File: functions.py

package info (click to toggle)
cf-python 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,996 kB
  • sloc: python: 51,733; ansic: 2,736; makefile: 78; sh: 2
file content (2230 lines) | stat: -rw-r--r-- 58,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
import resource
import copy
import cPickle
import netCDF4
import psutil

from numpy import __file__          as numpy__file__
from numpy import __version__       as numpy__version__
from numpy import all               as numpy_all
from numpy import allclose          as numpy_allclose
from numpy import array             as numpy_array
from numpy import ascontiguousarray as numpy_ascontiguousarray 
from numpy import dtype             as numpy_dtype
from numpy import ndarray           as numpy_ndarray
from numpy import ndim              as numpy_ndim
from numpy import take              as numpy_take
from numpy import tile              as numpy_tile
from numpy import shape             as numpy_shape
from numpy import where             as numpy_where

from numpy.ma import all       as numpy_ma_all
from numpy.ma import allclose  as numpy_ma_allclose
from numpy.ma import is_masked as numpy_ma_is_masked
from numpy.ma import isMA      as numpy_ma_isMA
from numpy.ma import masked    as numpy_ma_masked

from collections import Iterable
from hashlib     import md5 as hashlib_md5
from marshal     import dumps as marshal_dumps
from math        import ceil as math_ceil
from os          import getpid, listdir, mkdir, curdir
from os.path     import isfile       as os_path_isfile
from os.path     import abspath      as os_path_abspath
from os.path     import commonprefix as os_path_commonprefix
from os.path     import expanduser   as os_path_expanduser
from os.path     import expandvars   as os_path_expandvars
from os.path     import dirname      as os_path_dirname
from os.path     import join         as os_path_join
from os.path     import relpath      as os_path_relpath 
from inspect     import getargspec
from itertools   import product as itertools_product
from itertools   import izip, izip_longest
from platform    import system, platform, python_version
from psutil      import virtual_memory, Process
from sys         import executable as sys_executable
from urlparse    import urlparse as urlparse_urlparse
from urlparse    import urljoin  as urlparse_urljoin

from .             import __version__, __file__
from .constants    import CONSTANTS, _file_to_fh

# Are we running on GNU/Linux?
_linux = system() == 'Linux'

if _linux:
    # ----------------------------------------------------------------
    # GNU/LINUX
    # ----------------------------------------------------------------
    _meminfo_fields = set(('SReclaimable:', 'Cached:', 'Buffers:', 'MemFree:'))
    _meminfo_file   = open('/proc/meminfo', 'r', 1)

    def _free_memory():
        '''

The amount of available physical memory on GNU/Linux.

This amount includes any memory which is still allocated but is no
longer required.

:Returns:

    out: `float`
        The amount of available physical memory in bytes.

:Examples:

>>> _free_memory()
96496240.0

'''
        # https://github.com/giampaolo/psutil/blob/master/psutil/_pslinux.py

        # ----------------------------------------------------------------
        # The available physical memory is the sum of the values of
        # the 'SReclaimable', 'Cached', 'Buffers' and 'MemFree'
        # entries in the /proc/meminfo file
        # (http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt).
        # ----------------------------------------------------------------
        free_KiB = 0.0
        n=0
    
        for line in _meminfo_file:
            field_size = line.split()
            if field_size[0] in _meminfo_fields:
                free_KiB += float(field_size[1])
                n += 1
                if n > 3:
                    break
        #--- End: for
        _meminfo_file.seek(0)
    
        return free_KiB * 1024
    #--- End: def
else:
    # ----------------------------------------------------------------
    # NOT GNU/LINUX
    # ----------------------------------------------------------------
    def _free_memory():
        '''

The amount of available physical memory.

:Returns:

    out: float
        The amount of available physical memory in bytes.

:Examples:

>>> _free_memory()
96496240.0

'''
        return float(virtual_memory().available)
    #--- End: def
#--- End: if

def FREE_MEMORY():
    '''

The available physical memory.

If the FREE_MEMORY constant is not None then its value is returned,
otherwise the actual amount of free memory is calculated and
returned. In either case, the FREE_MEMORY constant is not updated. The
FREE_MEMORY constant is set with the ``cf.SET_FREE_MEMORY`` function.

Note that in the former case, the returned value is likely to differ
from the actual amount of free memory. However, calculating the actual
amount of free memory is expensive, so it may be desireable to set it
once at the start of a process, ideally resetting it to None after the
process has completed.

:Returns:

    out: `float`
        The amount of free memory in bytes.

:Examples:

>>> import numpy
>>> print 'Free memory =', cf.FREE_MEMORY()/2**30, 'GiB'
Free memory = 88.2728042603 GiB
>>> a = numpy.arange(10**9)
>>> print 'Free memory =', cf.FREE_MEMORY()/2**30, 'GiB'
Free memory = 80.8082618713 GiB
>>> del a
>>> print 'Free memory =', cf.FREE_MEMORY()/2**30, 'GiB'
Free memory = 88.2727928162 GiB

'''
    free_memory = CONSTANTS['FREE_MEMORY']

    if free_memory is None:
        return _free_memory()

    return free_memory
#--- End: def

def SET_FREE_MEMORY(*arg):
    '''

:Parameters:

    arg: `None`, optional

:Returns:

    `None`

:Examples:

>>> cf.SET_FREE_MEMORY()
>>> cf.SET_FREE_MEMORY(None)

''' 
    if arg:
        CONSTANTS['FREE_MEMORY'] = arg[0]
    else:
        CONSTANTS['FREE_MEMORY'] = _free_memory()
#--- End: def

def FM_THRESHOLD():
    '''

The amount of memory which is kept free as a temporary work space.

:Returns:

    out: float
        The amount of memory in bytes.

.. seealso:: `cf.CHUNKSIZE`, `cf.MINNCFM`

:Examples:

>>> cf.FM_THRESHOLD()
10000000000.0
>>> old = cf.MINNCFM(2*cf.MINNCFM())
>>> cf.FM_THRESHOLD()
20000000000.0

'''
    return CONSTANTS['FM_THRESHOLD']
#--- End: def

def CHUNKSIZE(*size):
    '''

The memory chunk size in bytes for data storage and processing.

