--- End: for
weights_out = weights[0]
if len(weights) > 1:
# There are two or more weights, so create their product
# (can't do this in-place because of broadcasting woe)
for w in weights[1:]:
weights_out = weights_out * w
weights_out_shape = weights_out.shape
if (not masked and
weights_out_shape[:n_non_collapse_axes] == base_shape[:n_non_collapse_axes]):
# The input weights are not masked and only span collapse axes
weights_out = weights_out.reshape(weights_out_shape[n_non_collapse_axes:])
if weights_out_shape[n_non_collapse_axes:] != array_shape[n_non_collapse_axes:]:
# The input weights span some, but not all, of the
# collapse axes, so broadcast the weights over all
# collapse axes
weights_out = broadcast_array(weights_out, array_shape[n_non_collapse_axes:])
else:
if weights_out_shape != array_shape:
# Either a) The input weights span at least one
# non-collapse axis, so broadcast the weights over all
# axes or b) The weights contain masked values
weights_out = broadcast_array(weights_out, array_shape)
if masked and numpy_ma_isMA(array):
if not (array.mask | weights_out.mask == array.mask).all():
raise ValueError("weights mask is duff")
return weights_out
#--- End: def
def _collapse_optimize_weights(self, weights):
'''
Optimise when weights span only non-partitioned axes.
weights : dict
'''
non_partitioned_axes = set(self._axes).difference(self._pmaxes)
x = []
new_key = ()
for key in weights:
if non_partitioned_axes.issuperset(key):
x.append(key)
new_key += key
#--- End: for
if len(x) > 1:
reshaped_weights = []
for key in x:
w = weights.pop(key)
w = w.array
shape = [(w.shape[key.index(axis)] if axis in key else 1)
for axis in new_key]
w = w.reshape(shape)
reshaped_weights.append(w)
#--- End: for
# Create their product
new_weight = reshaped_weights[0]
for w in reshaped_weights[1:]:
new_weight = new_weight * w
weights[new_key] = type(self)(new_weight)
#--- End: if
return weights
#--- End: def
def _new_axis_identifier(self, existing_axes=None):
'''
Return an axis name not being used by the data array.
The returned axis name will also not be referenced by partitions of
the partition matrix.
:Parameters:
existing_axes : sequence of str, optional
:Returns:
out: str
The new axis name.
:Examples:
>>> d._all_axis_names()
['dim1', 'dim0']
>>> d._new_axis_identifier()
'dim2'
>>> d._all_axis_names()
['dim1', 'dim0', 'dim3']
>>> d._new_axis_identifier()
'dim4'
>>> d._all_axis_names()
['dim5', 'dim6', 'dim7']
>>> d._new_axis_identifier()
'dim3'
'''
if existing_axes is None:
existing_axes = self._all_axis_names()
n = len(existing_axes)
axis = 'dim%d' % n
while axis in existing_axes:
n += 1
axis = 'dim%d' % n
#--- End: while
return axis
#--- End: def
# ----------------------------------------------------------------
# Attribute
# ----------------------------------------------------------------
@property
def Units(self):
'''
The `cf.Units` object containing the units of the data array.
Deleting this attribute is equivalent to setting it to an undefined
units object, so this attribute is guaranteed to always exist.
:Examples:
>>> d.Units = cf.Units('m')
>>> d.Units
<CF Units: m>
>>> del d.Units
>>> d.Units
<CF Units: >
'''
return self._Units
#--- End: def
@Units.setter
def Units(self, value):
units = getattr(self, '_Units', _units_None)
# print value, 'll', units, 'll'
if units and not self._Units.equivalent(value):
raise ValueError("Can't set units to non-equivalent units")
dtype = self.dtype
if dtype is not None:
if dtype.kind == 'i':
char = dtype.char
if char == 'i':
old_units = getattr(self, '_Units', None)
if old_units is not None and not old_units.equals(value):
self.dtype = 'float32'
elif char == 'l':
old_units = getattr(self, '_Units', None)
if old_units is not None and not old_units.equals(value):
self.dtype = float
#-- End: if
self._Units = value
#--- End: def
@Units.deleter
def Units(self): self._Units = _units_None
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def data(self):
'''
The data array object as an object identity.
:Examples:
>>> d.data is d
True
'''
return self
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def Data(self):
'''
The data array object as an object identity.
:Examples:
>>> d.Data is d
True
'''
return self
#--- End: def
# ----------------------------------------------------------------
# Attribute
# ----------------------------------------------------------------
@property
def dtype(self):
'''
The `numpy` data type of the data array.
By default this is the data type with the smallest size and smallest
scalar kind to which all sub-arrays of the master data array may be
safely cast without loss of information. For example, if the
sub-arrays have data types 'int64' and 'float32' then the master data
array's data type will be 'float64'; or if the sub-arrays have data
types 'int64' and 'int32' then the master data array's data type will
be 'int64'.
Setting the data type to a `numpy.dtype` object, or any object
convertible to a `numpy.dtype` object, will cause the master data
array elements to be recast to the specified type at the time that
they are next accessed, and not before. This does not immediately
change the master data array elements, so, for example, reinstating
the original data type prior to data access results in no loss of
information.
Deleting the data type forces the default behaviour. Note that if the
data type of any sub-arrays has changed after `dtype` has been set
(which could occur if the data array is accessed) then the reinstated
default data type may be different to the data type prior to `dtype`
being set.
:Examples:
>>> d = cf.Data([0.5, 1.5, 2.5])
>>> d.dtype
dtype(float64')
>>> type(d.dtype)
<type 'numpy.dtype'>
>>> d = cf.Data([0.5, 1.5, 2.5])
>>> import numpy
>>> d.dtype = numpy.dtype(int)
>>> print d.array
[0 1 2]
>>> d.dtype = bool
>>> print d.array
[False True True]
>>> d.dtype = 'float64'
>>> print d.array
[ 0. 1. 1.]
>>> d = cf.Data([0.5, 1.5, 2.5])
>>> d.dtype = int
>>> d.dtype = bool
>>> d.dtype = float
>>> print d.array
[ 0.5 1.5 2.5]
'''
datatype = self._dtype
if datatype is None:
flat = self.partitions.matrix.flat
datatype = flat.next().subarray.dtype
for partition in flat:
datatype = numpy_result_type(datatype, partition.subarray)
self._dtype = datatype
#--- End: if
return datatype
#--- End: def
@dtype.setter
def dtype(self, value):
self._dtype = numpy_dtype(value)
#--- End: def
@dtype.deleter
def dtype(self):
self._dtype = None
#--- End: def
# ----------------------------------------------------------------
# Attribute
# ----------------------------------------------------------------
@property
def fill_value(self):
'''
The data array missing data value.
If set to None then the default numpy fill value appropriate to the
data array's data type will be used.
Deleting this attribute is equivalent to setting it to None, so this
attribute is guaranteed to always exist.
:Examples:
>>> d.fill_value = 9999.0
>>> d.fill_value
9999.0
>>> del d.fill_value
>>> d.fill_value
None
'''
return self._fill_value
#--- End: def
@fill_value.setter
def fill_value(self, value): self._fill_value = value
@fill_value.deleter
def fill_value(self) : self._fill_value = None
# ----------------------------------------------------------------
# Attribute
# ----------------------------------------------------------------
@property
def hardmask(self):
'''
Whether the mask is hard (True) or soft (False).
When the mask is hard, masked entries of the data array can not be
unmasked by assignment, but unmasked entries may still be masked.
When the mask is soft, masked entries of the data array may be
unmasked by assignment and unmasked entries may be masked.
By default, the mask is hard.
:Examples:
>>> d.hardmask = False
>>> d.hardmask
False
'''
return self._hardmask
@hardmask.setter
def hardmask(self, value):
self._hardmask = value
@hardmask.deleter
def hardmask(self):
raise AttributeError("Won't delete %s attribute 'hardmask'" %
self.__class__.__name__)
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def ismasked(self):
'''
True if the data array has any masked values.
:Examples:
>>> d = cf.Data([[1, 2, 3], [4, 5, 6]])
>>> print d.ismasked
False
>>> d[0, ...] = cf.masked
>>> d.ismasked
True
'''
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
if partition.masked:
partition.close()
return True
partition.close()
#--- End: for
return False
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def ispartitioned(self):
'''
True if the data array is partitioned.
:Examples:
>>> d._pmsize
1
>>> d.ispartitioned
False
>>> d._pmsize
2
>>> d.ispartitioned
False
'''
return self._pmsize > 1
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def isscalar(self):
'''
True if the data array is a 0-d scalar array.
:Examples:
>>> d.ndim
0
>>> d.isscalar
True
>>> d.ndim >= 1
True
>>> d.isscalar
False
'''
return not self._ndim
#--- End: def
# @property
# def max(self):
# '''
#
#The maximum of the array.
#
#``d.max`` is equivalent to ``d.max()``.
#
#.. seealso `max`, `min`
#
#:Examples:
#
#>>> d = cf.Data([[4, 5, 6], [1, 2, 3]], 'metre')
#>>> d.max
#<CF Data: 6 metre>
#>> d.max.datum()
#6
#
#'''
# return self.max(keepdims=False)
# pda_args = self.pda_args(revert_to_file=True,
# readonly=True)
#
# flat = self.partitions.matrix.flat
#
# partition = flat.next()
# array = partition.dataarray(**pda_args)
# m = numpy_amax(array)
# partition.close()
#
# for partition in flat:
# array = partition.dataarray(**pda_args)
# m = max(m, numpy_amax(array))
# partition.close()
# #--- End: for
#
# if m is numpy_ma_masked:
# m = numpy_ma_array(0, mask=True, dtype=array.dtype)
#
# return type(self)(m, self.Units)
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def nbytes(self):
'''
Total number of bytes consumed by the elements of the array.
Does not include bytes consumed by the array mask
:Examples:
>>> d = cf.Data([[1, 1.5, 2]])
>>> d.dtype
dtype('float64')
>>> d.size, d.dtype.itemsize
(3, 8)
>>> d.nbytes
24
>>> d[0] = cf.masked
>>> print d.array
[[-- 1.5 2.0]]
>>> d.nbytes
24
'''
return self._size * self.dtype.itemsize
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def ndim(self):
'''
Number of dimensions in the data array.
:Examples:
>>> d.shape
(73, 96)
>>> d.ndim
2
>>> d.shape
()
>>> d.ndim
0
'''
return self._ndim
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def _pmaxes(self):
'''
'''
return self.partitions.axes
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def _pmndim(self):
'''
Number of dimensions in the partition matrix.
:Examples:
>>> d._pmshape
(4, 7)
>>> d._pmndim
2
>>> d._pmshape
()
>>> d._pmndim
0
'''
return self.partitions.ndim
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def _pmsize(self):
'''
Number of partitions in the partition matrix.
:Examples:
>>> d._pmshape
(4, 7)
>>> d._pmsize
28
>>> d._pmndim
0
>>> d._pmsize
1
'''
return self.partitions.size
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def _pmshape(self):
'''
Tuple of the partition matrix's dimension sizes.
:Examples:
>>> d._pmshape
(4, 7)
>>> d._pmndim
0
>>> d._pmshape
()
'''
return self.partitions.shape
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def shape(self):
'''
Tuple of the data array's dimension sizes.
:Examples:
>>> d.shape
(73, 96)
>>> d.ndim
0
>>> d.shape
()
'''
return self._shape
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def size(self):
'''
Number of elements in the data array.
:Examples:
>>> d.shape
(73, 96)
>>> d.size
7008
>>> d.shape
(1, 1, 1)
>>> d.size
1
>>> d.ndim
0
>>> d.shape
()
>>> d.size
1
'''
return self._size
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def array(self):
'''
A numpy array copy the data array.
If the data array is stored as date-time objects then a numpy array of
numeric reference times will be returned. A numpy array of date-time
objects may be returned by the `dtarray` attribute.
.. seealso:: `dtarray`, `dtvarray`, `varray`
:Examples:
>>> a = d.array
>>> isinstance(a, numpy.ndarray)
True
'''
pda_args = self.pda_args(revert_to_file=True) #, update=False)
out_data_type = self.dtype
units = self.Units
# isdt = []
_dtarray = getattr(self, '_dtarray', False)
if _dtarray:
del self._dtarray
# if not self._isdt:
out_data_type = _dtype_object
# pda_args['func'] = rt2dt
# # Turn off data type checking and partition updating
# pda_args['dtype'] = None
# pda_args['update'] = False
elif self._isdatetime(): #isdt:
out_data_type = numpy_dtype(float)
pda_args['func'] = dt2rt
# Turn off data type checking and partition updating
pda_args['dtype'] = None
pda_args['update'] = False
#--- End: if
partitions = self.partitions
# Still here?
array_out = numpy_empty(self._shape, dtype=out_data_type)
masked = False
if not self.ndim:
# --------------------------------------------------------
# array_out is a scalar array so index it with Ellipsis
# (as opposed to the empty tuple which would be returned
# from partition.indices). This prevents bad behaviour
# when p_array is a numpy array of objects (e.g. data-time
# objects).
# --------------------------------------------------------
partition = partitions.matrix[()]
p_array = partition.dataarray(**pda_args)
# copy okect?
# isdt.append(partition.isdt)
if _dtarray:
if not partition.isdt:
# Convert the partition subarray to an array
# of date-time objects
p_array = rt2dt(p_array, units)
elif partition.isdt:
# Convert the partition subarray to an array of
# reference time floats
p_array = dt2rt(p_array, None, units)
if not masked and partition.masked:
array_out = array_out.view(numpy_ma_MaskedArray)
array_out.set_fill_value(self._fill_value)
masked = True
array_out[...] = p_array
partition.close()
else:
# --------------------------------------------------------
# array_out is not a scalar array, so it can safely be
# indexed with partition.indices in all cases.
# --------------------------------------------------------
for partition in partitions.matrix.flat:
p_array = partition.dataarray(**pda_args)
# isdt.append(partition.isdt)
if _dtarray:
if not partition.isdt:
# Convert the partition subarray to an array
# of date-time objects
p_array = rt2dt(p_array, units)
elif partition.isdt:
# Convert the partition subarray to an array of
# reference time floats
p_array = dt2rt(p_array, None, units)
# copy okect?
if not masked and partition.masked:
array_out = array_out.view(numpy_ma_MaskedArray)
array_out.set_fill_value(self._fill_value)
masked = True
array_out[partition.indices] = p_array
partition.close()
#--- End: for
if masked and self._hardmask:
# Harden the mask of the output array
array_out.harden_mask()
# if isdt and all(isdt):
# self.dtype = _dtype_object
# self._isdt = True
return array_out
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def dtarray(self):
'''
An independent numpy array of date-time objects.
