1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
import numpy
from numpy import array as numpy_array
from numpy import asscalar as numpy_asscalar
from numpy import ndenumerate as numpy_ndenumerate
from numpy import empty as numpy_empty
from numpy import expand_dims as numpy_expand_dims
from numpy import squeeze as numpy_squeeze
from copy import deepcopy
from itertools import izip
from operator import mul
from .partition import Partition
# ====================================================================
#
# PartitionMatrix object
#
# ====================================================================
_empty_matrix = numpy_empty((), dtype=object)
class PartitionMatrix(object):
'''
A hyperrectangular partition matrix of a master data array.
Each of elements (called partitions) span all or part of exactly one
sub-array of the master data array.
Normal numpy basic and advanced indexing is supported, but size 1
dimensions are always removed from the output array, i.e. a partition
rather than a partition matrix is returned if the output array has
size 1.
**Attributes**
========== ===========================================================
Attribute Description
========== ===========================================================
`!axes`
`!matrix`
`!ndim` The number of partition dimensions in the partition matrix.
`!shape` List of the partition matrix's dimension sizes.
`!size` The number of partitions in the partition matrix.
========== ===========================================================
'''
def __init__(self, matrix, axes):
'''
**Initialization**
:Parameters:
matrix : numpy.ndarray
An array of Partition objects.
axes : list
The identities of the partition axes of the partition
array. If the partition matrix is a scalar array then it is an
empty list. DO NOT UPDATE INPLACE.
:Examples:
>>> pm = PartitionMatrix(
... numpy.array(Partition(location = [(0, 1), (2, 4)],
... shape = [1, 2],
... _dimensions = ['dim2', 'dim0'],
... Units = cf.Units('m'),
... part = [],
... data = numpy.array([[5, 6], [7, 8]])),
... dtype=object),
... axes=[])
'''
self.matrix = matrix
self.axes = axes
#--- End: def
def __deepcopy__(self, memo):
'''
Used if copy.deepcopy is called on the variable.
'''
return self.copy()
#--- End: def
def __getitem__(self, indices):
'''
x.__getitem__(indices) <==> x[indices]
Normal numpy basic and advanced indexing is supported, but size 1
dimensions are always removed from the output array, i.e. a partition
rather than a partition matrix is returned if the output array has
size 1.
Returns either a partition or a partition matrix.
:Examples:
>>> pm.shape
(5, 3)
>>> pm[0, 1]
<cf.data.partition.Partition at 0x1934c80>
>>> pm[:, 1]
<CF PartitionMatrix: 1 partition dimensions>
>>> pm[:, 1].shape
(5,)
>>> pm[1:4, slice(2, 0, -1)].shape
(3, 2)
>>> pm.shape
()
>>> pm[()]
<cf.data.partition.Partition at 0x1934c80>
>>> pm[...]
<cf.data.partition.Partition at 0x1934c80>
'''
out = self.matrix[indices]
if isinstance(out, Partition):
return out
if out.size == 1:
return self.matrix.item()
axes = [axis for axis, n in izip(self.axes, out.shape) if n != 1]
return type(self)(numpy_squeeze(out), axes)
#--- End: def
def __repr__(self):
'''
x.__repr__() <==> repr(x)
'''
return '<CF %s: %s>' % (self.__class__.__name__, self.shape)
#--- End: def
def __setitem__(self, indices, value):
'''
x.__setitem__(indices, y) <==> x[indices]=y
Indices must be an integer, a slice object or a tuple. If a slice
object is given then the value being assigned must be an iterable. If
a tuple of integers (or slices equivalent to an integer) is given then
there must be one index per partition matrix dimension.
:Examples:
>>> pm.shape
(3,)
>>> pm[2] = p1
>>> pm[:] = [p1, p2, p3]
>>> pm.shape
(2, 3)
>>> pm[0, 2] = p1
>>> pm.shape
()
>>> pm[()] = p1
>>> pm[...] = p1
'''
self.matrix[indices] = value
#--- End: def
def __str__(self):
'''
x.__str__() <==> str(x)
'''
return str(self.matrix)
out = []
for partition in self.matrix.flat:
out.append(str(partition))
return '\n'.join(out)
#--- End: def
def change_axis_names(self, axis_map):
'''
Change the axis names.
The axis names are arbitrary, so mapping them to another arbitrary
collection does not change the data array values, units, nor axis
order.