When setting the chunk size, the amount of minimum amount of memory to
be kept free as a temporary work space is also updated.

:Parameters:

    size: int, optional
        The new chunk size in bytes. The default is to not change the
        current value.

:Returns:

    out: float
        The value prior to the change, or the current value if no new
        value was specified.

.. seealso:: `cf.MINNCFM`

:Examples:

>>> cf.CHUNKSIZE()
57095864.32
>>> old = cf.CHUNKSIZE(2**30)
>>> cf.CHUNKSIZE(old)
1073741824
>>> cf.CHUNKSIZE()
57095864.32

'''
    old = CONSTANTS['CHUNKSIZE']
 
    if size:
        size = size[0]
        CONSTANTS['CHUNKSIZE']    = size
        CONSTANTS['FM_THRESHOLD'] = MINNCFM() * size
    #--- End: if

    return old
#--- End: def

def TOTAL_MEMORY():
    '''
'''
    return CONSTANTS['TOTAL_MEMORY']
#--- End: def

def MINNCFM(*arg):
    '''

The number of chunks of memory to be kept free as a temporary work
space.

A chunk of memory is the amount of memory set by `cf.CHUNKSIZE`.
 
:Parameters:

    arg: int, optional
        The number of chunks to be kept free as a temporary work
        space. The default is to not change the current value.

:Returns:

    out: int
        The value prior to the change, or the current value if no new
        value was specified.

.. seealso:: `cf.CHUNKSIZE`

:Examples:

>>> cf.MINNCFM()
10
>>> old = cf.MINNCFM(20)
>>> cf.MINNCFM(old)
20
>>> f.MINNCFM()
10

'''
    old = CONSTANTS['MINNCFM']

    if arg:
        minncfm = arg[0]
        CONSTANTS['MINNCFM']      = minncfm
        CONSTANTS['FM_THRESHOLD'] = minncfm * CHUNKSIZE()

    return old
#--- End: def

def TEMPDIR(*arg):
    '''

The directory for internally generated temporary files.

When setting the directory, it is created if the specified path does
not exist.

:Parameters:

    arg: str, optional
        The new directory for temporary files. Tilde expansion (an
        initial component of ``~`` or ``~user`` is replaced by that
        *user*'s home directory) and environment variable expansion
        (substrings of the form ``$name`` or ``${name}`` are replaced
        by the value of environment variable *name*) are applied to
        the new directory name.

        The default is to not change the directory.

:Returns:

    out: str
        The directory prior to the change, or the current directory if
        no new value was specified.

:Examples:

>>> cf.TEMPDIR()
'/tmp'
>>> old = cf.TEMPDIR('/home/me/tmp')
>>> cf.TEMPDIR(old)
'/home/me/tmp'
>>> cf.TEMPDIR()
'/tmp'

'''
    old = CONSTANTS['TEMPDIR']

    if arg:
        tempdir = os_path_expanduser(os_path_expandvars(arg[0]))

        # Create the directory if it does not exist.
        try:
            mkdir(tempdir)
        except OSError:
            pass

        CONSTANTS['TEMPDIR'] = tempdir
    #--- End: if

    return old
#--- End: def

def OF_FRACTION(*arg):
    '''

The amount of concurrently open files above which files containing
data arrays may be automatically closed.

The amount is expressed as a fraction of the maximum possible number
of concurrently open files.

Note that closed files will be automatically reopened if subsequently
needed by a variable to access its data array.

:Parameters:

    arg: float, optional
        The new fraction (between 0.0 and 1.0). The default is to not
        change the current behaviour.

:Returns:

    out: float
        The value prior to the change, or the current value if no new
        value was specified.

.. seealso:: `cf.close_files`, `cf.close_one_file`, `cf.open_files`,
             `cf.open_files_threshold_exceeded`

:Examples:

>>> cf.OF_FRACTION()
0.5
>>> old = cf.OF_FRACTION(0.33)
>>> cf.OF_FRACTION(old)
0.33
>>> cf.OF_FRACTION()
0.5

The fraction may be translated to an actual number of files as
follows:

>>> old = cf.OF_FRACTION(0.75)
>>> import resource
>>> max_open_files = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
>>> threshold = int(max_open_files * cf.OF_FRACTION())
>>> max_open_files, threshold
(1024, 768)

'''
    old = CONSTANTS['OF_FRACTION']

    if arg:
        CONSTANTS['OF_FRACTION'] = arg[0]

    return old
#--- End: def

def REGRID_LOGGING(*arg):
    """

Whether or not to enable ESMPy logging.

If it is logging is performed after every call to ESMPy.

:Parameters:

    arg: bool, optional
        The new value (either True to enable logging or False to disable it).
        The default is to not change the current behaviour.

:Returns:

    out: bool
        The value prior to the change, or the current value if no new
        value was specified.

:Examples:

>>> cf.REGRID_LOGGING()
False
>>> cf.REGRID_LOGGING(True)
False
>>> cf.REGRID_LOGGING()
True

    """
    old = CONSTANTS['REGRID_LOGGING']
    
    if arg:
        CONSTANTS['REGRID_LOGGING'] = arg[0]
    
    return old
#--- End:def

def dump(x, **kwargs):
    '''
    
Print a description of an object.

If the object has a `!dump` method then this is used to create the
output, so that ``cf.dump(f)`` is equivalent to ``print f.dump()``.
Otherwise ``cf.dump(x)`` is equivalent to ``print x``.

:Parameters:

    x:
        The object to print.

    kwargs: *optional*
        As for the input variable's `!dump` method, if it has one.