Only applicable to data arrays with reference time units.
If the calendar has not been set then the CF default calendar will be
used and the units will be updated accordingly.
The data type of the data array is unchanged.
.. seealso:: `array`, `asdatetime`, `asreftime`, `dtvarray`, `varray`
:Examples:
'''
if not self.Units.isreftime:
raise ValueError("Can't create date-time array from units %r" %
self.Units)
self._dtarray = True
return self.array
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def dtvarray(self):
'''
A numpy array view the data array converted to date-time objects.
Only applicable for reference time units.
If the calendar has not been set then the CF default calendar will be
used and the units will be updated accordingly.
.. seealso:: `array`, `asdatetime`, `asreftime`, `dtarray`, `varray`
'''
raise NotImplementedError(
"cf.Data.dtvarray is dead.")
# if not self.Units.isreftime:
# raise ValueError("Can't create date-time array with units %r" %
# self.Units)
#
# self._dtarray = True
# return self.varray
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def unsafe_array(self):
'''
A numpy array of the data array.
It is unsafe because it might (or might not) be view to the master
data array - you just don't know. So changing the returned array in
place might have dire consequences.
It is useful because if you are 100% certain that you're not going to
change the returned array in place then this method may be much faster
than the `array` method.
Why not just use the `varray` method? Well, you might not want to
destroy the partition matrix.
The data type of the array is as returned by the `dtype` attribute.
:Examples:
>>> a = d.unsafe_array
>>> isinstance(a, numpy.ndarray)
True
'''
# partitions = self.partitions
#
# if partitions.size == 1:
# # If there is only one partition we can speed things up
# pda_args = self.pda_args(revert_to_file=True)
# partition = partitions.matrix.item()
# array_out = partition.dataarray(readonly=True, **pda_args)
# partition.close()
# return array_out
# #--- End: if
#
# # Still here?
return self.array
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def varray(self):
'''
A numpy array view the data array.
Note that making changes to elements of the returned view changes the
underlying data.
If the data array is stored as date-time objects then a numpy array
view of numeric reference times will be returned. In this case, a
numpy array view of date-time objects may be created with the
`dtvarray` attribute.
.. seealso:: `array`, `dtarray`, `dtvarray`
:Examples:
>>> a = d.varray
>>> type(a)
<type 'numpy.ndarray'>
>>> a
array([0, 1, 2, 3, 4])
>>> a[0] = 999
>>> d.varray
array([999, 1, 2, 3, 4])
'''
pda_args = self.pda_args(keep_in_memory=True)
data_type = self.dtype
if getattr(self, '_dtarray', False):
# isdt = True
del self._dtarray
# if not self._isdt:
# data_type = _dtype_object
# pda_args['func'] = rt2dt
# # Turn off data type checking and partition updating
# pda_args['dtype'] = None
elif self._isdatetime(): #self._isdt:
# isdt = False
data_type = numpy_dtype(float)
pda_args['func'] = dt2rt
# Turn off data type checking and partition updating
pda_args['dtype'] = None
# else:
# isdt = False
if self.partitions.size == 1:
# If there is only one partition, then we can return a
# view of the partition's data array without having to
# create an empty array and then filling it up partition
# by partition.
partition = self.partitions.matrix.item()
array = partition.dataarray(**pda_args)
# Note that there is no need to close the partition here.
self._dtype = data_type
# self._isdt = False #isdt
# Flip to []?
return array
#--- End: if
# Still here?
# pda_args['dtype'] = None ## WHY????? for speed!!!
shape = self._shape
array = numpy_empty(shape, dtype=data_type)
masked = False
for partition in self.partitions.matrix.flat:
data = partition.dataarray(readonly=True, **pda_args)
if not masked and partition.masked:
array = array.view(numpy_ma_MaskedArray)
array.set_fill_value(self._fill_value)
masked = True
array[partition.indices] = data
# Note that there is no need to close the partition here
#--- End: for
if masked:
if self._hardmask:
# Harden the mask of the output array
array.harden_mask()
#--- End: if
matrix = _xxx.copy() #numpy_empty((), dtype=object)
matrix[()] = Partition(subarray = array,
location = [(0, n) for n in shape],
axes = self._axes,
flip = [],
shape = list(shape),
Units = self.Units,
part = []
)
self.partitions = PartitionMatrix(matrix, [])
self._dtype = data_type
# self._isdt = False #isdt
self._flip = []
return array
#--- End: def
@property
def mask(self):
'''
The boolean missing data mask of the data array.
The boolean mask has True where the data array has missing data and
False otherwise.
:Examples:
>>> d.shape
(12, 73, 96)
>>> m = d.mask
>>> m
<CF Data: >
>>> m.dtype
dtype('bool')
>>> m.shape
(12, 73, 96])
'''
self.to_memory()
mask = self.copy()
mask_units = _units_None
pda_args = mask.pda_args(
keep_in_memory=self.fits_in_memory(numpy_dtype(bool).itemsize))
for partition in mask.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
if partition.masked:
# data is a masked array
partition.subarray = array.mask.copy()
else:
# data is not a masked array
partition.subarray = numpy_zeros(array.shape, dtype=bool)
partition.Units = mask_units
partition.close()
#--- End: for
mask._Units = mask_units
mask.dtype = bool
mask._hardmask = False
return mask
#--- End: def
@staticmethod
def mask_fpe(*arg):
'''
Masking of floating-point errors in the results of arithmetic
operations.
If masking is allowed then only floating-point errors which would
otherwise be raised as `FloatingPointError` exceptions are
masked. Whether `FloatingPointError` exceptions may be raised is
determined by `cf.Data.seterr`.
If called without an argument then the current behaviour is returned.
Note that if the raising of `FloatingPointError` exceptions has
suppressed then invalid values in the results of arithmetic operations
may be subsequently converted to masked values with the `mask_invalid`
method.
.. seealso:: `cf.Data.seterr`, `mask_invalid`
:Parameters:
arg : bool, optional
The new behaviour. True means that `FloatingPointError`
exceptions are suppressed and replaced with masked
values. False means that `FloatingPointError` exceptions are
raised. The default is not to change the current behaviour.
:Returns:
out: bool
The behaviour prior to the change, or the current behaviour if
no new value was specified.
:Examples:
>>> d = cf.Data([0., 1])
>>> e = cf.Data([1., 2])
>>> old = cf.Data.mask_fpe(False)
>>> old = cf.Data.seterr('raise')
>>> e/d
FloatingPointError: divide by zero encountered in divide
>>> e**123456
FloatingPointError: overflow encountered in power
>>> old = cf.Data.mask_fpe(True)
>>> old = cf.Data.seterr('raise')
>>> e/d
<CF Data: [--, 2.0] >
>>> e**123456
<CF Data: [1.0, --] >
>>> old = cf.Data.mask_fpe(True)
>>> old = cf.Data.seterr('ignore')
>>> e/d
<CF Data: [inf, 2.0] >
>>> e**123456
<CF Data: [1.0, inf] >
'''
old = _mask_fpe[0]
if arg:
_mask_fpe[0] = bool(arg[0])
return old
#--- End: def
@staticmethod
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
'''
Set how floating-point errors in the results of arithmetic operations
are handled.
The options for handling floating-point errors are:
============ ========================================================
Treatment Action
============ ========================================================
``'ignore'`` Take no action. Allows invalid values to occur in the
result data array.
``'warn'`` Print a `RuntimeWarning` (via the Python `warnings`
module). Allows invalid values to occur in the result
data array.
``'raise'`` Raise a `FloatingPointError` exception.
============ ========================================================
The different types of floating-point errors are:
================= ================================= =================
Error Description Default treatment
================= ================================= =================
Division by zero Infinite result obtained from ``'warn'``
finite numbers.
Overflow Result too large to be expressed. ``'warn'``
Invalid operation Result is not an expressible ``'warn'``
number, typically indicates that
a NaN was produced.
Underflow Result so close to zero that some ``'ignore'``
precision was lost.
================= ================================= =================
Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.
If called without any arguments then the current behaviour is
returned.
.. seealso:: `cf.Data.mask_fpe`, `mask_invalid`
:Parameters:
all : str, optional
Set the treatment for all types of floating-point errors at
once. The default is not to change the current behaviour.
divide : str, optional
Set the treatment for division by zero. The default is not to
change the current behaviour.
over : str, optional
Set the treatment for floating-point overflow. The default is
not to change the current behaviour.
under : str, optional
Set the treatment for floating-point underflow. The default is
not to change the current behaviour.
invalid : str, optional
Set the treatment for invalid floating-point operation. The
default is not to change the current behaviour.
:Returns:
out: dict
The behaviour prior to the change, or the current behaviour if
no new values are specified.
:Examples:
Set treatment for all types of floating-point errors to ``'raise'``
and then reset to the previous behaviours:
>>> cf.Data.seterr()
{'divide': 'warn', 'invalid': 'warn', 'over': 'warn', 'under': 'ignore'}
>>> old = cf.Data.seterr('raise')
>>> cf.Data.seterr(**old)
{'divide': 'raise', 'invalid': 'raise', 'over': 'raise', 'under': 'raise'}
>>> cf.Data.seterr()
{'divide': 'warn', 'invalid': 'warn', 'over': 'warn', 'under': 'ignore'}
Set the treatment of division by zero to ``'ignore'`` and overflow to
``'warn'`` without changing the treatment of underflow and invalid
operation:
>>> cf.Data.seterr(divide='ignore', over='warn')
{'divide': 'warn', 'invalid': 'warn', 'over': 'warn', 'under': 'ignore'}
>>> cf.Data.seterr()
{'divide': 'ignore', 'invalid': 'warn', 'over': 'ignore', 'under': 'ignore'}
Some examples with data arrays:
>>> d = cf.Data([0., 1])
>>> e = cf.Data([1., 2])
>>> old = cf.Data.seterr('ignore')
>>> e/d
<CF Data: [inf, 2.0] >
>>> e**12345
<CF Data: [1.0, inf] >
>>> cf.Data.seterr(divide='warn')
{'divide': 'ignore', 'invalid': 'ignore', 'over': 'ignore', 'under': 'ignore'}
>>> e/d
RuntimeWarning: divide by zero encountered in divide
<CF Data: [inf, 2.0] >
>>> e**12345
<CF Data: [1.0, inf] >
>>> old = cf.Data.mask_fpe(False)
>>> cf.Data.seterr(over='raise')
{'divide': 'warn', 'invalid': 'ignore', 'over': 'ignore', 'under': 'ignore'}
>>> e/d
RuntimeWarning: divide by zero encountered in divide
<CF Data: [inf, 2.0] >
>>> e**12345
FloatingPointError: overflow encountered in power
>>> cf.Data.mask_fpe(True)
False
>>> cf.Data.seterr(divide='ignore')
{'divide': 'warn', 'invalid': 'ignore', 'over': 'raise', 'under': 'ignore'}
>>> e/d
<CF Data: [inf, 2.0] >
>>> e**12345
<CF Data: [1.0, --] >
'''
old = _seterr.copy()
if all:
_seterr.update({'divide' : all,
'invalid': all,
'under' : all,
'over' : all})
if all == 'raise':
_seterr_raise_to_ignore.update({'divide' : 'ignore',
'invalid': 'ignore',
'under' : 'ignore',
'over' : 'ignore'})
else:
if divide:
_seterr['divide'] = divide
if divide == 'raise':
_seterr_raise_to_ignore['divide'] = 'ignore'
if over:
_seterr['over'] = over
if over == 'raise':
_seterr_raise_to_ignore['over'] = 'ignore'
if under:
_seterr['under'] = under
if under == 'raise':
_seterr_raise_to_ignore['under'] = 'ignore'
if invalid:
_seterr['invalid'] = invalid
if invalid == 'raise':
_seterr_raise_to_ignore['invalid'] = 'ignore'
#--- End: if
return old
#--- End: def
def add_partitions(self,
extra_boundaries,
pdim):
'''
Add partition boundaries.
:Parameters:
extra_boundaries : list of int
The boundaries of the new partitions.
pdim : str
The name of the axis to have the new partitions.
:Returns:
None
:Examples:
>>> d.add_partitions( )
'''
self.partitions.add_partitions(self._axes, self._flip,
extra_boundaries,
pdim)
#--- End: def
def all(self):
'''
Test whether all data array elements evaluate to True.
Performs a logical ``and`` over the data array and returns the
result. Masked values are considered as True during computation.
.. seealso:: `allclose`, `any`, `isclose`
:Returns:
out: bool
Whether or not all data array elements evaluate to True.
:Examples:
>>> d = cf.Data([[1, 3, 2]])
>>> print d.array
[[1 3 2]]
>>> d.all()
True
>>> d[0, 2] = cf.masked
>>> print d.array
[[1 3 --]]
>>> d.all()
True
>>> d[0, 0] = 0
>>> print d.array
[[0 3 --]]
>>> d.all()
False
>>> d[...] = cf.masked
>>> print d.array
[[-- -- --]]
>>> d.all()
True
'''
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
a = array.all()
if not a and a is not numpy_ma_masked:
partition.close()
return False
partition.close()
#--- End: for
return True
#--- End: def
def allclose(self, y, rtol=None, atol=None):
'''
Returns True if two broadcastable arrays have equal values, False
otherwise.
For numeric data arrays ``d.allclose(y, rtol, atol)`` is equivalent to
``(abs(d - y) <= atol + rtol*abs(y)).all()``, otherwise it is
equivalent to ``(d == y).all()``.
.. seealso:: `all`, `any`, `isclose`
:Parameters:
y : data_like
atol : float, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `ATOL` function is used.
rtol : float, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `RTOL` function is used.
