1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
from numpy import empty as numpy_empty
from numpy import full as numpy_full
from numpy import load as numpy_load
from numpy import ndarray as numpy_ndarray
from numpy import save as numpy_save
from numpy.ma import array as numpy_ma_array
from numpy.ma import is_masked as numpy_ma_is_masked
from tempfile import mkstemp
from os import close
from ..functions import parse_indices, get_subspace
from ..functions import inspect as cf_inspect
from ..constants import CONSTANTS
# ====================================================================
#
# FileArray object
#
# ====================================================================
class FileArray(object):
'''
A sub-array stored in a file.
.. note:: Subclasses must define the following methods:
`!__getitem__`, `!__str__`, `!close` and `!open`.
'''
def __init__(self, **kwargs):
'''
**Initialization**
:Parameters:
file : str
The netCDF file name in normalized, absolute form.
dtype : numpy.dtype
The numpy data type of the data array.
ndim : int
Number of dimensions in the data array.
shape : tuple
The data array's dimension sizes.
size : int
Number of elements in the data array.
'''
self.__dict__ = kwargs
#--- End: def
def __deepcopy__(self, memo):
'''
Used if copy.deepcopy is called on the variable.
'''
return self.copy()
#--- End: def
def __repr__(self):
'''
x.__repr__() <==> repr(x)
'''
return "<CF %s: %s>" % (self.__class__.__name__, str(self))
#--- End: def
def __str__(self):
'''
x.__str__() <==> str(x)
'''
return "%s in %s" % (self.shape, self.file)
#--- End: def
def copy(self):
'''
Return a deep copy.
``f.copy() is equivalent to ``copy.deepcopy(f)``.
:Returns:
out :
A deep copy.
:Examples:
>>> g = f.copy()
'''
C = self.__class__
new = C.__new__(C)
new.__dict__ = self.__dict__.copy()
return new
# return type(self)(**self.__dict__)
#--- End: def
def inspect(self):
'''
Inspect the object for debugging.
.. seealso:: `cf.inspect`
:Returns:
None
'''
print cf_inspect(self)
#--- End: def
def fff():
pass
def close(self):
pass
#--- End: def
def open(self):
pass
#--- End: def
#--- End: class
# ====================================================================
#
# TempFileArray object
#
# ====================================================================
class TempFileArray(FileArray):
'''
A indexable N-dimensional array supporting masked values.
The array is stored on disk in a temporary file until it is
accessed. The directory containing the temporary file may be found and
set with the `cf.TEMPDIR` function.
'''
def __init__(self, array):
'''
**Initialization**
:Parameters:
array : numpy array
The array to be stored on disk in a temporary file.
:Examples:
>>> f = TempFileArray(numpy.array([1, 2, 3, 4, 5]))
>>> f = TempFileArray(numpy.ma.array([1, 2, 3, 4, 5]))
'''
# array = kwargs.pop('array')
#
# super(TempFileArray, self).__init__()
# ------------------------------------------------------------
# Use mkstemp because we want to be responsible for deleting
# the temporary file when done with it.
# ------------------------------------------------------------
fd, _partition_file = mkstemp(prefix='cf_array_', suffix='.npy',
dir=CONSTANTS['TEMPDIR'])
close(fd)
# The name of the temporary file storing the array
self._partition_file = _partition_file
# Numpy data type of the array
self.dtype = array.dtype
# Tuple of the array's dimension sizes
self.shape = array.shape
# Number of elements in the array
self.size = array.size
# Number of dimensions in the array
self.ndim = array.ndim
if numpy_ma_is_masked(array):
# Array is a masked array. Save it as record array with
# 'data' and 'mask' elements because this seems much
# faster than using numpy.ma.dump.
self._masked_as_record = True
numpy_save(_partition_file, array.toflex())
else:
self._masked_as_record = False
if hasattr(array, 'mask'):
# Array is a masked array with no masked elements
numpy_save(_partition_file, array.view(numpy_ndarray))
else:
# Array is not a masked array.
numpy_save(_partition_file, array)
#--- End: def
def __getitem__(self, indices):
'''
x.__getitem__(indices) <==> x[indices]
Returns a numpy array.
'''
array = numpy_load(self._partition_file)
indices = parse_indices(array, indices)
array = get_subspace(array, indices)
if self._masked_as_record:
# Convert a record array to a masked array
array = numpy_ma_array(array['_data'], mask=array['_mask'],
copy=False)
array.shrink_mask()
#--- End: if
# Return the numpy array
return array
#--- End: def
def __str__(self):
'''
x.__str__() <==> str(x)
'''
return '%s in %s' % (self.shape, self._partition_file)
#--- End: def
def close(self):
'''
Close all referenced open files.
:Returns:
None
:Examples:
>>> f.close()
'''
# No open files are referenced
pass
#--- End: def
#--- End: class
class CreateArray(FileArray):
'''
**Initialization**
:Parameters:
dtype : numpy.dtype
The numpy data type of the data array.
ndim : int
Number of dimensions in the data array.
shape : tuple
The data array's dimension sizes.
size : int
Number of elements in the data array.
fill_value : scalar, optional
'''
def __getitem__(self, indices):
'''
x.__getitem__(indices) <==> x[indices]
Returns a numpy array.
'''
array_shape = []
for index in parse_indices(self, indices):
if isinstance(index, slice):
step = index.step
if step == 1:
array_shape.append(index.stop - index.start)
elif step == -1:
stop = index.stop
if stop is None:
array_shape.append(index.start + 1)
else:
array_shape.append(index.start - index.stop)
else:
stop = index.stop
if stop is None:
stop = -1
a, b = divmod(stop - index.start, step)
if b:
a += 1
array_shape.append(a)
else:
array_shape.append(len(index))
#-- End: for
if self.fill_value is not None:
return numpy_full(array_shape, fill_value=self.fill_value, dtype=self.dtype)
else:
return numpy_empty(array_shape, dtype=self.dtype)
#--- End: def
def __repr__(self):
'''
x.__repr__() <==> repr(x)
'''
return "<CF {0}: shape={1}, dtype={2}, fill_value={3}>".format(
self.__class__.__name__, self.shape, self.dtype, self.fill_value)
#--- End: def
def __str__(self):
'''
x.__str__() <==> str(x)
'''
return repr(self)
#--- End: def
def reshape(self, newshape):
'''
'''
new = self.copy()
new.shape = newshape
new.ndim = len(newshape)
return new
#--- End: def
def resize(self, newshape):
'''
'''
self.shape = newshape
self.ndim = len(newshape)
#--- End: def
#--- End: class
|