:Returns:

    None

:Examples:

>>> x = 3.14159
>>> cf.dump(x)
3.14159

>>> f
<CF Field: rainfall_rate(latitude(10), longitude(20)) kg m2 s-1>
>>> cf.dump(f)
>>> cf.dump(f, complete=True)

'''
    if hasattr(x, 'dump') and callable(x.dump):
        print x.dump(**kwargs)
    else:
        print x
#--- End: def

_max_number_of_open_files = resource.getrlimit(resource.RLIMIT_NOFILE)[0]

if _linux:
    # ----------------------------------------------------------------
    # GNU/LINUX
    # ----------------------------------------------------------------

    # Directory containing a symbolic link for each file opened by the
    # current python session
    _fd_dir = '/proc/'+str(getpid())+'/fd'

    def open_files_threshold_exceeded():
        '''

Return True if the total number of open files is greater than the
current threshold. GNU/LINUX.

The threshold is defined as a fraction of the maximum possible number
of concurrently open files (an operating system dependent amount). The
fraction is retrieved and set with the `OF_FRACTION` function.

:Returns:

    out: bool
        Whether or not the number of open files exceeds the threshold.

.. seealso:: `cf.close_files`, `cf.close_one_file`, `cf.open_files`

:Examples:

In this example, the number of open files is 75% of the maximum
possible number of concurrently open files:

>>> cf.OF_FRACTION()
0.5
>>> print cf.open_files_threshold_exceeded()
True
>>> cf.OF_FRACTION(0.9)
>>> print cf.open_files_threshold_exceeded()
False

'''
        return len(listdir(_fd_dir)) > _max_number_of_open_files * OF_FRACTION()
    #---End: def
else:
    # ----------------------------------------------------------------
    # NOT GNU/LINUX
    # ---------------------------------------------------------------- 
    _process = Process(getpid())

    def open_files_threshold_exceeded():
        '''

Return True if the total number of open files is greater than the
current threshold.

The threshold is defined as a fraction of the maximum possible number
of concurrently open files (an operating system dependent amount). The
fraction is retrieved and set with the `OF_FRACTION` function.

:Returns:

    out: bool
        Whether or not the number of open files exceeds the threshold.

.. seealso:: `cf.close_files`, `cf.close_one_file`, `cf.open_files`

:Examples:

In this example, the number of open files is 75% of the maximum
possible number of concurrently open files:

>>> cf.OF_FRACTION()
0.5
>>> print cf.open_files_threshold_exceeded()
True
>>> cf.OF_FRACTION(0.9)
>>> print cf.open_files_threshold_exceeded()
False

'''
        return len(_process.open_files()) > _max_number_of_open_files * OF_FRACTION()
    #---End: def
#---End: if

def close_files(file_format=None):
    '''Close open files containing sub-arrays of data arrays.

By default all such files are closed, but this may be restricted to
files of a particular format.

Note that closed files will be automatically reopened if subsequently
needed by a variable to access the sub-array.

If there are no appropriate open files then no action is taken.

:Parameters:

    file_format: str, optional
        Only close files of the given format. Recognised formats are
        ``'netCDF'`` and ``'PP'``. By default files of any format are
        closed.

:Returns:

    None

.. seealso:: `cf.close_one_file`, `cf.open_files`,
             `cf.open_files_threshold_exceeded`

:Examples:

>>> cf.close_files()
>>> cf.close_files('netCDF')
>>> cf.close_files('PP')

    '''
    if file_format is not None:
        if file_format in _file_to_fh:
            for fh in _file_to_fh[file_format].itervalues():
                fh.close()
        
            _file_to_fh[file_format].clear()
    else:
        for file_format, value in _file_to_fh.iteritems():
            for fh in value.itervalues():
                fh.close()
        
            _file_to_fh[file_format].clear()
#---End: def

def close_one_file(file_format=None):
    '''Close an arbitrary open file containing a sub-array of a data array.

By default a file of arbitrary format is closed, but the choice may be
restricted to files of a particular format.

Note that the closed file will be automatically reopened if
subsequently needed by a variable to access the sub-array.

If there are no appropriate open files then no action is taken.

:Parameters:

    file_format: str, optional
        Only close a file of the given format. Recognised formats are
        ``'netCDF'`` and ``'PP'``. By default a file of any format is
        closed.

:Returns:

    None

.. seealso:: `cf.close_files`, `cf.open_files`,
             `cf.open_files_threshold_exceeded`

:Examples:

>>> cf.close_one_file()
>>> cf.close_one_file('netCDF')
>>> cf.close_one_file('PP')

>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x181bcd0>,
            'file2.nc': <netCDF4.Dataset at 0x1e42350>,
            'file3.nc': <netCDF4.Dataset at 0x1d185e9>}}
>>> cf.close_one_file()
>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x181bcd0>,
            'file3.nc': <netCDF4.Dataset at 0x1d185e9>}}

    '''
    if file_format is not None:
        if file_format in _file_to_fh and _file_to_fh[file_format]:
            filename, fh = next(_file_to_fh[file_format].iteritems())
            fh.close()
            del _file_to_fh[file_format][filename]
   
    else:    
        for values in _file_to_fh.itervalues():
            if not values:
                continue
        
            filename, fh = next(values.iteritems())
            fh.close()
            del values[filename]
            return
#---End: def

def open_files(file_format=None):
    '''

Return the open files containing sub-arrays of data arrays.

By default all such files are returned, but the selection may be
restricted to files of a particular format.

:Parameters:

    file_format: str, optional
        Only return files of the given format. Recognised formats are
        ``'netCDF'`` and ``'PP'``. By default all files are returned.

:Returns:

    out: dict
        If *file_format* is set then return a dictionary of file names
        of the specified format and their open file objects. If
        *file_format* is not set then return a dictionary for which
        each key is a file format whose value is the dictionary that
        would have been returned if the *file_format* parameter was
        set.

.. seealso:: `cf.close_files`, `cf.close_one_file`,
             `cf.open_files_threshold_exceeded`

:Examples:

>>> cf.open_files()
{'netCDF': {'file1.nc': <netCDF4.Dataset at 0x187b6d0>}}
>>> cf.open_files('netCDF')
{'file1.nc': <netCDF4.Dataset at 0x187b6d0>}
>>> cf.open_files('PP')
{}

'''  
    if file_format is not None:
        if file_format in _file_to_fh:
            return _file_to_fh[file_format].copy()
        else:
            return {}
    else:   
        out = {}
        for file_format, values in _file_to_fh.iteritems():
            out[file_format] = values.copy()
            
        return out
#---End: def


def ufunc(name, x, *args, **kwargs):
    '''

The variable must have a `!copy` method and a method called
*name*. Any optional positional and keyword arguments are passed
unchanged to the variable's *name* method.