:Returns:
out: bool
:Examples:
>>> d = cf.Data([1000, 2500], 'metre')
>>> e = cf.Data([1, 2.5], 'km')
>>> d.allclose(e)
True
>>> d = cf.Data(['ab', 'cdef'])
>>> d.allclose([[['ab', 'cdef']]])
True
>>> d.allclose(e)
True
>>> d = cf.Data([[1000, 2500], [1000, 2500]], 'metre')
>>> e = cf.Data([1, 2.5], 'km')
>>> d.allclose(e)
True
>>> d = cf.Data([1, 1, 1], 's')
>>> d.allclose(1)
True
'''
return self.isclose(y, rtol=rtol, atol=atol).all()
#--- End: def
def any(self):
'''
Test whether any data array elements evaluate to True.
Performs a logical or over the data array and returns the
result. Masked values are considered as False during computation.
.. seealso:: `all`, `allclose`, `isclose`
:Examples:
>>> d = cf.Data([[0 0 0]])
>>> d.any()
False
>>> d[0, 0] = cf.masked
>>> print d.array
[[-- 0 0]]
>>> d.any()
False
>>> d[0, 1] = 3
>>> print d.array
[[0 3 0]]
>>> d.any()
True
>>> print d.array
[[-- -- --]]
>>> d.any()
False
'''
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
if array.any():
partition.close()
return True
partition.close()
#--- End: for
return False
#--- End: def
def max(self, axes=None, squeeze=False, mtol=1, i=False):
'''
Collapse axes with their maximum.
Missing data array elements are omitted from the calculation.
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
.. seealso:: `min`, `mean`, `mid_range`, `sum`, `sd`, `var`
:Examples:
'''
# if weights is not None:
# raise ValueError("can't weight max: %s" % weights)#
return self._collapse(max_f, max_fpartial, max_ffinalise, axes=axes,
squeeze=squeeze, mtol=mtol, i=i)
#--- End: def
def min(self, axes=None, squeeze=False, mtol=1, i=False):
'''
Collapse axes with their minimum.
Missing data array elements are omitted from the calculation.
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
.. seealso:: `max`, `mean`, `mid_range`, `sum`, `sd`, `var`
:Examples:
'''
return self._collapse(min_f, min_fpartial, min_ffinalise, axes=axes,
squeeze=squeeze, mtol=mtol, i=i)
#--- End: def
def mean(self, axes=None, squeeze=False, mtol=1, weights=None, i=False):
r'''
Collapse axes with their weighted mean.
The weighted mean, :math:`\mu`, for array elements :math:`x_i` and
corresponding weights elements :math:`w_i` is
.. math:: \mu=\frac{\sum w_i x_i}{\sum w_i}
Missing data array elements and their corresponding weights are
omitted from the calculation.
:Parameters:
axes : (sequence of) int, optional
The axes to be collapsed. By default flattened input is
used. Each axis is identified by its integer position. No axes
are collapsed if *axes* is an empty sequence.
squeeze : bool, optional
If True then collapsed axes are removed. By default the axes
which are collapsed are left in the result as axes with size
1, meaning that the result is guaranteed to broadcast
correctly against the original array.
weights : data-like or dict, optional
Weights associated with values of the array. By default all
non-missing elements of the array are assumed to have a weight
equal to one. If *weights* is a data-like object then it must
have either the same shape as the array or, if that is not the
case, the same shape as the axes being collapsed. If *weights*
is a dictionary then each key is axes of the array (an int or
tuple of ints) with a corresponding data-like value of weights
for those axes. In this case, the implied weights array is the
outer product of the dictionary's values.
Example: If ``weights={1: w, (2, 0): x}`` then ``w`` must
contain 1-dimensionsal weights for axis 1 and ``x`` must
contain 2-dimensionsal weights for axes 2 and 0. This is
equivalent, for example, to ``weights={(1, 2, 0), y}``,
where ``y`` is the outer product of ``w`` and ``x``. If
``axes=[1, 2, 0]`` then ``weights={(1, 2, 0), y}`` is
equivalent to ``weights=y``. If ``axes=None`` and the array
is 3-dimensionsal then ``weights={(1, 2, 0), y}`` is
equivalent to ``weights=y.transpose([2, 0, 1])``.
mtol : number, optional
For each element in the output data array, the fraction of
contributing input array elements which is allowed to contain
missing data. Where this fraction exceeds *mtol*, missing
data is returned. The default is 1, meaning a missing datum in
the output array only occurs when its contributing input array
elements are all missing data. A value of 0 means that a
missing datum in the output array occurs whenever any of its
contributing input array elements are missing data. Any
intermediate value is permitted.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
.. seealso:: `max`, `min`, `mid_range`, `range`, `sum`, `sd`, `var`
:Examples:
>>> d = cf.Data([[1, 2, 4], [1, 4, 9]], 'm')
>>> print d.array
[[1 2 4]
[1 4 9]]
>>> d.mean()
<CF Data: 3.5 m>
>>> d.mean(squeeze=True)
<CF Data: [[3.5]] m>
>>> d.mean(axes=[0, 1])
<CF Data: 3.5 m>
>>> d.mean(axes=[1, 0])
<CF Data: 3.5 m>
>>> print d.mean(axes=0).array
[ 1. 3. 6.5]
>>> print d.mean(axes=1).array
[ 2.33333333 4.66666667]
>>> d.mean(axes=1, squeeze=True)
[[ 2.33333333]
[ 4.66666667]]
>>> y = cf.Data([1, 3])
>>> x = cf.Data([1, 2, 1])
>>> w = cf.expand_dims(y, 1) * x
>>> print w.array
[[1 2 1]
[3 6 3]]
>>> d.mean(weights=w)
<CF Data: 3.9375 m>
>>> d.mean(weights={(0, 1): w})
<CF Data: 3.9375 m>
>>> d.mean(axes=[0, 1], weights={(0, 1): w})
<CF Data: 3.9375 m>
>>> d.mean(axes=[1, 0], weights={(0, 1): w})
<CF Data: 3.9375 m>
>>> d.mean(axes=(0, 1), weights={1: x, 0: y})
<CF Data: 3.9375 m>
>>> d.mean(axes=1, weights=w)
<CF Data: [2.25, 4.5] m>
>>> d.mean(axes=1, weights=x)
<CF Data: [2.25, 4.5] m>
>>> d.mean(axes=1, weights={1: x})
<CF Data: [2.25, 4.5] m>
>>> d.mean(axes=1, weights={(0, 1): w})
<CF Data: [2.25, 4.5] m>
>>> d.mean(axes=1, weights={0: y, (1,): x})
<CF Data: [2.25, 4.5] m>
>>> d.mean(axes=1)
<CF Data: [2.33333333333, 4.66666666667] m>
>>> d.mean(axes=1, weights={0: y})
<CF Data: [2.33333333333, 4.66666666667] m>
>>> e = cf.Data(numpy.arange(24).reshape(3, 2, 4))
>>> print e.array
[[[ 0 1 2 3]
[ 4 5 6 7]]
[[ 8 9 10 11]
[12 13 14 15]]
[[16 17 18 19]
[20 21 22 23]]]
>>> e.mean(axes=[0, 2])
<CF Data: [9.5, 13.5] >
>>> f = e.mean(axes=[0, 2], squeeze=True)
>>> f
<CF Data: [[[9.5, 13.5]]] >
>>> f.shape
(1, 2, 1)
>>> print e.mean(axes=[0, 1]).array
[ 10. 11. 12. 13.]
>>> print e.mean(axes=[0, 1], weights={(1, 0): w}).array
[ 11. 12. 13. 14.]
>>> e[0, 0] = cf.masked
>>> e[-1, -1] = cf.masked
>>> e[..., 2] = cf.masked
>>> print e.array
[[[-- -- -- --]
[4 5 -- 7]]
[[8 9 -- 11]
[12 13 -- 15]]
[[16 17 -- 19]
[-- -- -- --]]]
>>> e.mean()
<CF Data: 11.3333333333 >
>>> print e.mean(axes=[0, 1]).array
[10.0 11.0 -- 13.0]
>>> print e.mean(axes=[0, 1], weights={(1, 0): w}).array
[9.666666666666666 10.666666666666666 -- 12.666666666666666]
'''
return self._collapse(mean_f, mean_fpartial, mean_ffinalise,
axes=axes, squeeze=squeeze, weights=weights,
mtol=mtol, i=i)
#--- End: def
def sample_size(self, axes=None, squeeze=False, mtol=1, i=False):
r'''
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
'''
return self._collapse(sample_size_f, sample_size_fpartial,
sample_size_ffinalise,
axes=axes, squeeze=squeeze, weights=None,
mtol=mtol, units=Units('1'), i=i)
#--- End: def
@property
def binary_mask(self):
'''A binary (0 and 1) mask of the data array.
The binary mask's data array comprises dimensionless 8-bit integers
and has 0 where the data array has missing data and 1 otherwise.
.. seealso:: `mask`
:Returns:
out: Data
The binary mask.
:Examples:
>>> print d.mask.array
[[ True False True False]]
>>> b = d.binary_mask.array
>>> print b
[[0 1 0 1]]
'''
self.to_memory()
binary_mask = self.copy()
pda_args = binary_mask.pda_args(
keep_in_memory=self.fits_in_memory(numpy_dtype('int32').itemsize),
dtype=None)
_units_1 = _units_1
for partition in binary_mask.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
if partition.masked:
# data is masked
partition.subarray = numpy_array(~array.mask, dtype='int32')
else:
# data is not masked
partition.subarray = numpy_ones(array.shape, dtype='int32')
partition.Units = _units_1
partition.close()
#--- End: for
binary_mask.Units = _units_1
return binary_mask
#--- End: def
def clip(self, a_min, a_max, units=None, i=False):
'''
Clip (limit) the values in the data array in place.
Given an interval, values outside the interval are clipped to the
interval edges. For example, if an interval of [0, 1] is specified
then values smaller than 0 become 0 and values larger than 1 become 1.
Parameters :
a_min : scalar
a_max : scalar
units : str or Units
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
'''
if i:
d = self
else:
d = self.copy()
if units is not None:
# Convert the limits to the same units as the data array
units = Units(units)
self_units = d.Units
if self_units != units:
a_min = Units.conform(a_min, units, self_units)
a_max = Units.conform(a_max, units, self_units)
#--- End: if
pda_args = d.pda_args()
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
array.clip(a_min, a_max, out=array)
partition.close()
#--- End: if
return d
#--- End: def
@classmethod
def asdata(cls, d, copy=False):
'''Convert the input to a `cf.Data` object.
:Parameters:
d : data-like
Input data in any form that can be converted to an cf.Data
object. This includes `cf.Data` and `cf.Field` objects, numpy
arrays and any object which may be converted to a numpy array.
:Returns:
out: cf.Data
cf.Data interpretation of *d*. No copy is performed on the
input.
:Examples:
>>> d = cf.Data([1, 2])
>>> cf.Data.asdata(d) is d
True
>>> d.asdata(d) is d
True
>>> cf.Data.asdata([1, 2])
<CF Data: [1, 2]>
>>> cf.Data.asdata(numpy.array([1, 2]))
<CF Data: [1, 2]>
'''
data = getattr(d, '__data__', None)
if data is None:
return cls(d)
data = data()
if copy:
return data.copy()
else:
return data
#--- End: def
def close(self):
'''
Close all files referenced by the data array.
Note that a closed file will be automatically reopened if its contents
are subsequently required.
:Returns:
None
:Examples:
>>> d.close()
'''
for partition in self.partitions.matrix.flat:
partition.file_close()
#--- End: def
def copy(self):
'''
Return a deep copy.
``d.copy()`` is equivalent to ``copy.deepcopy(d)``.
:Returns:
out:
The deep copy.
:Examples:
>>> e = d.copy()
'''
new = Data.__new__(Data) ###dch change
new.__dict__ = self.__dict__.copy()
new.partitions = self.partitions.copy()
return new
#--- End: def
def cos(self, i=False):
'''
Take the trigonometric cosine of the data array in place.
Units are accounted for in the calculation. If the units are not
equivalent to radians (such as Kelvin) then they are treated as if
they were radians. For example, the the cosine of 90 degrees_east is
0.0, as is the sine of 1.57079632 kg m-2.
The Units are changed to '1' (nondimensionsal).
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.Units
<CF Units: degrees_east>
>>> print d.array
[[-90 0 90 --]]
>>> d.cos()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[0.0 1.0 0.0 --]]
>>> d.Units
<CF Units: m s-1>
>>> print d.array
[[1 2 3 --]]
>>> d.cos()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[0.540302305868 -0.416146836547 -0.9899924966 --]]
'''
if i:
d = self
else:
d = self.copy()
if d.Units.equivalent(_units_radians):
d.Units = _units_radians
return d.func(numpy_cos, units=_units_1, i=True)
#--- End: def
def count(self):
'''Count the non-masked elements of the array !!!!!! along the given axis.
:Returns:
out: int
:Examples:
'''
pda_args = self.pda_args(revert_to_file=True) # , keep_in_memory=False)
n = 0
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
n += numpy_ma_count(array) # not this
# partition.output = numpy_ma_count(array) # but this! or return n?
partition.close()
#--- End: for
#if not parallel:
# for p in parations:
# _worker(p)
# if ?? : break
#else:
#
#
return n
#--- End: def
def count_masked(self):
'''
'''
return self._size - self.count()
#--- End: def
def cyclic(self, axes=None, iscyclic=True):
'''
:Parameters:
:Returns:
out: set
:Examples:
'''
cyclic_axes = self._cyclic
data_axes = self._axes
old = set([data_axes.index(axis) for axis in cyclic_axes])
if axes is None:
return old
axes = [data_axes[i] for i in self._parse_axes(axes, 'cyclic')]
if iscyclic:
self._cyclic = cyclic_axes.union(axes)
else:
self._cyclic = cyclic_axes.difference(axes)
return old
#--- End: def
def asreftime(self, i=False):
'''
Change the internal representation of data array elements from
datatime-like objects to numeric reference times.
If the calendar has not been set then the default CF calendar will be
used and the units' and the `calendar` attribute will be updated
accordingly.
If the internal representations are already numeric reference times
then no change occurs.