:Parameters:
axis_map : dict
:Returns:
None
:Examples:
'''
# Partition dimensions
axes = self.axes
self.axes = [axis_map[axis] for axis in axes]
# Partitions. Note that a partition may have dimensions which
# are not in self.axes and that these must also be in
# axis_name_map.
for partition in self.matrix.flat:
partition.change_axis_names(axis_map)
#--- End: def
# ----------------------------------------------------------------
# Attribute: ndim (can't set or delete)
# ----------------------------------------------------------------
@property
def ndim(self):
'''
The number of partition dimensions in the partition matrix.
Not to be confused with the number of dimensions of the master data
array.
:Examples:
>>> pm.shape
(8, 4)
>>> pm.ndim
2
>>> pm.shape
()
>>> pm.ndim
0
'''
return self.matrix.ndim
#--- End: def
# ----------------------------------------------------------------
# Attribute: shape (can't set or delete)
# ----------------------------------------------------------------
@property
def shape(self):
'''
List of the partition matrix's dimension sizes.
Not to be confused with the sizes of the master data array's
dimensions.
:Examples:
>>> pm.ndim
2
>>> pm.size
32
>>> pm.shape
(8, 4)
>>> pm.ndim
0
>>> pm.shape
()
'''
return self.matrix.shape
#--- End: def
# ----------------------------------------------------------------
# Attribute: size (can't set or delete)
# ----------------------------------------------------------------
@property
def size(self):
'''
The number of partitions in the partition matrix.
Not to be confused with the number of elements in the master data
array.
:Examples:
>>> pm.shape
(8, 4)
>>> pm.size
32
>>> pm.shape
()
>>> pm.size
1
'''
return self.matrix.size
#--- End: def
def add_partitions(self, adimensions, master_flip, extra_boundaries, axis):
'''
Add partition boundaries.
:Parameters:
adimensions : list
The ordered axis names of the master array.
master_flip : list
extra_boundaries : list of int
The boundaries of the new partitions.
axis : str
The name of the axis to have the new partitions.
'''
def _update_p(matrix, location, master_index,
part, master_axis_to_position, master_flip):
'''
:Parameters:
matrix : numpy array of cf.Partition objects
location : list
master_index : int
part : list
master_axis_to_position : dict
master_flip : list
:Returns:
out : numpy array of cf.Partition objects
'''
for partition in matrix.flat:
partition.location = partition.location[:]
partition.shape = partition.shape[:]
partition.location[master_index] = location
partition.shape[master_index] = shape
partition.new_part(part,
master_axis_to_position,
master_flip)
#--- End: for
return matrix
#--- End: def
# If no extra boundaries have been provided, just return
# without doing anything
if not extra_boundaries:
return
master_index = adimensions.index(axis)
index = self.axes.index(axis)
# Find the position of the extra-boundaries dimension in the
# list of master array dimensions
extra_boundaries = extra_boundaries[:]
# Create the master_axis_to_position dictionary required by
# Partition.new_part
master_axis_to_position = {}
for i, data_axis in enumerate(adimensions):
master_axis_to_position[data_axis] = i
matrix = self.matrix
shape = matrix.shape
# Initialize the new partition matrix
new_shape = list(shape)
new_shape[index] += len(extra_boundaries)
new_matrix = numpy_empty(new_shape, dtype=object)
part = [slice(None)] * len(adimensions)
indices = [slice(None)] * matrix.ndim
new_indices = indices[:]
new_indices[index] = 0
# Find the first extra boundary
x = extra_boundaries.pop(0)
for i in xrange(shape[index]):
indices[index] = i
sub_matrix = matrix[indices]
(r0, r1) = sub_matrix.flat.next().location[master_index]
# Could do better, perhaps, by assigning in blocks
if not r0 < x < r1:
new_matrix[new_indices] = sub_matrix
new_indices[index] += 1
continue
# Find the new extent of the original partition(s)
location = (r0, x)
shape = x - r0
part[master_index] = slice(0, shape)
# Create new partition(s) in place of the original ones(s)
# and set the location, shape and part attributes
new_matrix[new_indices] = _update_p(deepcopy(sub_matrix),
location, master_index,
part,
master_axis_to_position,
master_flip)
new_indices[index] += 1
while x < r1:
# Find the extent of the new partition(s)
if not extra_boundaries:
# There are no more new boundaries, so the new
# partition(s) run to the end of the original
# partition(s) in which they lie.
location1 = r1
else:
# There are more new boundaries, so this
# new partition runs either to the next
# new boundary or to the end of the
# original partition, which comes first.
location1 = min(extra_boundaries[0], r1)
#--- End: if
location = (x, location1)
shape = location1 - x
offset = x - r0
part[master_index] = slice(offset, offset + shape)
# Create the new partition(s) and set the
# location, shape and part attributes
new_matrix[new_indices] = _update_p(deepcopy(sub_matrix),
location, master_index,
part,
master_axis_to_position,
master_flip)
new_indices[index] += 1
if not extra_boundaries:
# ------------------------------------------------
# There are no more extra boundaries, so we can
# return now
# ------------------------------------------------
new_indices[index] = slice(new_indices[index], None)
indices[index] = slice(i+1, None)
new_matrix[new_indices] = matrix[indices]
self.matrix = new_matrix
return
#--- End: if
# Move on to the next new boundary
x = extra_boundaries.pop(0)
#--- End: while
#--- End: for
self.matrix = new_matrix
#--- End: def
def copy(self):
'''
Return a deep copy.
``pm.copy()`` is equivalent to ``copy.deepcopy(pm)``.
:Returns:
out :
The deep copy.
:Examples:
>>> pm.copy()
'''
# ------------------------------------------------------------
# NOTE: 15 May 2013. It is necesary to treat
# self.matrix.ndim==0 as a special case since there is a
# bug (feature?) in numpy <= v1.7 (at least):
# http://numpy-discussion.10968.n7.nabble.com/bug-in-deepcopy-of-rank-zero-arrays-td33705.html
# ------------------------------------------------------------
matrix = self.matrix
if not matrix.ndim:
new_matrix = _empty_matrix.copy() #numpy_empty((), dtype=object)
new_matrix[()] = matrix.item().copy()
return type(self)(new_matrix , [])
else:
new_matrix = numpy.empty(matrix.size, dtype=object)
new_matrix[...] = [partition.copy() for partition in matrix.flat]
new_matrix.resize(matrix.shape)
return type(self)(new_matrix, self.axes)
#--- End: def
def expand_dims(self, axis, i=False):
'''
Insert a new size 1 axis in place.
The new axis is always inserted at position 0, i.e. it becomes the new
slowest varying axis.
.. seealso:: `flip`, `squeezes`, `swapaxes`, `transpose`
:Parameters:
axis : str
The internal identity of the new axis.
:Returns:
out : cf.PartitionMatrix
:Examples:
>>> pm.shape
(2, 3)
>>> pm.expand_dims('dim2')
>>> pm.shape
(1, 2, 3)
'''
if i:
p = self
else:
p = self.copy()
p.matrix = numpy_expand_dims(p.matrix, 0)
p.axes = [axis] + p.axes
return p
#--- End: def
@property
def flat(self):
'''
A flat iterator over the partitions in the partition matrix.
:Examples:
>>> pm.shape
[2, 2]
>>> for partition in pm.flat:
... print repr(partition.Units)
...
<CF Units: m s-1>
<CF Units: km hr-1>
<CF Units: miles day-1>
<CF Units: mm minute-1>
>>> pm.flat
<numpy.flatiter at 0x1e14840>
>>> flat = pm.flat
>>> flat.next()
<cf.data.partition.Partition at 0x1934c80>
>>> flat.next()
<cf.data.partition.Partition at 0x784b347>
'''
return self.matrix.flat
#--- End: def
def ndenumerate(self):
'''
Return an iterator yielding pairs of array indices and values.
:Returns:
out : numpy.ndenumerate
An iterator over the array coordinates and values.
:Examples:
>>> pm.shape
(2, 3)
>>> for i, partition in pm.ndenumerate():
... print i, repr(partition)
...
(0, 0) <cf.data.partition.Partition object at 0x13a4490>
(0, 1) <cf.data.partition.Partition object at 0x24a4650>
(0, 2) <cf.data.partition.Partition object at 0x35a4590>
(1, 0) <cf.data.partition.Partition object at 0x46a4789>
(1, 1) <cf.data.partition.Partition object at 0x57a3456>
(1, 2) <cf.data.partition.Partition object at 0x68a9872>
'''
return numpy_ndenumerate(self.matrix)
#--- End: def
def partition_boundaries(self, data_axes):
'''
Return the partition boundaries for each dimension.