:Parameters:

    name: str

    x:
        The input variable.

    args, kwargs:


:Returns:

    out: 
        A new variable with size 1 axes inserted into the data array.

:Examples:

'''
    x = x.copy()
    getattr(x, name)(*args, **kwargs)
    return x
#--- End: def

def _numpy_allclose(a, b, rtol=None, atol=None):
    '''

Returns True if two broadcastable arrays have equal values to within
numerical tolerance, False otherwise.

The tolerance values are positive, typically very small numbers. The
relative difference (``rtol * abs(b)``) and the absolute difference
``atol`` are added together to compare against the absolute difference
between ``a`` and ``b``.

:Parameters:

    a, b: array_like
        Input arrays to compare.

    atol: float, optional
        The absolute tolerance for all numerical comparisons, By
        default the value returned by the `ATOL` function is used.

    rtol: float, optional
        The relative tolerance for all numerical comparisons, By
        default the value returned by the `RTOL` function is used.

:Returns:

    out: bool
        Returns True if the arrays are equal, otherwise False.

:Examples:

>>> cf._numpy_allclose([1, 2], [1, 2])
True
>>> cf._numpy_allclose(numpy.array([1, 2]), numpy.array([1, 2]))
True
>>> cf._numpy_allclose([1, 2], [1, 2, 3])
False
>>> cf._numpy_allclose([1, 2], [1, 4])
False

>>> a = numpy.ma.array([1])
>>> b = numpy.ma.array([2])
>>> a[0] = numpy.ma.masked
>>> b[0] = numpy.ma.masked
>>> cf._numpy_allclose(a, b)
True

'''      
    if not (numpy_ma_isMA(a) or numpy_ma_isMA(b)):
        try:
            return numpy_allclose(a, b, rtol=rtol, atol=atol)
        except (IndexError, NotImplementedError, TypeError):
            return numpy_all(a == b)
    else:
        try:
            return numpy_ma_allclose(a, b, rtol=rtol, atol=atol)
        except (IndexError, NotImplementedError, TypeError):
            out = numpy_ma_all(a == b)
            if out is numpy_ma_masked:
                return True
            else:
                return out
#--- End: def

def parse_indices(data, indices, cyclic=False):
    '''

:Parameters:

    data: array-like

    indices: tuple

:Returns:

    out: list [, dict]

:Examples:

'''
    parsed_indices = []
    roll           = {}

    if not isinstance(indices, tuple):
        indices = (indices,)

    # Initialize the list of parsed indices as the input indices with any
    # Ellipsis objects expanded
    length = len(indices)
    n = data.ndim
    ndim = n
    for index in indices:
        if index is Ellipsis:
            m = n-length+1
            parsed_indices.extend([slice(None)] * m)
            n -= m            
        else:
            parsed_indices.append(index)
            n -= 1

        length -= 1
    #--- End: for
    len_parsed_indices = len(parsed_indices)

    if ndim and len_parsed_indices > ndim:
        raise IndexError("Invalid indices %s for array with shape %s" %
                         (parsed_indices, data.shape))

    if len_parsed_indices < ndim:
        parsed_indices.extend([slice(None)]*(ndim-len_parsed_indices))

    if not ndim and parsed_indices:
        ## If data is scalar then allow it to be indexed with an
        ## equivalent to [0]
        #if (len_parsed_indices == 1 and
        #    parsed_indices[0] in (0, 
        #                          -1,
        #                          slice(0, 1), 
        #                          slice(-1, None, -1),  
        #                          slice(None, None, None))):
        #    parsed_indices = []
        #else:            
        raise IndexError("Scalar array can only be indexed with () or Ellipsis")

    #--- End: if

    for i, (index, size) in enumerate(zip(parsed_indices, data.shape)):

        if isinstance(index, slice):            
            start = index.start
            stop  = index.stop
            step  = index.step
            if start is None or stop is None:
                step = 0
            elif step is None:
                step = 1

            if step > 0:
                if 0 < start < size and 0 <= stop <= start:
                    # 6:0:1 => -4:0:1
                    # 6:1:1 => -4:1:1
                    # 6:3:1 => -4:3:1
                    # 6:6:1 => -4:6:1
                    start = size-start
                elif -size <= start < 0 and -size <= stop <= start:
                    # -4:-10:1  => -4:1:1
                    # -4:-9:1   => -4:1:1
                    # -4:-7:1   => -4:3:1
                    # -4:-4:1   => -4:6:1 
                    # -10:-10:1 => -10:0:1
                    stop += size
            elif step < 0:
                if -size <= start < 0 and start <= stop < 0:
                    # -4:-1:-1   => 6:-1:-1
                    # -4:-2:-1   => 6:-2:-1
                    # -4:-4:-1   => 6:-4:-1
                    # -10:-2:-1  => 0:-2:-1
                    # -10:-10:-1 => 0:-10:-1
                    start += size
                elif 0 <= start < size and start < stop < size:
                    # 0:6:-1 => 0:-4:-1
                    # 3:6:-1 => 3:-4:-1
                    # 3:9:-1 => 3:-1:-1
                    stop -= size
            #--- End: if            
                        
            if step > 0 and -size <= start < 0 and 0 <= stop <= size+start:
                # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
                # -1:0:1  => [9]
                # -1:1:1  => [9, 0]
                # -1:3:1  => [9, 0, 1, 2]
                # -1:9:1  => [9, 0, 1, 2, 3, 4, 5, 6, 7, 8]
                # -4:0:1  => [6, 7, 8, 9]
                # -4:1:1  => [6, 7, 8, 9, 0]
                # -4:3:1  => [6, 7, 8, 9, 0, 1, 2]
                # -4:6:1  => [6, 7, 8, 9, 0, 1, 2, 3, 4, 5]
                # -9:0:1  => [1, 2, 3, 4, 5, 6, 7, 8, 9]
                # -9:1:1  => [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
                # -10:0:1 => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
                if cyclic:
                    index = slice(0, stop-start, step)
                    roll[i] = -start
                else:
                    index = slice(start, stop, step)