.. seealso:: `asdatetime`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.asreftime()
'''
raise NotImplementedError("cf.Data.asreftime is dead. Consider {0}.array instead".format(self.__class__.__name__))
# if i:
# d = self
# else:
# d = self.copy()
#
# units = d.Units
#
# if not d._isdt:
# if units.isreftime:
# return d
# else:
# raise ValueError(
# "Can't convert %r data to numeric reference times" %
# units)
# #--- End: if
#
# pda_args = d.pda_args(func=dt2rt, dtype=None)
#
# for partition in d.partitions.matrix.flat:
# array = partition.dataarray(**pda_args)
# p_units = partition.Units
# partition.Units = Units(p_units.units, p_units._utime.calendar)
# partition.close()
# #--- End: for
#
# d.Units = Units(units.units, units._utime.calendar)
#
# d._dtype = array.dtype
# d._isdt = False
#
# return d
# #--- End: def
def asdatetime(self, i=False):
'''
Change the internal representation of data array elements from numeric
reference times to datatime-like objects.
If the calendar has not been set then the default CF calendar will be
used and the units' and the `calendar` attribute will be updated
accordingly.
If the internal representations are already datatime-like objects then
no change occurs.
.. seealso:: `asreftime`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> f.asdatetime()
'''
raise NotImplementedError("cf.Data.asdatetime is dead. Consider {0}.dtarray instead".format(self.__class__.__name__))
# if i:
# d = self
# else:
# d = self.copy()
#
# units = self.Units
#
# if d._isdt:
# return d
# elif not units.isreftime:
# raise ValueError(
#"Can't convert {0!r} data to date-time objects".format(units))
#
# pda_args = d.pda_args(func=rt2dt, dtype=None)
#
# for partition in d.partitions.matrix.flat:
# array = partition.dataarray(**pda_args)
# p_units = partition.Units
# partition.Units = Units(p_units.units, p_units._utime.calendar)
# partition.close()
# #--- End: for
#
# d.Units = Units(units.units, units._utime.calendar)
#
# d._dtype = array.dtype
# d._isdt = True
#
# return d
# #--- End: def
def _YMDhms(self, attr):
'''
'''
def func(array, units_in, dummy0, dummy1):
'''
The returned array is always independent.
:Parameters:
array : numpy array
units_in : cf.Units
dummy0 :
Ignored.
dummy1 :
Ignored.
:Returns:
out: numpy array
'''
# if not self._isdt:
if not self._isdatetime():
array = rt2dt(array, units_in)
return _array_getattr(array, attr)
#--- End: def
if not self.Units.isreftime:
raise ValueError(
"Can't get %ss from data with %r" % (attr, self.Units))
new = self.copy()
new._Units = _units_None
pda_args = new.pda_args(func=func, dtype=None)
for partition in new.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
new_dtype = array.dtype
partition.close()
#--- End: for
new._dtype = new_dtype
# new._isdt = False
return new
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def year(self):
'''
The year of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.month`, `~cf.Data.day`, `~cf.Data.hour`,
`~cf.Data.minute`, `~cf.Data.second`
:Examples:
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.year
<CF Data: [[2000, 2001]] >
'''
return self._YMDhms('year')
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def month(self):
'''
The month of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.year`, `~cf.Data.day`, `~cf.Data.hour`,
`~cf.Data.minute`, `~cf.Data.second`
:Examples:
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.month
<CF Data: [[12, 1]] >
'''
return self._YMDhms('month')
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def day(self):
'''
The day of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.year`, `~cf.Data.month`, `~cf.Data.hour`,
`~cf.Data.minute`, `~cf.Data.second`
:Examples:
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.day
<CF Data: [[30, 3]] >
'''
return self._YMDhms('day')
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def hour(self):
'''
The hour of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.year`, `~cf.Data.month`, `~cf.Data.day`,
`~cf.Data.minute`, `~cf.Data.second`
:Examples:
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.hour
<CF Data: [[22, 4]] >
'''
return self._YMDhms('hour')
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def minute(self):
'''
The minute of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.year`, `~cf.Data.month`, `~cf.Data.day`,
`~cf.Data.hour`, `~cf.Data.second`
:Examples:
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.minute
<CF Data: [[19, 4]] >
'''
return self._YMDhms('minute')
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def second(self):
'''
The second of each data array element.
Only applicable for reference time units.
.. seealso:: `~cf.Data.year`, `~cf.Data.month`, `~cf.Data.day`,
`~cf.Data.hour`, `~cf.Data.minute`
>>> d = cf.Data([[1.93, 5.17]], 'days since 2000-12-29')
>>> d
<CF Data: [[2000-12-30 22:19:12, 2001-01-03 04:04:48]] >
>>> d.second
<CF Data: [[12, 48]] >
'''
return self._YMDhms('second')
#--- End: def
def unique(self):
'''
The unique elements of the array.
Returns a new object with the sorted unique elements in a one
dimensional array.
:Examples:
>>> d = cf.Data([[4, 2, 1], [1, 2, 3]], 'metre')
>>> d.unique()
<CF Data: [1, 2, 3, 4] metre>
>>> d[1, -1] = cf.masked
>>> d.unique()
<CF Data: [1, 2, 4] metre>
'''
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
u = []
for partition in self.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
array = numpy_unique(array)
if partition.masked:
# Note that compressing a masked array may result in
# an array with zero size
array = array.compressed()
size = array.size
if size > 1:
u.extend(array)
elif size == 1:
u.append(array.item())
partition.close()
#--- End: for
u = numpy_unique(numpy_array(u, dtype=self.dtype))
return type(self)(u, units=self.Units) #, dt=self._isdt)
#--- End: def
def dump(self, display=True, prefix=None):
'''
Return a string containing a full description of the instance.
:Parameters:
display : bool, optional
If False then return the description as a string. By default
the description is printed, i.e. ``d.dump()`` is equivalent to
``print d.dump(display=False)``.
prefix : str, optional
Set the common prefix of component names. By default the
instance's class name is used.
:Returns:
out: None or str
A string containing the description.
:Examples:
'''
if prefix is None:
prefix = self.__class__.__name__
string = ['%s.shape = %s' % (prefix, self._shape)]
if self._size == 1:
string.append('%s.first_datum = %s' % (prefix, self.datum(0)))
else:
string.append('%s.first_datum = %s' % (prefix, self.datum(0)))
string.append('%s.last_datum = %s' % (prefix, self.datum(-1)))
#-- End: if
for attr in ('fill_Value', 'Units'):
string.append('%s.%s = %r' % (prefix, attr, getattr(self, attr)))
#--- End: for
string = '\n'.join(string)
if display:
print string
else:
return string
#--- End: def
# def equivalent(self, other, rtol=None, atol=None, traceback=False,
# copy=True):
# '''
#
#True if and only if two data arrays are logically equivalent.
#
#Equivalence is defined as both data arrays being the same after
#accounting for different but equivalent units.* units
#
#:Parameters:
#
# other : Data
#
# atol : float, optional
# The absolute tolerance for all numerical comparisons, By
# default the value returned by the `ATOL` function is used.
#
# rtol : float, optional
# The relative tolerance for all numerical comparisons, By
# default the value returned by the `RTOL` function is used.
#
#:Returns:
#
# out: bool
# Whether or not the two variables are equivalent.
#
#'''
# if self._shape != other._shape:
# # add traceback
# return
#
# if not self.Units.equivalent(other.Units):
# # add traceback
# return
#
## if axis_map:
## axes = [axis_map[axis] for axis in self._axes]
## if axes == other._axes:
## axis_map = None
##
## if not axis_map and self._shape != other._shape:
## # add traceback
## return
##
# self_Units = self.Units
## self_fill_value = self._fill_value
## if self_Units == other.Units and self_fill_value == other._fill_value:
## copy = False
#
# if self_Units != other.Units:
# if copy:
# other = other.copy()
# copy = False
# other.Units = self_Units
#
#
## if copy:
## other = other.copy()
##
## if axis_map:
## other.transpose(axes)
##
## other.Units = self_Units
## other._fill_value = self_fill_value
#
# return self.equals(other, rtol=rtol, atol=atol, ignore_fill_value=True,
# traceback=False)
# #--- End: def
def ndindex(self):
'''
Return an iterator over the N-dimensional indices of the data array.
At each iteration a tuple of indices is returned, the last dimension
is iterated over first.
:Returns:
out: itertools.product
An iterator over tuples of indices of the data array.
:Examples:
>>> d.shape
(2, 1, 3)
>>> for i in d.ndindex():
... print i
...
(0, 0, 0)
(0, 0, 1)
(0, 0, 2)
(1, 0, 0)
(1, 0, 1)
(1, 0, 2)
> d.shape
()
>>> for i in d.ndindex():
... print i
...
()
'''
return itertools_product(*[xrange(0, r) for r in self._shape])
#--- End: def
def equals(self, other, rtol=None, atol=None, ignore_fill_value=False,
traceback=False):
'''
True if two data arrays are logically equal, False otherwise.
:Parameters:
other :
The object to compare for equality.
atol : float, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `ATOL` function is used.
rtol : float, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `RTOL` function is used.
ignore_fill_value : bool, optional
If True then data arrays with different fill values are
considered equal. By default they are considered unequal.
traceback : bool, optional
If True then print a traceback highlighting where the two
instances differ.
:Returns:
out: bool
Whether or not the two instances are equal.
:Examples:
>>> d.equals(d)
True
>>> d.equals(d + 1)
False
'''
# Check each instance's id
if self is other:
return True
# Check that each instance is the same type
if self.__class__ != other.__class__:
if traceback:
print("%s: Different type: %s" %
(self.__class__.__name__, other.__class__.__name__))
return False
# Check that each instance has the same shape
if self._shape != other._shape:
if traceback:
print("%s: Different shape: %s, %s" %
(self.__class__.__name__, self._shape, other._shape))
return False
#--- End: if
# Check that each instance has the same units
self_Units = self.Units
other_Units = other.Units
if self_Units != other_Units:
if traceback:
print("%s: Different Units (%r, %r)" %
(self.__class__.__name__, self.Units, other.Units))
return False
#--- End: if
# Check that each instance has the same fill value
if not ignore_fill_value and self._fill_value != other._fill_value:
if traceback:
print("%s: Different fill values (%s, %s)" %
(self.__class__.__name__,
self._fill_value, other._fill_value))
return False
#--- End: if
# ------------------------------------------------------------
# Check that each instance has equal array values
# ------------------------------------------------------------
# Set default tolerances
if rtol is None:
rtol = RTOL()
if atol is None:
atol = ATOL()
pda_args = self.pda_args(revert_to_file=True) #, readonly=True)
other.to_memory()
# if self_Units.isreftime:
# self.asreftime(i=True)
#
# if other_Units.isreftime:
# other.asreftime(i=True)
for partition in self.partitions.matrix.flat:
array0 = partition.dataarray(**pda_args)
array1 = other[partition.indices].varray
partition.close()
if not _numpy_allclose(array0, array1, rtol=rtol, atol=atol):
if traceback:
print("%s: Different data array values" %
self.__class__.__name__)
return False
#--- End: for
# ------------------------------------------------------------
# Still here? Then the two instances are equal.
# ------------------------------------------------------------
return True
#--- End: def
def exp(self, i=False):
'''
Take the exponential of the data array.
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
'''
units = self.Units
if units and not units.isdimensionless:
raise ValueError(
"Can't take exponential of dimensional quantities: {0!r}".format(units))
if i:
d = self
else:
d = self.copy()
if d.Units:
d.Units = _units_1
return d.func(numpy_exp, i=True)
#--- End: def
def expand_dims(self, position=0, i=False):
'''
Expand the shape of the data array in place.
Insert a new size 1 axis, corresponding to a given position in the
data array shape.
.. seealso:: `flip`, `squeeze`, `swapaxes`, `transpose`
:Parameters:
position : int, optional
Specify the position that the new axis will have in the data
array axes. By default the new axis has position 0, the
slowest varying position.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
'''
# Parse position
ndim = self._ndim
if -ndim-1 <= position < 0:
position += ndim + 1
elif not 0 <= position <= ndim:
raise ValueError(
"Can't expand_dims: Invalid position (%d)" % position)
#--- End: for
if i:
d = self
else:
d = self.copy()
# Expand _axes
axis = d._new_axis_identifier()
data_axes = d._axes[:]
data_axes.insert(position, axis)
d._axes = data_axes
# Increment ndim and expand shape
d._ndim += 1
shape = list(d._shape)
shape.insert(position, 1)
d._shape = tuple(shape)
# Expand the location and shape of each partition
location = (0, 1)
for partition in d.partitions.matrix.flat:
partition.location = partition.location[:]
partition.shape = partition.shape[:]
partition.location.insert(position, location)
partition.shape.insert(position, 1)
#--- End: for
if d._all_axes:
d._all_axes += (axis,)
return d
#--- End: def
def files(self):
'''
Return the names of files containing parts of the data array.
:Returns:
out: set
The file names in normalized, absolute form.
:Examples:
>>> f = cf.read('../file*')
>>> f[0].files()
{'/data/user/file1',
'/data/user/file2',
'/data/user/file3'}
>>> a = f[0].array
>>> f[0].files()
set()
'''
return set([p.subarray.file
for p in self.partitions.matrix.flat if p.in_file])
#--- End: def
def flat(self, ignore_masked=True):
'''
Return a flat iterator over elements of the data array.
:Parameters:
ignore_masked : bool, optional
If False then masked and unmasked elements will be returned. By
default only unmasked elements are returned
:Returns:
out: generator
An iterator over elements of the data array.
:Examples:
>>> print d.array
[[1 -- 3]]
>>> for x in d.flat():
... print x
...
1
3
>>> for x in d.flat(False):
... print x
...
1
--
3
'''
self.to_memory()
mask = self.mask
if ignore_masked:
for index in self.ndindex():
if not mask[index]:
yield self[index].unsafe_array.item()
else:
for index in self.ndindex():
if not mask[index]:
yield self[index].unsafe_array.item()
else:
yield cf_masked
#--- End: def
def floor(self, i=False):
'''
Return the floor of the data array.
.. versionadded:: 1.0
.. seealso:: `ceil`, `rint`, `trunc`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> print d.array
[-1.9 -1.5 -1.1 -1. 0. 1. 1.1 1.5 1.9]
>>> print d.floor().array
[-2. -2. -2. -1. 0. 1. 1. 1. 1.]