:Parameters:
data_axes : sequence
:Returns:
out : dict
:Examples:
'''
boundaries = {}
matrix = self.matrix
indices = [0] * self.ndim
for i, axis in enumerate(self.axes):
indices[i] = slice(None)
j = data_axes.index(axis)
b = [partition.location[j][0] for partition in matrix[indices].flat]
b.append(partition.location[j][1])
boundaries[axis] = b
indices[i] = 0
#--- End: for
return boundaries
#--- End: def
def swapaxes(self, axis0, axis1, i=False):
'''
Swap the positions of two axes.
Note that this does not change the master data array.
.. seealso:: `expand_dims`, `flip`, `squeeze`, `transpose`
:Parameters:
axis0, axis1 : ints
Select the axes to swap. Each axis is identified by its
original integer position.
:Returns:
out : cf.PartitionMatrix
:Examples:
>>> pm.shape
(2, 3, 4, 5)
>>> pm.swapaxes(1, 2)
>>> pm.shape
(2, 4, 3, 5)
>>> pm.swapaxes(1, -1)
>>> pm.shape
(2, 5, 3, 4)
'''
if i:
p = self
else:
p = self.copy()
if axis0 != axis1:
iaxes = range(p.matrix.ndim)
iaxes[axis1], iaxes[axis0] = iaxes[axis0], iaxes[axis1]
p.transpose(iaxes, i=True)
return p
#--- End: def
def set_location_map(self, data_axes, ns=None):
'''
Set the `!location` attribute of each partition of the partition
matrix in place.
:Parameters:
data_axes : sequence
The axes of the master data array.
:Examples:
>>> pm.set_location_map(['dim1', 'dim0'])
>>> pm.set_location_map([])
'''
matrix = self.matrix
shape = matrix.shape
axes = self.axes
slice_None = slice(None)
indices = [slice_None] * matrix.ndim
# Never update location in-place
for partition in matrix.flat:
partition.location = partition.location[:]
if ns is None:
ns = xrange(len(data_axes))
for axis, n in zip(data_axes, ns):
if axis in axes:
# ----------------------------------------------------
# This data array axis is also a partition matrix axis
# ----------------------------------------------------
m = axes.index(axis)
start = 0
for i in xrange(shape[m]):
indices[m] = i
flat = matrix[indices].flat
partition = flat.next()
stop = start + partition.shape[n]
location = (start, stop)
partition.location[n] = location
for partition in flat:
partition.location[n] = location
#--- End: for
start = stop
#--- End: for
indices[m] = slice_None
else:
# ----------------------------------------------------
# This data array axis is not a partition matrix axis
# ----------------------------------------------------
flat = matrix.flat
partition = flat.next()
location = (0, partition.shape[n])
partition.location[n] = location
for partition in flat:
partition.location[n] = location
#--- End: for
#--- End: def
def squeeze(self, i=False):
'''
Remove all size 1 axes in place.
Note that this does not change the master data array.
.. seealso:: `expand_dims`, `flip`, `swapaxes`, `transpose`
:Returns:
out : cf.PartitionMatrix
:Examples:
>>> pm.shape
(1, 2, 1, 2)
>>> pm.squeeze()
>>> pm.shape
(2, 2)
>>> pm.shape
(1,)
>>> pm.squeeze()
>>> pm.shape
()
>>> pm.squeeze()
>>> pm.shape
()
'''
if i:
p = self
else:
p = self.copy()
matrix = p.matrix
shape = matrix.shape
if 1 in shape:
p.matrix = matrix.squeeze()
axes = p.axes
p.axes = [axis for axis, size in izip(axes, shape) if size > 1]
return p
#--- End: def
def transpose(self, axes, i=False):
'''
Permute the partition dimensions of the partition matrix in place.
Note that this does not change the master data array.
.. seealso:: `expand_dims`, `flip`, `squeeze`, `swapaxes`
:Parameters:
axes : sequence of ints
Permute the axes according to the values given.
:Returns:
out : cf.PartitionMatrix
:Examples:
>>> pm.ndim
3
>>> pm.transpose((2, 0, 1))
'''
if i:
p = self
else:
p = self.copy()
matrix = p.matrix
if list(axes) != range(matrix.ndim):
p.matrix = matrix.transpose(axes)
p_axes = p.axes
p.axes = [p_axes[i] for i in axes]
return p
#--- End: def
#--- End: class
|