            elif step < 0 and 0 <= start < size and start-size <= stop < 0:
                # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
                # 0:-4:-1  => [0, 9, 8, 7]
                # 6:-1:-1  => [6, 5, 4, 3, 2, 1, 0]
                # 6:-2:-1  => [6, 5, 4, 3, 2, 1, 0, 9]
                # 6:-4:-1  => [6, 5, 4, 3, 2, 1, 0, 9, 8, 7]
                # 0:-2:-1  => [0, 9]
                # 0:-10:-1 => [0, 9, 8, 7, 6, 5, 4, 3, 2, 1]
                if cyclic:
                    index = slice(start-stop-1, None, step)
                    roll[i] = -1 - stop
                else:
                    index = slice(start, stop, step)

            else:
                start, stop, step = index.indices(size)
                if (start == stop or
                    (start < stop and step < 0) or
                    (start > stop and step > 0)):
                    raise IndexError("Invalid indices %s for array with shape %s" %
                                     (parsed_indices, data.shape))
                if step < 0 and stop < 0:
                    stop = None
                index = slice(start, stop, step)
         
        elif isinstance(index, (int, long)):
            if index < 0: 
                index += size
            index = slice(index, index+1, 1)
        else:
            convert2positve = True
            if getattr(getattr(index, 'dtype', None), 'kind', None) == 'b':
                # Convert booleans to non-negative integers. We're
                # assuming that anything with a dtype attribute also
                # has a size attribute.
                if index.size != size:
                    raise IndexError(
                        "Invalid indices %s for array with shape %s" %
                        (parsed_indices, data.shape))

                index = numpy_where(index)[0]
                convert2positve = False
            #--- End: if

            len_index = len(index)
            if len_index == 1:                
                index = index[0]
                if index < 0:
                    index += size
                    
                index = slice(index, index+1, 1)
            elif not len_index:
                raise IndexError("Invalid indices %s for array with shape %s" %
                                 (parsed_indices, data.shape))
            else:
                if convert2positve:
                    # Convert to non-negative integer numpy array
                    index = numpy_array(index)
                    index = numpy_where(index < 0, index+size, index)

                steps = index[1:] - index[:-1]
                step = steps[0]
                if step and not (steps - step).any():
                    # We can replace the list with a slice object
                    if step > 0:
                        start, stop = index[0], index[-1]+1
                    elif step < 0:
                        start, stop = index[0], index[-1]-1
                        
                    if stop < 0:
                        stop = None
                            
                    index = slice(start, stop, step)

                else:
                    index = index.tolist()
        #--- End: if
                    
        parsed_indices[i] = index    
    #--- End: for

    if cyclic:    
        return parsed_indices, roll
    else:
        return parsed_indices
#--- End: def

def get_subspace(array, indices):
    '''

:Parameters:

    array: numpy array

    indices: list

Subset the input numpy array with the given indices. Indexing is similar to
that of a numpy array. The differences to numpy array indexing are:

1. An integer index i takes the i-th element but does not reduce the rank of
   the output array by one.

2. When more than one dimension's slice is a 1-d boolean array or 1-d sequence
   of integers then these indices work independently along each dimension
   (similar to the way vector subscripts work in Fortran).

indices must contain an index for each dimension of the input array.
'''
    gg = [i for i, x in enumerate(indices) if not isinstance(x, slice)]
    len_gg = len(gg)

    if len_gg < 2:
        # ------------------------------------------------------------
        # At most one axis has a list-of-integers index so we can do a
        # normal numpy subspace
        # ------------------------------------------------------------
        return array[tuple(indices)]

    else:
        # ------------------------------------------------------------
        # At least two axes have list-of-integers indices so we can't
        # do a normal numpy subspace
        # ------------------------------------------------------------
        if numpy_ma_isMA(array):
            take = numpy_ma_take
        else:
            take = numpy_take

        indices = indices[:]
        for axis in gg:
            array = take(array, indices[axis], axis=axis)
            indices[axis] = slice(None)

        if len_gg < len(indices):
            array = array[tuple(indices)]

        return array
    #--- End: if

#--- End: def

def set_subspace(array, indices, value):
    '''
'''
    gg = [i for i, x in enumerate(indices) if not isinstance(x, slice)]

    if len(gg) < 2: 
        # ------------------------------------------------------------
        # At most one axis has a list-of-integers index so we can do a
        # normal numpy assignment
        # ------------------------------------------------------------
        array[tuple(indices)] = value
    else:
        # ------------------------------------------------------------
        # At least two axes have list-of-integers indices so we can't
        # do a normal numpy assignment
        # ------------------------------------------------------------
        indices1 = indices[:]
        for i, x in enumerate(indices):
            if i in gg:
                y = []
                args = [iter(x)] * 2
                for start, stop in izip_longest(*args):
                    if not stop:
                        y.append(slice(start, start+1))
                    else:
                        step = stop - start
                        stop += 1
                        y.append(slice(start, stop, step))
                #--- End: for
                indices1[i] = y
            else:
                indices1[i] = (x,)
        #--- End: for
        
        if not numpy_ndim(value) :
            for i in itertools_product(*indices1):
                array[i] = value
                
        else:
            indices2 = []
            ndim_difference = array.ndim - numpy_ndim(value)
            for i, n in enumerate(numpy_shape(value)):
                if n == 1:
                    indices2.append((slice(None),))
                elif i + ndim_difference in gg:
                    y = []
                    start = 0
                    while start < n:
                        stop = start + 2
                        y.append(slice(start, stop))
                        start = stop
                    #--- End: while
                    indices2.append(y)
                else:
                    indices2.append((slice(None),))
            #--- End: for

            for i, j in izip(itertools_product(*indices1),
                             itertools_product(*indices2)):
                array[i] = value[j]
#--- End: def

def ATOL(*arg):
    '''

The value of absolute tolerance for testing numerically tolerant
equality.