'''
return self.func(numpy_floor, out=True, i=i)
#---End: def
def outerproduct(self, e, i=False):
'''
Compute the outer product with another data array.
The axes of result will be the combined axes of the two input arrays:
>>> d.outerproduct(e).ndim == d.ndim + e.ndim
True
>>> d.outerproduct(e).shape == d.shape + e.shape
True
:Parameters:
e : data-like
The data array with which to form the outer product.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d = cf.Data([1, 2, 3], 'metre')
>>> o = d.outerproduct([4, 5, 6, 7])
>>> o
<CF Data: [[4, ..., 21]] m>
>>> print o.array
[[ 4 5 6 7]
[ 8 10 12 14]
[12 15 18 21]]
>>> e = cf.Data([[4, 5, 6, 7], [6, 7, 8, 9]], 's-1')
>>> o = d.outerproduct(e)
>>> o
<CF Data: [[[4, ..., 27]]] m.s-1>
>>> print d.shape, e.shape, o.shape
(3,) (2, 4) (3, 2, 4)
>>> print o.array
[[[ 4 5 6 7]
[ 6 7 8 9]]
[[ 8 10 12 14]
[12 14 16 18]]
[[12 15 18 21]
[18 21 24 27]]]
'''
e_ndim = numpy_ndim(e)
if e_ndim:
d = self.copy()
for j in range(e_ndim):
d.expand_dims(-1, i=True)
else:
d = self
d = d*e
if i:
# Update self in place
self.__dict__ = d.__dict__
return d
#--- End: def
def change_calendar(self, calendar, i=False):
'''Change the calendar of the data array elements.
Changing the calendar could result in a change of reference time data
array values.
Not to be confused with using the `override_calendar` method or
resetting `d.Units`. `override_calendar` is different because the new
calendar need not be equivalent to the original ones and the data
array elements will not be changed to reflect the new units. Resetting
`d.Units` will
'''
if not self.Units.isreftime:
raise ValueError(
"Can't change calendar of non-reference time units: {0!r}".format(self.Units))
if i:
d = self
else:
d = self.copy()
d._asdatetime(i=True)
d.override_units(Units(self.Units.units, calendar), i=True)
d._asreftime(i=True)
#--- End: def
def override_units(self, units, i=False):
'''
Override the data array units.
Not to be confused with setting the `Units` attribute to units which
are equivalent to the original units. This is different because in
this case the new units need not be equivalent to the original ones
and the data array elements will not be changed to reflect the new
units.
:Parameters:
units: `str` or `cf.Units`
The new units for the data array.
i: `bool`, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: `cf.Data`
:Examples:
>>> d = cf.Data(1012.0, 'hPa')
>>> d.override_units('km')
>>> d.Units
<CF Units: km>
>>> d.datum(0)
1012.0
>>> d.override_units(cf.Units('watts'))
>>> d.Units
<CF Units: watts>
>>> d.datum(0)
1012.0
'''
if i:
d = self
else:
d = self.copy()
units = Units(units)
pda_args = d.pda_args()
for partition in d.partitions.matrix.flat:
p_units = partition.Units
if not p_units or p_units == units:
# No need to create the data array if the sub-array
# units are the same as the master data array units or
# the partition units are not set
partition.Units = units
continue
#--- End: if
partition.dataarray(**pda_args)
partition.Units = units
partition.close()
#--- End: for
d._Units = units
return d
#--- End: def
def override_calendar(self, calendar, i=False):
'''Override the calendar of the data array elements.
Not to be confused with using the `change_calendar` method or setting
the `d.Units.calendar`. `override_calendar` is different because the
new calendar need not be equivalent to the original ones and the data
array elements will not be changed to reflect the new units.
:Parameters:
calendar : str
The new calendar.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
'''
if not self.Units.isreftime:
raise ValueError(
"Can't override the calender of non-reference-time units: {0!r}".format(
self.Units))
if i:
d = self
else:
d = self.copy()
for partition in d.partitions.matrix.flat:
partition.Units = Units(partition.Units._units, calendar)
partition.close()
#--- End: for
d.Units = Units(d.Units._units, calendar)
return d
#--- End: def
def to_disk(self):
'''
Store the data array on disk in place.
There is no change to partition's whose sub-arrays are already on
disk.
:Returns:
None
:Examples:
>>> d.to_disk()
'''
pda_args = self.pda_args(keep_in_memory=False)
for partition in self.partitions.matrix.flat:
if partition.in_memory:
partition.dataarray(**pda_args)
partition.close()
#--- End: def
def to_memory(self, regardless=False):
'''
Store each partition's data in memory in place if the master array is
smaller than the chunk size.
There is no change to partitions with data that are already in memory.
:Parameters:
regardless : bool, optional
If True then store all partitions' data in memory regardless
of the size of the master array. By default only store all
partitions' data in memory if the master array is smaller than
the chunk size.
:Returns:
None
:Examples:
>>> d.to_memory()
>>> d.to_memory(regardless=True)
'''
if self.fits_in_memory(self.dtype.itemsize) or regardless:
pda_args = self.pda_args(keep_in_memory=True)
for partition in self.partitions.matrix.flat:
if partition.on_disk:
partition.dataarray(**pda_args)
partition.close()
#--- End: def
# ----------------------------------------------------------------
# Attribute (read only)
# ----------------------------------------------------------------
@property
def in_memory(self):
'''
:Returns:
:Examples:
>>> d.in_memory
'''
for partition in self.partitions.matrix.flat:
if not partition.in_memory:
return False
#--- End: for
return True
#--- End: def
def pda_args(self, keep_in_memory=None, **kwargs):
'''
Return a dictionary of arguments for the `cf.Partition.dataarray`
method.
The values are inferred from the state of the Data object and any
keyword arguments.
:Parameters:
:Returns:
out: dict
:Examples:
'''
dtype = self.dtype
pda_args = {'axes' : self._axes,
'flip' : self._flip,
'units' : self.Units,
'hardmask': self._hardmask,
'dtype' : dtype}
if keep_in_memory is None:
keep_in_memory = self.fits_in_memory(dtype.itemsize)
pda_args['keep_in_memory'] = keep_in_memory
if kwargs:
pda_args.update(kwargs)
return pda_args
#--- End: def
def partition_boundaries(self):
'''
Return the partition boundaries for each partition matrix dimension.
:Returns:
out: dict
:Examples:
'''
return self.partitions.partition_boundaries(self._axes)
#--- End: def
def datum(self, *index):
'''
Return an element of the data array as a standard Python scalar.
The first and last elements are always returned with ``d.datum(0)``
and ``d.datum(-1)`` respectively, even if the data array is a scalar
array or has two or more dimensions.
The returned object is of the same type as is stored internally.
.. seealso:: `array`, `dtarray`
:Parameters:
index : *optional*
Specify which element to return. When no positional arguments
are provided, the method only works for data arrays with one
element (but any number of dimensions), and the single element
is returned. If positional arguments are given then they must
be one of the following:
* An integer. This argument is interpreted as a flat index
into the array, specifying which element to copy and
return.
Example: If the data aray shape is ``(2, 3, 6)`` then:
* ``d.datum(0)`` is equivalent to ``d.datum(0, 0, 0)``.
* ``d.datum(-1)`` is equivalent to ``d.datum(1, 2, 5)``.
* ``d.datum(16)`` is equivalent to ``d.datum(0, 2, 4)``.
If *index* is ``0`` or ``-1`` then the first or last data
array element respecitively will be returned, even if the
data array is a scalar array.
..
* Two or more integers. These arguments are interpreted as a
multidimensionsal index to the array. There must be the
same number of integers as data array dimensions.
..
* A tuple of integers. This argument is interpreted as a
multidimensionsal index to the array. There must be the
same number of integers as data array dimensions.
Example: ``d.datum((0, 2, 4))`` is equivalent to
``d.datum(0, 2, 4)``; and ``d.datum(())`` is equivalent
to ``d.datum()``.
:Returns:
out :
A copy of the specified element of the array as a suitable
Python scalar.
:Examples:
>>> d = cf.Data(2)
>>> d.datum()
2
>>> 2 == d.datum(0) == d.datum(-1) == d.datum(())
True
>>> d = cf.Data([[2]])
>>> 2 == d.datum() == d.datum(0) == d.datum(-1)
True
>>> 2 == d.datum(0, 0) == d.datum((-1, -1)) == d.datum(-1, 0)
True
>>> d = cf.Data([[4, 5, 6], [1, 2, 3]], 'metre')
>>> d[0, 1] = cf.masked
>>> print d
[[4 -- 6]
[1 2 3]]
>>> d.datum(0)
4
>>> d.datum(-1)
3
>>> d.datum(1)
masked
>>> d.datum(4)
2
>>> d.datum(-2)
2
>>> d.datum(0, 0)
4
>>> d.datum(-2, -1)
6
>>> d.datum(1, 2)
3
>>> d.datum((0, 2))
6
'''
if index:
n_index = len(index)
if n_index == 1:
index = index[0]
if index == 0:
# This also works for scalar arrays
index = (slice(0, 1),) * self._ndim
elif index == -1:
# This also works for scalar arrays
index = (slice(-1, None),) * self._ndim
elif isinstance(index, (int, long)):
if index < 0:
index += self._size
index = numpy_unravel_index(index, self._shape)
elif len(index) != self._ndim:
raise ValueError(
"Incorrect number of indices for %s array" %
self.__class__.__name__)
#--- End: if
elif n_index != self._ndim:
raise ValueError(
"Incorrect number of indices for %s array" %
self.__class__.__name__)
# if self._isdt:
# array = self[index].dtarray
# else:
array = self[index].array
elif self._size == 1:
# if self._isdt:
# array = self.dtarray
# else:
array = self.array
else:
raise ValueError(
"Can only convert a %s array of size 1 to a Python scalar" %
self.__class__.__name__)
if not numpy_ma_isMA(array):
return array.item()
mask = array.mask
if mask is numpy_ma_nomask or not mask.item():
return array.item()
return cf_masked
#--- End: def
def mask_invalid(self, i=False):
'''Mask the array where invalid values occur (NaN or inf).
Note that:
* Invalid values in the results of arithmetic operations may only
occur if the raising of `FloatingPointError` exceptions has been
suppressed by `cf.Data.seterr`.
* If the raising of `FloatingPointError` exceptions has been allowed
then invalid values in the results of arithmetic operations it is
possible for them to be automatically converted to masked values,
depending on the setting of `cf.Data.mask_fpe`. In this case, such
automatic conversion might be faster than calling `mask_invalid`.
.. seealso:: `cf.Data.mask_fpe`, `cf.Data.seterr`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples 2:
>>> d = cf.Data([0., 1])
>>> e = cf.Data([1., 2])
>>> old = cf.Data.seterr('ignore')
>>> f = e/d
>>> f
<CF Data: [inf, 2.0] >
>>> f.mask_invalid()
<CF Data: [--, 2.0] >
>>> f=e**12345
>>> f
<CF Data: [1.0, inf] >
>>> f.mask_invalid()
<CF Data: [1.0, --] >
>>> old = cf.Data.seterr('raise')
>>> old = cf.Data.mask_fpe(True)
>>> e/d
<CF Data: [--, 2.0] >
>>> e**12345
<CF Data: [1.0, --] >
'''
if i:
d = self
else:
d = self.copy()
pda_args = d.pda_args()
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
array = numpy_ma_masked_invalid(array, copy=False)
array.shrink_mask()
if array.mask is numpy_ma_nomask:
array = array.data
partition.subarray = array
partition.close()
#--- End: for
return d
#--- End: def
def mid_range(self, axes=None, squeeze=True, mtol=1, i=False):
'''
Collapse axes with the unweighted average of their maximum and minimum
values.
Missing data array elements are omitted from the calculation.
.. seealso:: `max`, `min`, `mean`, `range`, `sum`, `sd`, `var`
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
return self._collapse(mid_range_f, mid_range_fpartial, mid_range_ffinalise,
axes=axes, squeeze=squeeze, mtol=mtol, i=i)
#--- End: def
def flip(self, axes=None, i=False):
'''
Flip (reverse the direction of) axes of the data array in place.
.. seealso:: `expand_dims`, `squeeze`, `swapaxes`, `transpose`
:Parameters:
axes : (sequence of) int
Select the axes. By default all axes are flipped. Each axis is
identified by its integer position. No axes are flipped if
*axes* is an empty sequence.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.flip()
>>> d.flip(1)
>>> d.flip([0, 1])
>>> d.flip([])
>>> e = d[::-1, :, ::-1]
>>> d.flip((2, 0)).equals(e)
True
'''
if i:
d = self
else:
d = self.copy()
if axes is not None and not axes and axes != 0:
# Null flip
return d
if axes is None:
iaxes = range(d._ndim)
else:
iaxes = d._parse_axes(axes, 'flip')
reverse = d._flip[:]
data_axes = d._axes
partitions = d.partitions
pm_axes = partitions.axes
flip_partition_matrix = False
if pm_axes:
indices = [slice(None)] * partitions.ndim
for i in iaxes:
axis = data_axes[i]
if axis in reverse:
reverse.remove(axis)
else:
reverse.append(axis)
if axis in pm_axes:
indices[pm_axes.index(axis)] = slice(None, None, -1)
flip_partition_matrix = True
#--- End: for
d._flip = reverse
if flip_partition_matrix:
partitions = partitions[tuple(indices)]
partitions.set_location_map(data_axes)
d.partitions = partitions
#--- End: if
return d
#--- End: def
def HDF_chunks(self, *chunks):
'''
'''
_HDF_chunks = self._HDF_chunks
if _HDF_chunks is None:
_HDF_chunks = {}
else:
_HDF_chunks = _HDF_chunks.copy()
org_HDF_chunks = dict([(i, _HDF_chunks.get(axis))
for i, axis in enumerate(self._axes)])
if not chunks:
return org_HDF_chunks
chunks = chunks[0]
if chunks is None:
# Clear all chunking
self._HDF_chunks = None
return org_HDF_chunks
axes = self._axes
for axis, size in chunks.iteritems():
_HDF_chunks[axes[axis]] = size
if _HDF_chunks.values() == [None] * self._ndim:
_HDF_chunks = None
self._HDF_chunks = _HDF_chunks
return org_HDF_chunks
#--- End: def
def inspect(self):
'''
Inspect the object for debugging.
.. seealso:: `cf.inspect`
:Returns:
None
'''
print cf_inspect(self)
#--- End: def
def isclose(self, y, rtol=None, atol=None):
'''
Return a boolean data array showing where two broadcastable arrays
have equal values within a tolerance.
For numeric data arrays, ``d.isclose(y, rtol, atol)`` is equivalent to
``abs(d - y) <= ``atol + rtol*abs(y)``, otherwise it is equivalent to
``d == y``.
:Parameters:
y : data_like
atol : float, optional
The absolute tolerance for all numerical comparisons, By
default the value returned by the `ATOL` function is used.
rtol : float, optional
The relative tolerance for all numerical comparisons, By
default the value returned by the `RTOL` function is used.
:Returns:
out: bool
:Examples:
>>> d = cf.Data([1000, 2500], 'metre')
>>> e = cf.Data([1, 2.5], 'km')
>>> print d.isclose(e).array
[ True True]
>>> d = cf.Data(['ab', 'cdef'])
>>> print d.isclose([[['ab', 'cdef']]]).array
[[[ True True]]]
>>> d = cf.Data([[1000, 2500], [1000, 2500]], 'metre')
>>> e = cf.Data([1, 2.5], 'km')
>>> print d.isclose(e).array
[[ True True]
[ True True]]
>>> d = cf.Data([1, 1, 1], 's')
>>> print d.isclose(1).array
[ True True True]
'''
if atol is None:
atol = ATOL()
if rtol is None:
rtol = RTOL()
try:
return abs(self - y) <= atol + rtol*abs(y)
except (TypeError, NotImplementedError, IndexError):
return self == y
#--- End: def
def rint(self, i=False):
'''
Round elements of the data array to the nearest integer.
.. versionadded:: 1.0
.. seealso:: `ceil`, `floor`, `trunc`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> print d.array
[-1.9 -1.5 -1.1 -1. 0. 1. 1.1 1.5 1.9]
>>> print d.rint().array
[-2. -2. -1. -1. 0. 1. 1. 2. 2.]
'''
return self.func(numpy_rint, out=True, i=i)
#---End: def
def round(self, decimals=0, i=False):
'''Evenly round elements of the data array to the given number of
decimals.
.. versionadded:: 1.1.4
.. seealso:: `ceil`, `floor`, `rint`, `trunc`
:Parameters:
decimals : int, optional
Number of decimal places to round to (default: 0). If decimals
is negative, it specifies the number of positions to the left
of the decimal point.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> print d.array
[-1.81, -1.41, -1.01, -0.91, 0.09, 1.09, 1.19, 1.59, 1.99])
>>> print d.round().array
[-2., -1., -1., -1., 0., 1., 1., 2., 2.]
>>> print d.round(1).array
[-1.8, -1.4, -1. , -0.9, 0.1, 1.1, 1.2, 1.6, 2. ]
>>> print d.round(-1).array
[-0., -0., -0., -0., 0., 0., 0., 0., 0.]
'''
return self.func(numpy_round, out=True, i=i, decimals=decimals)
#---End: def
def swapaxes(self, axis0, axis1, i=False):
'''
Interchange two axes of an array.
.. seealso:: `expand_dims`, `flip`, `squeeze`, `transpose`
:Parameters:
axis0, axis1 : ints
Select the axes to swap. Each axis is identified by its
original integer position.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d=cf.Data([[[1, 2, 3], [4, 5, 6]]])
>>> d.shape
(1, 2, 3)
>>> d.swapaxes(1, 0).shape
>>> d.swapaxes(2, 1).shape
>>> d.swapaxes(0, -1).shape
>>> d.swapaxes(1, 1).shape
'''
if i:
d = self
else:
d = self.copy()
axis0 = d._parse_axes((axis0,), 'swapaxes')[0]
axis1 = d._parse_axes((axis1,), 'swapaxes')[0]
if axis0 != axis1:
iaxes = range(d._ndim)
iaxes[axis1], iaxes[axis0] = axis0, axis1
d.transpose(iaxes, i=True)
#--- End: if
return d
#--- End: def
def save_to_disk(self, itemsize=None):
raise NotImplementedError(
"cf.Data.save_to_disk is dead. Use not cf.Data.fits_in_memory instead.")
# '''
#
#Return True if the master array is large enough to be saved to disk.
#
#:Parameters:
#
# itemsize : int, optional
# The number of bytes per word of the master data array. By
# default it taken from the array's data type.
#
#:Returns:
#
# out: bool
#
#:Examples:
#
#>>> print d.save_to_disk()
#True
#
#>>> print d.save_to_disk(8)
#False
#
#'''
# if not itemsize:
# try:
# itemsize = self.dtype.itemsize
# except AttributeError:
# raise ValueError(
# "save_to_disk: Must set itemsize if there is no dtype")
# #--- End: if
#
# # ------------------------------------------------------------
# # Note that self._size*(itemsize+1) is the array size in bytes
# # including space for a full boolean mask
# # ------------------------------------------------------------
# return self._size*(itemsize+1) > FREE_MEMORY() - FM_THRESHOLD()
# #--- End: def
def fits_in_memory(self, itemsize):
'''
Return True if the master array is small enough to be retained in
memory.
:Parameters:
itemsize : int
The number of bytes per word of the master data array.
:Returns:
out: bool
:Examples:
>>> print d.fits_in_memory(8)
False
'''
# ------------------------------------------------------------
# Note that self._size*(itemsize+1) is the array size in bytes
# including space for a full boolean mask
# ------------------------------------------------------------
return self._size*(itemsize+1) <= FREE_MEMORY() - FM_THRESHOLD()
#--- End: def
def where(self, condition, x=None, y=None, i=False):
'''
Set data array elements depending on a condition.
Elements are set differently depending on where the condition is True
or False. Two assignment values are given. From one of them, the data
array is set where the condition is True and where the condition is
False, the data array is set from the other.
Each assignment value may either contain a single datum, or is an
array-like object which is broadcastable shape of the data array.
**Missing data**
The treatment of missing data elements depends on the value of the
`hardmask` attribute. If it is True then masked elements will not
unmasked, otherwise masked elements may be set to any value.
In either case, unmasked elements may be set to any value (including
missing data).
Unmasked elements may be set to missing data by assignment to the
`cf.masked` constant or by assignment to a value which contains masked
elements.
.. seealso:: `cf.masked`, `hardmask`, `__setitem__`
:Parameters:
condition : *optional*
Define the condition which determines how to set the data
array. The condition is any object which is broadcastable to
the data array shape. The condition is True where the object
broadcast to the data array shape is True. If *condition* is
unset then it defaults to a condition of True everywhere.
x, y :
Specify the assignment value. Where the condition defined by
the *arg* and *kwargs* arguments is True, set the data array
from *x* and where the condition is False, set the data array
from *y*. Arguments *x* and *y* are each one of:
* ``None``. The appropriate elements of the data array are
unchanged.
..
* Any object which is broadcastable to the data array's
shape. The appropriate elements of the data array are set
to the corresponding values from the object broadcast to
the data array shape.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
'''
def _slice_to_partition(data, indices):
'''
Return a numpy array for the part of the `cf.Data` object which
spans the given indices.
:Parameters:
data : cf.Data
indices : tuple
:Returns:
out: numpy array
'''
indices2 = [(slice(0, 1) if n == 1 else i)
for n, i in zip(data.shape[::-1], indices[::-1])]
return data[tuple(indices2)[::-1]].unsafe_array
#--- End: def
def _is_broadcastable(data0, data1, do_not_broadcast, is_scalar):
'''
Check that the input *data1* is broadcastable to *data0* and
return *data1*, as a python scalar if possible.
This function updates following lists: do_not_broadcast, is_scalar
:Parameters:
data : cf.Data
do_not_broadcast : list
is_scalar : list
:Returns:
out: cf.Data or scalar
'''
shape0 = data0._shape
shape1 = data1._shape
size1 = data1._size
if shape1 == shape0:
do_not_broadcast.append(True)
is_scalar.append(False)
elif size1 == 1:
do_not_broadcast.append(False)
is_scalar.append(True)
# Replace data1 with its scalar value
data1 = data1.datum(0)
elif data1._ndim <= data0._ndim and size1 < data0._size:
do_not_broadcast.append(False)
is_scalar.append(False)
for n, m in zip(shape1[::-1], shape0[::-1]):
if n != m and n != 1:
raise ValueError(
"Can't assign by where: Can't broadcast data with shape %s to shape %s" %
(shape1, shape0))
else:
raise ValueError(
"Can't assign by where: Can't broadcast data with shape %s to shape %s" %
(shape1, shape0))
#--- End: if
return data1
#--- End: def
if i:
d = self
else:
d = self.copy()
if x is None and y is None:
return d
do_not_broadcast = []
is_scalar = []
# ------------------------------------------------------------
# Make sure that the condition is a cf.Data object
# ------------------------------------------------------------
if not isinstance(condition, d.__class__):
condition = type(d)(condition)
# Check that the condition is broadcastable
condition = _is_broadcastable(d, condition, do_not_broadcast, is_scalar)
# ------------------------------------------------------------
# Parse x and y so that each is one of a) None, b) a scalar or
# c) a data array with the same shape as the master array
# ------------------------------------------------------------
xy = []
for value in (x, y):
if value is None or value is cf_masked:
do_not_broadcast.append(False)
is_scalar.append(True)
else:
# Make sure that the value is a cf.Data object and has
# compatible units
if not isinstance(value, d.__class__):
value = type(d)(value)
else:
if value.Units.equivalent(d.Units):
if not value.Units.equals(d.Units):
value = value.copy()
value.Units = d.Units
elif value.Units:
raise ValueError(
"Some bad units %r, %r" % (d.Units, value.Units))
#--- End: if
# Check that the value is broadcastable
value = _is_broadcastable(d, value, do_not_broadcast, is_scalar)
#--- End: if
xy.append(value)
#--- End: for
x, y = xy
c_is_scalar, x_is_scalar, y_is_scalar = is_scalar
#-------------------------------------------------------------
# Try some shortcuts if the condition is a scalar
#-------------------------------------------------------------
if c_is_scalar :
if condition:
if x is not None:
d[...] = x
return d
else:
if y is not None:
d[...] = y
return d
#--- End: if
# Still here?
broadcast = not any(do_not_broadcast)
hardmask = d._hardmask
pda_args = d.pda_args() #readonly=True)
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
# --------------------------------------------------------
# Find the master array indices for this partition
# --------------------------------------------------------
shape = array.shape
indices = partition.indices
# --------------------------------------------------------
# Find the condition for this partition
# --------------------------------------------------------
if c_is_scalar:
c = condition
else:
c = _slice_to_partition(condition, indices)
# --------------------------------------------------------
# Find value to use where condition is True for this
# partition
# --------------------------------------------------------
if x_is_scalar:
if x is None:
# Use d
T = array
T_masked = partition.masked
else:
T = x
T_masked = x is cf_masked
else:
T = _slice_to_partition(x, indices)
T_masked = numpy_ma_isMA(T) and numpy_ma_is_masked(T)
#--- End: if
# --------------------------------------------------------
# Find value to use where condition is False for this
# partition
# --------------------------------------------------------
if y_is_scalar:
if y is None:
# Use d
F = array
F_masked = partition.masked
else:
F = y
F_masked = y is cf_masked
else:
F = _slice_to_partition(y, indices)
F_masked = numpy_ma_isMA(F) and numpy_ma_is_masked(F)
#--- End: if
# --------------------------------------------------------
# Make sure that at least one of the arrays is the same
# shape as the partition
# --------------------------------------------------------
if broadcast:
if x is cf_masked or y is cf_masked:
c = _broadcast(c, shape)
else:
max_sizes = max((numpy_size(c), numpy_size(T), numpy_size(F)))
if numpy_size(c) == max_sizes:
c = _broadcast(c, shape)
elif numpy_size(T) == max_sizes:
T = _broadcast(T, shape)
else:
F = _broadcast(F, shape)
#--- End: if
# --------------------------------------------------------
# Create a numpy array which takes vales from T where c
# is True and from F where c is False
# --------------------------------------------------------
if T_masked or F_masked:
# T and/or F have missing data
new = numpy_ma_where(c, T, F)
if partition.masked:
if hardmask:
# The original partition has missing data and
# a hardmask, so apply the original
# partition's mask to the new array.
new.mask |= array.mask
elif not numpy_ma_is_masked(new):
# The original partition has missing data and
# a softmask and the new array doesn't have
# missing data, so turn the new array into an
# unmasked array.
new = new.data[...]
elif not numpy_ma_is_masked(new):
# The original partition doesn't have missing data
# and neither does the new array
new = new.data[...]
else:
# Neither T nor F have missing data
new = numpy_where(c, T, F)
if partition.masked and hardmask:
# The original partition has missing data and a
# hardmask, so apply the original partition's mask
# to the new array.
new = numpy_ma_masked_where(array.mask, new, copy=False)
#--- End: if
# --------------------------------------------------------
# Replace the partition's subarray with the new numpy
# array
# --------------------------------------------------------
partition.subarray = new
partition.close()
#--- End: for
return d
#--- End: def
def sin(self, i=False):
'''
Take the trigonometric sine of the data array in place.
Units are accounted for in the calculation. If the units are not
equivalent to radians (such as Kelvin) then they are treated as if
they were radians. For example, the the cosine of 90 degrees_east is
1.0, as is the sine of 1.57079632 radians.
The Units are changed to '1' (nondimensionsal).