:Parameters:

    arg: int, optional
        The new value of absolute tolerance. The default is to not
        change the current value.

:Returns:

    out: float
        The value prior to the change, or the current value if no
        new value was specified.

.. seealso:: `cf.RTOL`

:Examples:

>>> cf.ATOL()
1e-08
>>> old = cf.ATOL(1e-10)
>>> cf.ATOL(old)
1e-10
>>> cf.ATOL()
1e-08

'''
    old = CONSTANTS['ATOL']

    if arg:
        CONSTANTS['ATOL'] = arg[0]

    return old
#--- End: def

def RTOL(*arg):    
    '''

The value of relative tolerance for testing numerically
tolerant equality.

:Parameters:

    arg: int, optional
        The new value of relative tolerance. The default is to not
        change the current value.

:Returns:

    out: float
        The value prior to the change, or the current value if no
        new value was specified.

.. seealso:: `cf.ATOL`

:Examples:

>>> cf.RTOL()
1.0000000000000001e-05
>>> old = cf.RTOL(1e-10)
>>> cf.RTOL(old)
1e-10
>>> cf.RTOL()
1.0000000000000001e-05

'''
    old = CONSTANTS['RTOL']

    if arg:
        CONSTANTS['RTOL'] = arg[0]

    return old
#--- End: def

def equals(x, y, rtol=None, atol=None, ignore_fill_value=False,
           traceback=False):
    '''

True if and only if two objects are logically equal.

If the first argument, *x*, has an :meth:`equals` method then it is
used, and in this case ``equals(x, y)`` is equivalent to
``x.equals(y)``. Else if the second argument, *y*, has an
:meth:`equals` method then it is used, and in this case ``equals(x,
y)`` is equivalent to ``y.equals(x)``.

:Parameters:

    x, y :
        The objects to compare for equality.

    atol: float, optional
        The absolute tolerance for all numerical comparisons, By
        default the value returned by the `ATOL` function is used.

    rtol: float, optional
        The relative tolerance for all numerical comparisons, By
        default the value returned by the `RTOL` function is used.

    ignore_fill_value: bool, optional
        If True then `cf.Data` arrays with different fill values are
        considered equal. By default they are considered unequal.

    traceback: bool, optional
        If True then print a traceback highlighting where the two
        objects differ.

:Returns: 

    out: bool
        Whether or not the two objects are equal.

:Examples:

>>> f
<CF Field: rainfall_rate(latitude(10), longitude(20)) kg m2 s-1>
>>> cf.equals(f, f)
True

>>> cf.equals(1.0, 1.0)
True
>>> cf.equals(1.0, 33)
False

>>> cf.equals('a', 'a')
True
>>> cf.equals('a', 'b')
False

>>> type(x), x.dtype
(<type 'numpy.ndarray'>, dtype('int64'))
>>> y = x.copy()
>>> cf.equals(x, y)
True
>>> cf.equals(x, x+1)
False

>>> class A(object):
...     pass
...
>>> a = A()
>>> b = A()
>>> cf.equals(a, a)
True
>>> cf.equals(a, b)
False

'''
    eq = getattr(x, 'equals', None)
    if callable(eq):
        # x has a callable equals method
        return eq(y, rtol=rtol, atol=atol,
                  ignore_fill_value=ignore_fill_value,
                  traceback=traceback)

    eq = getattr(y, 'equals', None)
    if callable(eq):
        # y has a callable equals method
        return eq(x, rtol=rtol, atol=atol,
                  ignore_fill_value=ignore_fill_value,
                  traceback=traceback)

    if isinstance(x, numpy_ndarray):
        if isinstance(y, numpy_ndarray):
            if x.shape != y.shape:
                return False

            if rtol is None:
                rtol = RTOL()
            if atol is None:
                atol = ATOL()
                    
            return _numpy_allclose(x, y, rtol=rtol, atol=atol)
        else:
            return False
    elif isinstance(y, numpy_ndarray):
        return False

    else:
        return x == y
#--- End: def

def set_equals(x, y, rtol=None, atol=None, ignore_fill_value=False,
               traceback=False):
    '''
'''    
    eq = getattr(x, 'set_equals', None)
    if callable(eq):
        # x has a callable set_equals method
        return eq(y, rtol=rtol, atol=atol,
                  ignore_fill_value=ignore_fill_value,
                  traceback=traceback)

    eq = getattr(y, 'set_equals', None)
    if callable(eq):
        # y has a callable set_equals method
        return eq(x, rtol=rtol, atol=atol,
                  ignore_fill_value=ignore_fill_value,
                  traceback=traceback)

    return equals(x, y, rtol=rtol, atol=atol,
                  ignore_fill_value=ignore_fill_value,
                  traceback=traceback)
#--- End: def

def equivalent(x, y, rtol=None, atol=None, traceback=False):
    '''

True if and only if two objects are logically equivalent.

If the first argument, *x*, has an `!equivalent` method then it is
used, and in this case ``equivalent(x, y)`` is the same as
``x.equivalent(y)``.

:Parameters:

    x, y:
        The objects to compare for equivalence.

    atol: float, optional
        The absolute tolerance for all numerical comparisons, By
        default the value returned by the `ATOL` function is used.

    rtol: float, optional
        The relative tolerance for all numerical comparisons, By
        default the value returned by the `RTOL` function is used.

    traceback: bool, optional
        If True then print a traceback highlighting where the two
        objects differ.

:Returns: 

    out: bool
        Whether or not the two objects are equivalent.