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.Units
<CF Units: degrees_north>
>>> print d.array
[[-90 0 90 --]]
>>> d.sin()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[-1.0 0.0 1.0 --]]
>>> d.Units
<CF Units: m s-1>
>>> print d.array
[[1 2 3 --]]
>>> d.sin()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[0.841470984808 0.909297426826 0.14112000806 --]]
'''
if i:
d = self
else:
d = self.copy()
if d.Units.equivalent(_units_radians):
d.Units = _units_radians
return d.func(numpy_sin, units=_units_1, i=True)
#--- End: def
def log(self, base=None, i=False):
'''
:Parameters:
base :
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
'''
if i:
d = self
else:
d = self.copy()
if base is None:
d.func(numpy_log, units=d.Units.log(numpy_e), i=True)
elif base == 10:
d.func(numpy_log10, units=d.Units.log(10), i=True)
elif base == 2:
d.func(numpy_log2, units=d.Units.log(2), i=True)
else:
d.func(numpy_log, units=d.Units.log(base), i=True)
d /= numpy_log(base)
return d
#--- End: def
def squeeze(self, axes=None, i=False):
'''
Remove size 1 axes from the data array.
By default all size 1 axes are removed, but particular axes may be
selected with the keyword arguments.
.. seealso:: `expand_dims`, `flip`, `swapaxes`, `transpose`
:Parameters:
axes : (sequence of) int or str, optional
Select the axes. By default all size 1 axes are removed. The
*axes* argument may be one, or a sequence, of:
* An internal axis identifier. Selects this axis.
..
* An integer. Selects the axis coresponding to the given
position in the list of axes of the data array.
No axes are removed if *axes* is an empty sequence.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The squeezed data array.
:Examples:
>>> v.shape
(1,)
>>> v.squeeze()
>>> v.shape
()
>>> v.shape
(1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1)
>>> v.squeeze((0,))
>>> v.shape
(2, 1, 3, 1, 4, 1, 5, 1, 6, 1)
>>> v.squeeze(1)
>>> v.shape
(2, 3, 1, 4, 1, 5, 1, 6, 1)
>>> v.squeeze([2, 4])
>>> v.shape
(2, 3, 4, 5, 1, 6, 1)
>>> v.squeeze([])
>>> v.shape
(2, 3, 4, 5, 1, 6, 1)
>>> v.squeeze()
>>> v.shape
(2, 3, 4, 5, 6)
'''
if i:
d = self
else:
d = self.copy()
ndim = d._ndim
if not ndim:
if axes or axes == 0:
raise ValueError(
"Can't squeeze: Can't remove an axis from a scalar %s" %
d.__class__.__name__)
return d
#--- End: if
shape = list(d._shape)
if axes is None:
axes = [i for i, n in enumerate(shape) if n == 1]
else:
axes = d._parse_axes(axes, 'squeeze')
# Check the squeeze axes
for i in axes:
if shape[i] > 1:
raise ValueError(
"Can't squeeze %s: Can't remove axis of size > 1" %
d.__class__.__name__)
#--- End: if
if not axes:
return d
# Still here? Then the data array is not scalar and at least
# one size 1 axis needs squeezing.
data_axes = d._axes[:]
flip = d._flip[:]
if not d._all_axes:
d._all_axes = tuple(data_axes)
i_axis = []
for axis in [data_axes[i] for i in axes]:
if axis in flip:
flip.remove(axis)
i = data_axes.index(axis)
shape.pop(i)
data_axes.pop(i)
i_axis.append((i, axis))
#--- End: for
for partition in d.partitions.matrix.flat:
p_location = partition.location[:]
p_shape = partition.shape[:]
p_flip = partition.flip[:]
for i, axis in i_axis:
p_location.pop(i)
p_shape.pop(i)
if axis in p_flip:
p_flip.remove(axis)
#--- End: for
partition.location = p_location
partition.shape = p_shape
partition.flip = p_flip
# p_part = partition.part
# if p_part:
# for i, axis in i_axis:
# p_part.pop(i)
#--- End: for
d._ndim = len(shape)
d._shape = tuple(shape)
d._axes = data_axes
d._flip = flip
# Remove size 1 partition dimensions
d.partitions.squeeze(i=True)
return d
#--- End: def
def tan(self, i=False):
'''
Take the trigonometric tangent of the data array element-wise.
Units are accounted for in the calculation. If the units are not
equivalent to radians (such as Kelvin) then they are treated as if
they were radians. For example, the the tangent of 45 degrees_east is
1.0, as is the tangent of 0.78539816 radians.
The Units are changed to ``'1'`` (nondimensionsal).
.. seealso:: `cos`, `sin`
:Parmaeters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.Units
<CF Units: degrees_north>
>>> print d.array
[[-45 0 45 --]]
>>> d.tan()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[-1.0 0.0 1.0 --]]
>>> d.Units
<CF Units: m s-1>
>>> print d.array
[[1 2 3 --]]
>>> d.tan()
>>> d.Units
<CF Units: 1>
>>> print d.array
[[1.55740772465 -2.18503986326 -0.142546543074 --]]
'''
if i:
d = self
else:
d = self.copy()
if d.Units.equivalent(_units_radians):
d.Units = _units_radians
return d.func(numpy_tan, units=_units_1, i=True)
#--- End: def
def tolist(self):
'''
Return the array as a (possibly nested) list.
Return a copy of the array data as a (nested) Python list. Data items
are converted to the nearest compatible Python type.
:Returns:
out: list
The possibly nested list of array elements.
:Examples:
>>> d = cf.Data([1, 2])
>>> d.tolist()
[1, 2]
>>> d = cf.Data(([[1, 2], [3, 4]])
>>> list(d)
[array([1, 2]), array([3, 4])] # DCH CHECK
>>> d.tolist()
[[1, 2], [3, 4]]
>>> d.equals(cf.Data(d.tolist()))
True
'''
return self.array.tolist()
#--- End: def
def transpose(self, axes=None, i=False):
'''
Permute the axes of the data array.
.. seealso:: `expand_dims`, `flip`, `squeeze`, `swapaxes`
:Parameters:
axes : (sequence of) int
The new axis order of the data array. By default the order is
reversed. Each axis of the new order is identified by its
original integer position.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> d.shape
(19, 73, 96)
>>> d.transpose()
>>> d.shape
(96, 73, 19)
>>> d.transpose([1, 0, 2])
>>> d.shape
(73, 96, 19)
>>> d.transpose((-1, 0, 1))
>>> d.shape
(19, 73, 96)
'''
if i:
d = self
else:
d = self.copy()
ndim = d._ndim
# Parse the axes. By default, reverse the order of the axes.
if axes is None:
if ndim <= 1:
return d
iaxes = range(ndim-1, -1, -1)
else:
iaxes = d._parse_axes(axes, 'transpose')
# Return unchanged if axes are in the same order as the data
if iaxes == range(ndim):
return d
if len(iaxes) != ndim:
raise ValueError(
"Can't tranpose: Axes don't match array: %s" % (iaxes,))
#--- End: if
# Permute the axes
data_axes = d._axes
d._axes = [data_axes[i] for i in iaxes]
# Permute the shape
shape = d._shape
d._shape = tuple([shape[i] for i in iaxes])
# Permute the locations map
for partition in d.partitions.matrix.flat:
location = partition.location
shape = partition.shape
partition.location = [location[i] for i in iaxes]
partition.shape = [shape[i] for i in iaxes]
#--- End: for
return d
#--- End: def
def trunc(self, i=False):
'''
Return the truncated values of the data array.
The truncated value of the number, ``x``, is the nearest integer which
is closer to zero than ``x`` is. In short, the fractional part of the
signed number ``x`` is discarded.
.. versionadded:: 1.0
.. seealso:: `ceil`, `floor`, `rint`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
>>> print d.array
[-1.9 -1.5 -1.1 -1. 0. 1. 1.1 1.5 1.9]
>>> print d.trunc().array
[-1. -1. -1. -1. 0. 1. 1. 1. 1.]
'''
return self.func(numpy_trunc, out=True, i=i)
#---End: def
@classmethod
def empty(cls, shape, dtype=None, units=None):
''' Create a new data array without initializing the elements.
.. seealso:: `full`, `ones`, `zeros`
:Examples 1:
>>> d = cf.Data.empty((96, 73))
:Parameters:
shape : int or tuple of ints
The shape of th new array.
dtype : numpy.dtype or any object convertible to numpy.dtype
The data type of the new array. By default the data type is
numpy.float64.
units : str or Units
The units for the new data array.
:Returns:
out: cf.Data
:Examples 2:
'''
return cls.full(shape, None, dtype=dtype, units=units)
#--- End: def
@classmethod
def full(cls, shape, fill_value, dtype=None, units=None):
'''
'''
array = CreateArray(shape=tuple(shape),
size=long(reduce(operator_mul, shape, 1)),
ndim=len(shape),
dtype=numpy_dtype(dtype),
fill_value=fill_value)
return cls(array, units=units)
#--- End: def
@classmethod
def ones(cls, shape, dtype=None, units=None):
'''
'''
return cls.full(shape, 1, dtype=dtype, units=units)
#--- End: def
@classmethod
def zeros(cls, shape, dtype=None, units=None):
'''
'''
return cls.full(shape, 0, dtype=dtype, units=units)
#--- End: def
def func(self, f, units=None, out=False, i=False, **kwargs):
'''
Apply an element-wise array operation to the data array in place.
:Parameters:
f : function
The function to be applied.
units : cf.Units, optional
out: bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
None
:Examples:
>>> print d.Units
<CF Units: radians>
>>> print d.array
[[ 0. 1.57079633]
[ 3.14159265 4.71238898]]
>>> import numpy
>>> d.func(numpy.cos, i=True)
>>> print d.array
[[ 1.0 0.0]
[-1.0 0.0]]
'''
if i:
d = self
else:
d = self.copy()
pda_args = d.pda_args()
datatype = d.dtype
for partition in d.partitions.matrix.flat:
array = partition.dataarray(**pda_args)
if out:
f(array, out=array, **kwargs)
else:
array = f(array, **kwargs)
p_datatype = array.dtype
if datatype != p_datatype:
datatype = numpy_result_type(p_datatype, datatype)
partition.subarray = array
if units is not None:
partition.Units = units
partition.close()
#--- End: for
d.dtype = datatype
if units is not None:
d.Units = units
return d
#--- End: def
def range(self, axes=None, squeeze=True, mtol=1, i=False):
'''Collapse axes with the absolute difference between their maximum
and minimum values.
Missing data array elements are omitted from the calculation.
.. seealso:: `max`, `min`, `mean`, `mid_range`, `sample_size`,
`sd`, `sum`, `sum_of_weights`, `sum_of_weights2`, `var`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
return self._collapse(range_f, range_fpartial, range_ffinalise,
axes=axes, squeeze=squeeze, weights=None,
mtol=mtol, i=i)
#--- End: def
def roll(self, axis, shift, i=False):
'''
A lot like `numpy.roll`
:Parameters:
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
'''
if not shift:
# Null roll
if i:
return self
else:
return self.copy()
iaxes = self._parse_axes(axis, 'roll')
if len(iaxes) != 1:
raise ValueError("987345 9087345 ^^ roll ^")
axis = iaxes[0]
n = self._shape[axis]
shift %= n
if not shift:
# Null roll
if i:
return self
else:
return self.copy()
shift = n - shift
indices0 = [slice(None)] * self._ndim
indices0[axis] = slice(None, shift)
indices1 = indices0[:]
indices1[axis] = slice(shift, None)
indices0 = tuple(indices0)
indices1 = tuple(indices1)
d = type(self).concatenate((self[indices1], self[indices0]),
axis=axis)
if i:
self.__dict__ = d.__dict__
return self
else:
return d
#--- End: def
def sum(self, axes=None, squeeze=False, mtol=1, i=False):
'''Collapse axes with their sum.
Missing data array elements are omitted from the calculation.
.. seealso:: `max`, `min`, `mean`, `mid_range`, `range`,
`sample_size`, `sd`, `sum_of_weights`, `sum_of_weights2`,
`var`
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
return self._collapse(sum_f, sum_fpartial, sum_ffinalise, axes=axes,
squeeze=squeeze, weights=None, mtol=mtol, i=i)
#--- End: def
def sum_of_weights(self, axes=None, squeeze=False, mtol=1, weights=None,
i=False):
'''
Missing data array elements are omitted from the calculation.
.. seealso:: `max`, `mean`, `mid_range`, `min`, `range`,
`sample_size`, `sd`, `sum`, `sum_of_weights2`, `var`
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
return self._collapse(sw_f, sw_fpartial, sw_ffinalise, axes=axes,
squeeze=squeeze, weights=weights, mtol=mtol,
i=i)
#--- End: def
def sum_of_weights2(self, axes=None, squeeze=False, mtol=1, weights=None,
i=False):
'''
Missing data array elements are omitted from the calculation.
.. seealso:: `max`, `mean`, `mid_range`, `min`, `range`,
`sample_size`, `sd`, `sum`, `sum_of_weights`, `var`
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
return self._collapse(sw2_f, sw2_fpartial, sw2_ffinalise, axes=axes,
squeeze=squeeze, weights=weights, mtol=mtol,
i=i)
#--- End: def
def sd(self, axes=None, squeeze=False, mtol=1, weights=None,
ddof=1, a=None, i=False):
r'''
Collapse axes by calculating their standard deviation.
The standard deviation may be adjusted for the number of degrees of
freedom and may be calculated with weighted values.
Missing data array elements and those with zero weight are omitted
from the calculation.
The unweighted standard deviation, :math:`s`, of :math:`N` values
:math:`x_i` with mean :math:`m` and with :math:`N-ddof` degrees of
freedom (:math:`ddof\ge0`) is
.. math:: s=\sqrt{\frac{1}{N-ddof} \sum_{i=1}^{N} (x_i - m)^2}
The weighted standard deviation, :math:`\tilde{s}_N`, of :math:`N`
values :math:`x_i` with corresponding weights :math:`w_i`, weighted
mean :math:`\tilde{m}` and with :math:`N` degrees of freedom is
.. math:: \tilde{s}_N=\sqrt{\frac{1}{\sum_{i=1}^{N} w_i}
\sum_{i=1}^{N} w_i(x_i - \tilde{m})^2}
The weighted standard deviation, :math:`\tilde{s}`, of :math:`N`
values :math:`x_i` with corresponding weights :math:`w_i` and with
:math:`N-ddof` degrees of freedom (:math:`ddof>0`) is
.. math:: \tilde{s} = \sqrt{\frac{f \sum_{i=1}^{N} w_i}{f
\sum_{i=1}^{N} w_i - ddof}} \tilde{s}_N
where :math:`f` is the smallest positive number whose product with
each weight is an integer. :math:`f \sum_{i=1}^{N} w_i` is the size of
a new sample created by each :math:`x_i` having :math:`fw_i`
repeats. In practice, :math:`f` may not exist or may be difficult to
calculate, so :math:`f` is either set to a predetermined value or an
approximate value is calculated. The approximation is the smallest
positive number whose products with the smallest and largest weights
and the sum of the weights are all integers, where a positive number
is considered to be an integer if its decimal part is sufficiently
small (no greater than :math:`10^{-8}` plus :math:`10^{-5}` times its
integer part). This approximation will never overestimate :math:`f`,
so :math:`\tilde{s}` will never be underestimated when the
approximation is used. If the weights are all integers which are
collectively coprime then setting :math:`f=1` will guarantee that
:math:`\tilde{s}` is exact.