:Examples:

>>> f
<CF Field: rainfall_rate(latitude(10), longitude(20)) kg m2 s-1>
>>> cf.equivalent(f, f)
True

>>> cf.equivalent(1.0, 1.0)
True
>>> cf.equivalent(1.0, 33)
False

>>> cf.equivalent('a', 'a')
True
>>> cf.equivalent('a', 'b')
False

>>> cf.equivalent(cf.Data(1000, units='m'), cf.Data(1, units='km'))
True

For a field, ``f``:

>>> cf.equivalent(f, f.transpose())
True


'''

    if rtol is None:
        rtol = RTOL()
    if atol is None:
        atol = ATOL()

    if hasattr(x, 'equivalent') and callable(x.equivalent):
        # x has a callable eequivalent method
        return x.equivalent(y, rtol=rtol, atol=atol, traceback=traceback)

    return equals(x, y, rtol=rtol, atol=atol, ignore_fill_value=True,
                  traceback=traceback)
#--- End: def

def flat(x):
    '''

Return an iterator over an arbitrarily nested sequence.

:Parameters:

    x: scalar or arbitrarily nested sequence
        The arbitrarily nested sequence to be flattened. Note that a
        If *x* is a string or a scalar then this is equivalent to
        passing a single element sequence containing *x*.

:Returns:

    out: generator
        An iterator over flattened sequence.

:Examples:

>>> print cf.flat([1, [2, [3, 4]]])
<generator object flat at 0x3649cd0>

>>> print list(cf.flat([1, (2, [3, 4])]))
[1, 2, 3, 4]

>>> import numpy
>>> print list(cf.flat((1, [2, numpy.array([[3, 4], [5, 6]])]))
[1, 2, 3, 4, 5, 6]

>>> for a in cf.flat([1, [2, [3, 4]]]):
...     print a,
1 2 3 4

>>> for a in cf.flat(['a', ['bc', ['def', 'ghij']]]):
...     print a, ' ',
a bc def ghij

>>> for a in cf.flat(2004):
...     print a
2004

>>> for a in cf.flat('abcdefghij'):
...     print a
abcdefghij

>>> f
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
>>> for a in cf.flat(f):
...     print repr(a)
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>

>>> for a in cf.flat([f, [f, [f, f]]]):
...     print repr(a)
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>
<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>

>>> fl = cf.FieldList(cf.flat([f, [f, [f, f]]])
>>> fl
[<CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
 <CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
 <CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>,
 <CF Field: eastward_wind(air_pressure(5), latitude(110), longitude(106)) m s-1>]

'''
    if not isinstance(x, Iterable) or isinstance(x, basestring):
        x = (x,)

    for a in x:
        if not isinstance(a, basestring) and isinstance(a, Iterable):
            for sub in flat(a):
                yield sub
        else:
            yield a
#--- End: def

def pickle(x, filename, overwrite=False):
    '''

Write a binary pickled representation of an object to a file.

Note that Field and FieldList objects are picklable and their pickle
file size will be very small if their data arrays contain file
pointers as opposed to numpy arrays.

The pickling is equivalent to::

   import cPickle
   fh = open('file.pkl', 'wb')
   cPickle.dump(x, fh, 2)
   fh.close()

:Parameters:

    x: 
        The object to be pickled.

    filename: str
        The name of the file in which to write the pickled
        representation of *x*.

    overwrite: bool, optional
        If True a pre-existing output file is over written. By default
        an exception is raised if the output file pre-exists.

:Returns:

    None

:Raises:

    IOError :
        If *overwrite* is False and the output file pre-exists.

    PickleError :
        If the object is not picklable.

.. seealso:: `cf.unpickle`

:Examples:

For any picklable object, x:

>>> cf.pickle(x, 'file.pkl')
>>> y = cf.unpickle('file.pkl')
>>> cf.equals(x, y)
True

'''
    if not overwrite and os_path_isfile(filename):
        raise IOError(
            "Can't pickle to an existing file unless overwrite=True")

    fh = open(filename, 'wb')
    try:
        cPickle.dump(x, fh, 2)
    except:
        fh.close()
        raise cPickle.PickleError("Failed whilst pickling %s" % repr(x))

    fh.close()
#--- End: def

def unpickle(filename):
    '''

Return the reconstituted (unpickled) object from a binary pickle file.

Any binary pickle file may be used as input.

The unpickling is equivalent to::

   import cPickle
   fh = open('file.pkl', 'rb')
   x = cPickle.load(fh)
   fh.close()

:Parameters:

    filename: str
        The name of the file containing the pickled object.

:Returns:

    out: 
        The reconstituted object.

:Raises:

    UnpicklingError:
        If the file can not be unpickled. In particular, this might be
        raised when attempting to unpickle fields which were pickled
        with a different, incompatible version of cf.

.. seealso:: `cf.pickle`

:Examples:

For any picklable object, x:

>>> cf.pickle(x, 'file.pkl')
>>> y = cf.unpickle('file.pkl')
>>> cf.equals(x, y)
True

'''
    fh = open(filename, 'rb')

    try:
        x = cPickle.load(fh)
    except:
        # Failed unpickling can throw up any type of error, so trap
        # them all, but raise an informative UnpicklingError.
        fh.close()
        raise cPickle.UnpicklingError(
            "Failed whilst unpickling file '%s'" % filename)
    
    fh.close()
    return x
#--- End: def

_d = {'char': numpy_dtype('S1')}

def string_to_numpy_data_type(string):
    '''
'''

    try:
        return numpy_dtype(string)
    except TypeError:
        try:
            return _d[string]
        except KeyError:
            raise TypeError("asdasd  kkasdhahsjj734654376")
#--- End: def

def abspath(filename):
    '''

Return a normalized absolute version of a file name.

If a string containing URL is provided then it is returned unchanged.

:Parameters:

    filename: str
        The name of the file.

:Returns:

    out: str
        The normalized absolutized version of *filename*.
 
.. seealso:: `cf.dirname`, `cf.pathjoin`, `cf.relpath`

:Examples:

>>> import os
>>> os.getcwd()
'/data/archive'
>>> cf.abspath('file.nc')
'/data/archive/file.nc'
>>> cf.abspath('..//archive///file.nc')
'/data/archive/file.nc'
>>> cf.abspath('http://data/archive/file.nc')
'http://data/archive/file.nc'

'''
    u = urlparse_urlparse(filename)
    if u.scheme != '':
        return filename

    return os_path_abspath(filename)
#--- End: def

def relpath(filename, start=None):
    '''

Return a relative filepath to a file.