:Parameters:
axes : (sequence of) int, optional
The axes to be collapsed. By default flattened input is
used. Each axis is identified by its integer position. No axes
are collapsed if *axes* is an empty sequence.
squeeze : bool, optional
If True then collapsed axes are removed. By default the axes
which are collapsed are left in the result as axes with size
1. When the collapsed axes are retained, the result is
guaranteed to broadcast correctly against the original array.
**Example:** Suppose that an array, ``d``, has shape (2, 3,
4) and ``e = d.sd(axis=1)``. Then ``e`` has shape (2, 1, 4)
and, for example, ``d/e`` is allowed. If ``e = d.sd(axis=1,
squeeze=True)`` then ``e`` will have shape (2, 4) and
``d/e`` is an illegal operation.
weights : data-like or dict, optional
Weights associated with values of the array. By default all
non-missing elements of the array are assumed to have equal
weights of 1. If *weights* is a data-like object then it must
have either the same shape as the array or, if that is not the
case, the same shape as the axes being collapsed. If *weights*
is a dictionary then each key is axes of the array (an int or
tuple of ints) with a corresponding data-like value of weights
for those axes. In this case, the implied weights array is the
outer product of the dictionary's values it may be used in
conjunction wih any value of *axes*, because the axes to which
the weights apply are given explicitly.
**Example:** Suppose that the original array being collapsed
has shape (2, 3, 4) and *weights* is set to a data-like
object, ``w``. If ``axes=None`` then ``w`` must have shape
(2, 3, 4). If ``axes=(0, 1, 2)`` then ``w`` must have shape
(2, 3, 4). If ``axes=(2, 0, 1)`` then ``w`` must either have
shape (2, 3, 4) or else (4, 2, 3). If ``axes=1`` then ``w``
must either have shape (2, 3, 4) or else (3,). If ``axes=(2,
0)`` then ``w`` must either have shape (2, 3, 4) or else (4,
2). Suppose *weights* is a dictionary. If ``weights={1: x}``
then ``x`` must have shape (3,). If ``weights={1: x, (2, 0):
y}`` then ``x`` must have shape (3,) and ``y`` must have
shape (4, 2). The last example is equivalent to
``weights={(1, 2, 0): x.outerproduct(y)}`` (see
`outerproduct` for details).
mtol : number, optional
For each element in the output data array, the fraction of
contributing input array elements which is allowed to contain
missing data. Where this fraction exceeds *mtol*, missing
data is returned. The default is 1, meaning a missing datum in
the output array only occurs when its contributing input array
elements are all missing data. A value of 0 means that a
missing datum in the output array occurs whenever any of its
contributing input array elements are missing data. Any
intermediate value is permitted.
ddof : number, *optional*
The delta degrees of freedom. The number of degrees of freedom
used in the calculation is (N-*ddof*) where N represents the
number of elements. By default *ddof* is 1, meaning the
standard deviation of the population is estimated according to
the usual formula with (N-1) in the denominator to avoid the
bias caused by the use of the sample mean (Bessel's
correction).
f : data-like, *optional*
Specify the value of :math:`f` in the calculation of a
weighted standard deviation when *ddof* is greater than 0. *f*
must be broadcastable to the collapsed data array with the
collapsed axes removed. By default an approximate value is
calculated. See the notes above for details.
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
:Examples:
Some, not wholly comprehensive, examples:
>>> d = cf.Data([1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4])
>>> e = cf.Data([1, 2, 3, 4])
>>> d.sd(squeeze=False)
<CF Data: [1.06262254195] >
>>> d.sd()
<CF Data: 1.06262254195 >
>>> e.sd(weights=[2, 3, 5, 6])
<CF Data: 1.09991882817 >
>>> e.sd(weights=[2, 3, 5, 6], f=1)
<CF Data: 1.06262254195 >
>>> d.sd(ddof=0)
<CF Data: 1.02887985207 >
>>> e.sd(ddof=0, weights=[2, 3, 5, 6])
<CF Data: 1.02887985207 >
'''
if a is not None:
if weights is None:
a = None
elif a <= 0:
raise ValueError("SD asdasdsa4456 ##################76* 223")
#--- End: if
return self._collapse(sd_f, sd_fpartial, sd_ffinalise, axes=axes,
squeeze=squeeze, weights=weights,
mtol=mtol, ddof=ddof, f=a, i=i)
#--- End: def
def var(self, axes=None, squeeze=False, weights=None, mtol=1, ddof=1,
a=None, i=False):
r'''
Collapse axes with their weighted variance.
The units of the returned array are the square of the units of the
array.
.. seealso:: `max`, `min`, `mean`, `mid_range`, `range`, `sum`, `sd`
:Parameters:
axes : (sequence of) int, optional
squeeze : bool, optional
weights :
i : bool, optional
If True then update the data array in place. By default a new
data array is created.
:Returns:
out: cf.Data
The collapsed array.
:Examples:
'''
if a is not None:
if weights is None:
a = None
elif a <= 0:
raise ValueError("Parameter 'a' must be positive")
#--- End: if
units = self.Units
if units:
units = units ** 2
return self._collapse(var_f, var_fpartial, var_ffinalise, axes=axes,
squeeze=squeeze, weights=weights,
mtol=mtol, units=units, ddof=ddof, f=a, i=i)
#--- End: def
def section(self, axes, stop=None, chunks=False, min_step=1):
"""
Return a dictionary of Data objects, which are the m dimensional
sections of this n dimensional Data object, where m <= n. The keys
of the dictionary are the indicies of the sections in the original
Data object. The m dimensions that are not sliced are marked with
None as a placeholder making it possible to reconstruct the original
data object. The corresponding values are the resulting sections of
type cf.Data.
:Parameters:
axes : *optional*
This is should be a tuple or a list of the m indices of the
m axes that define the sections of the Data object. If axes
is None (the default) all axes are selected.
stop : int, optional
Stop after this number of sections and return. If stop is
None all sections are taken.
chunks : bool, optional
If True return sections that are of the maximum possible size
that will fit in one chunk of memory instead of sectioning
into slices of size 1 along the dimensions that are being
sectioned.
min_step : int, optional
The minimum step size when making chunks. By default this is
1. Can be set higher to avoid size 1 dimensions, which are
problematic for bilinear regridding.
:Returns:
out: dict
The dictionary of m dimensional sections of the Data object.
:Examples:
Section a Data object into 2D slices:
>>> d.section((0,1))
"""
return _section(self, axes, data=True, stop=stop, chunks=chunks,
min_step=min_step)
#--- End: def
#--- End: class
# ====================================================================
#
# SubspaceData object
#
# ====================================================================
class SubspaceData(object):
__slots__ = ('data',)
def __init__(self, data):
'''
Set the contained data object.
'''
self.data = data
#--- End: def
def __getitem__(self, indices):
'''
Implement indexing
x.__getitem__(indices) <==> x[indices]
'''
return self.data[indices]
#--- End: def
def __setitem__(self, indices, value):
'''
Implement indexed assignment
x.__setitem__(indices, value) <==> x[indices]=value
'''
self.data[indices] = value
#--- End: def
#--- End: class
def _size_of_index(index, size=None):
'''
Return the number of elements resulting in applying an index to a
sequence.
:Parameters:
index : slice or list of ints
The index being applied to the sequence.
size : int, optional
The number of elements in the sequence being indexed. Only
required if *index* is a slice object.
:Returns:
out: int
The length of the sequence resulting from applying the index.
:Examples:
>>> _size_of_index(slice(None, None, -2), 10)
5
>>> _size_of_index([1, 4, 9])
3
'''
if isinstance(index, slice):
# Index is a slice object
start, stop, step = index.indices(size)
div, mod = divmod(stop-start, step)
if mod != 0:
div += 1
return div
else:
# Index is a list of integers
return len(index)
#--- End: def
def _parse_indices(data, indices):
'''
:Parameters:
data :
indices : sequence of indices
:Returns:
parsed_indices, flip_axes : {list, list}
:Examples:
'''
parsed_indices, roll = parse_indices(data, indices, True)
flip_axes = []
for i, index in enumerate(parsed_indices):
if isinstance(index, slice):
size = data.shape[i]
if index.step < 0:
# If the slice step is negative, then transform the
# original slice to a new slice with a positive step
# such that the result of the new slice is the reverse
# of the result of the original slice.
#
# For example, if the original slice is slice(6,0,-2)
# then the new slice will be slice(2,7,2):
#
# >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# >>> a[slice(6, 0, -2)]
# [6, 4, 2]
# >>> a[slice(2, 7, 2)]
# [2, 4, 6]
# a[slice(6, 0, -2)] == list(reversed(a[slice(2, 7, 2)]))
# True
start, stop, step = index.indices(size)
step *= -1
div, mod = divmod(start-stop-1, step)
div_step = div*step
start -= div_step
stop = start + div_step + 1
index = slice(start, stop, step)
flip_axes.append(i)
#--- End: if
# If step is greater than one, make sure that index.stop isn't
# bigger than it needs to be.
if index.step > 1:
start, stop, step = index.indices(size)
div, mod = divmod(stop-start-1, step)
stop = start + div*step + 1
index = slice(start, stop, step)
#--- End: if
parsed_indices[i] = index
else:
# --------------------------------------------------------
# Check that an integer list is strictly monotonic and if
# it's descending then flip it so that it's ascending
# --------------------------------------------------------
step = index[1] - index[0]
if step > 0:
for j in xrange(len(index)-1):
if index[j] >= index[j+1]:
raise ValueError("Bad slice (not strictly monotonic): %s" % index)
elif step < 0:
for j in xrange(len(index)-1):
if index[j] <= index[j+1]:
raise ValueError("Bad slice (not strictly monotonic): %s" % index)
# Reverse the list so that it's strictly monotonically
# increasing and make a note that this dimension will
# need flipping later
index.reverse()
flip_axes.append(i)
else:
# Step is 0
raise ValueError("Bad slice (not strictly monotonic): %s" % index)
#--- End: if
#--- End: for
return parsed_indices, roll, flip_axes
#--- End: def
def _overlapping_partitions(partitions, indices, axes, master_flip):
'''
Return the nested list of (modified) partitions which overlap the
given indices to the master array.
:Parameters:
partitions : cf.PartitionMatrix
indices : tuple
axes : sequence of str
master_flip : list
:Returns:
out: numpy array
A numpy array of cf.Partition objects.
:Examples:
>>> type f.Data
<class 'cf.data.Data'>
>>> d._axes
['dim1', 'dim2', 'dim0']
>>> axis_to_position = {'dim0': 2, 'dim1': 0, 'dim2' : 1}
>>> indices = (slice(None), slice(5, 1, -2), [1,3,4,8])
>>> x = _overlapping_partitions(d.partitions, indices, axis_to_position, master_flip)
'''
axis_to_position = {}
for i, axis in enumerate(axes):
axis_to_position[axis] = i
if partitions.size == 1:
partition = partitions.matrix.item()
# Find out if this partition overlaps the original slice
p_indices, shape = partition.overlaps(indices)
if p_indices is None:
# This partition is not in the slice out of bounds - raise
# error?
return
# Still here? Create a new partition
partition = partition.copy()
partition.new_part(p_indices, axis_to_position, master_flip)
partition.shape = shape
new_partition_matrix = numpy_empty(partitions.shape, dtype=object)
new_partition_matrix[...] = partition
return new_partition_matrix
#--- End: if
# Still here? Then there are 2 or more partitions.
partitions_list = []
partitions_list_append = partitions_list.append
flat_pm_indices = []
flat_pm_indices_append = flat_pm_indices.append
partitions_flat = partitions.matrix.flat
i = partitions_flat.index
for partition in partitions_flat:
# Find out if this partition overlaps the original slice
p_indices, shape = partition.overlaps(indices)
if p_indices is None:
# This partition is not in the slice
i = partitions_flat.index
continue
# Still here? Then this partition overlaps the slice, so
# create a new partition.
partition = partition.copy()
partition.new_part(p_indices, axis_to_position, master_flip)
partition.shape = shape
partitions_list_append(partition)
flat_pm_indices_append(i)
i = partitions_flat.index
#--- End: for
new_shape = [len(set(s))
for s in numpy_unravel_index(flat_pm_indices, partitions.shape)]
new_partition_matrix = numpy_empty((len(flat_pm_indices),), dtype=object)
new_partition_matrix[...] = partitions_list
new_partition_matrix.resize(new_shape)
return new_partition_matrix
#--- End: def
# --------------------------------------------------------------------
#
# --------------------------------------------------------------------
def _getattr(x, attr):
return getattr(x, attr)
_array_getattr = numpy_vectorize(_getattr)
def _broadcast(a, shape):
'''
Broadcast an array to a given shape.
It is assumed that ``len(array.shape) <= len(shape)`` and that the
array is broadcastable to the shape by the normal numpy boradcasting
rules, but neither of these things are checked.
For example, ``d[...] = d._broadcast(e, d.shape)`` gives the same
result as ``d[...] = e``
:Parameters:
a : numpy array-like
shape : tuple
:Returns:
out: `numpy.ndarray`
'''
# Replace with numpy.broadcast_to v1.10 ??/
a_shape = numpy_shape(a)
if a_shape == shape:
return a
tile = [(m if n == 1 else 1)
for n, m in zip(a_shape[::-1], shape[::-1])]
tile = shape[0:len(shape)-len(a_shape)] + tuple(tile[::-1])
return numpy_tile(a, tile)
#--- End: def
|