The filepath is relative either from the current directory or from an
optional start point.

If a string containing URL is provided then it is returned unchanged.

:Parameters:

    filename: str
        The name of the file.

    start: str, optional
        The start point for the relative path. By default the current
        directoty is used.

:Returns:

    out: str
        The relative path.

.. seealso:: `cf.abspath`, `cf.dirname`, `cf.pathjoin`

:Examples:

>>> cf.relpath('/data/archive/file.nc')
'../file.nc'
>>> cf.relpath('/data/archive///file.nc', start='/data')
'archive/file.nc'
>>> cf.relpath('http://data/archive/file.nc')
'http://data/archive/file.nc'

'''
    u = urlparse_urlparse(filename)
    if u.scheme != '':
        return filename

    if start is not None:
        return os_path_relpath(filename, start)

    return os_path_relpath(filename)
#--- End: def

def dirname(filename):
    '''

Return the directory name of a file.

If a string containing URL is provided then everything up to, but not
including, the last slash (/) is returned.

:Parameters:

    filename: str
        The name of the file.

:Returns:

    out: str
        The directory name.

.. seealso:: `cf.abspath`, `cf.pathjoin`, `cf.relpath`

:Examples:

>>> cf.dirname('/data/archive/file.nc')
'/data/archive'
>>> cf.dirname('..//file.nc')
'..'
>>> cf.dirname('http://data/archive/file.nc')
'http://data/archive'

'''
    u = urlparse_urlparse(filename)
    if u.scheme != '':
        return filename.rpartition('/')[0]

    return os_path_dirname(filename)
#--- End: def

def pathjoin(path1, path2):
    '''

Join two file path components intelligently.

If either of the paths is a URL then a URL will be returned

:Parameters:

    path1: str
        The first component of the path.

    path2: str
        The second component of the path.

:Returns:

    out: str
        The joined paths.

.. seealso:: `cf.abspath`, `cf.dirname`, `cf.relpath`

:Examples:

>>> cf.pathjoin('/data/archive', '../archive/file.nc')
'/data/archive/../archive/file.nc'
>>> cf.pathjoin('/data/archive', '../archive/file.nc')
'/data/archive/../archive/file.nc'
>>> cf.abspath(cf.pathjoin('/data/', 'archive/')
'/data/archive'
>>> cf.pathjoin('http://data', 'archive/file.nc')
'http://data/archive/file.nc'

'''
    u = urlparse_urlparse(path1)
    if u.scheme != '':
        return urlparse_urljoin(path1, path2)

    return os_path_join(path1, path2)
#--- End: def

def hash_array(array):
    '''

Return the hash value of a numpy array.

The hash value is dependent on the data type, shape of the data
array. If the array is a masked array then the hash value is
independent of the fill value and of data array values underlying any
masked elements.

The hash value is not guaranteed to be portable across versions of
Python, numpy and cf.

:Parameters:

    array: numpy.ndarray
        The numpy array to be hashed. May be a masked array.

:Returns:

    out: int
        The hash value

:Examples:

>>> print array
[[0 1 2 3]]
>>> cf.hash_array(array)
-8125230271916303273
>>> array[1, 0] = numpy.ma.masked
>>> print array
[[0 -- 2 3]]
>>> cf.hash_array(array)
791917586613573563
>>> array.hardmask = False
>>> array[0, 1] = 999
>>> array[0, 1] = numpy.ma.masked
>>> cf.hash_array(array)
791917586613573563
>>> array.squeeze()
>>> print array
[0 -- 2 3]
>>> cf.hash_array(array)
-7007538450787927902
>>> array.dtype = float
>>> print array
[0.0 -- 2.0 3.0]
>>> cf.hash_array(array)
-4816859207969696442

'''
    h = hashlib_md5()
    
    h_update = h.update
    
    h_update(marshal_dumps(array.dtype.name))
    h_update(marshal_dumps(array.shape))
    
    if numpy_ma_isMA(array):        
        if numpy_ma_is_masked(array):
            mask = array.mask
            if not mask.flags.c_contiguous:               
                mask = numpy_ascontiguousarray(mask)

            h_update(mask)
            array = array.copy()
            array.set_fill_value()
            array = array.filled()
        else:
            array = array.data
    #--- End: if

    if not array.flags.c_contiguous:               
#        array = array.copy()
        array = numpy_ascontiguousarray(array)
        
    h_update(array)
    
    return hash(h.digest())
#--- End: def

def inspect(self):
    '''

Inspect the attributes of an object.

:Returns: 

    out: str

:Examples:

>>> print x.inspect
<CF CoordinateReference: rotated_latitude_longitude>
----------------------------------------------------
_dict: {'grid_north_pole_latitude': 38.0, 'grid_north_pole_longitude': 190.0}
coord_terms: set([])
coords: set(['dim2', 'dim1', 'aux2', 'aux3'])
name: 'rotated_latitude_longitude'
ncvar: 'rotated_latitude_longitude'
type: 'grid_mapping'

'''
    name = repr(self)
    out = [name, ''.ljust(len(name), '-')]
    
    if hasattr(self, '__dict__'):
        for key, value in sorted(self.__dict__.items()):
            out.append('%s: %s' % (key, repr(value)))
        
    return '\n'.join(out)
#--- End: def

def broadcast_array(array, shape):
    '''

Broadcast an array to a given shape.
    
It is assumed that ``numpy.ndim(array) <= len(shape)`` and that the
array is broadcastable to the shape by the normal numpy broadcasting
rules, but neither of these things is checked.
    
For example, ``a[...] = broadcast_array(a, b.shape)`` is equivalent to
``a[...] = b``.
    
:Parameters:
  
    a: numpy array-like
    
    shape: tuple
    
:Returns:

    out: numpy array
    
:Examples:


>>> a = numpy.arange(8).reshape(2, 4)
[[0 1 2 3]
 [4 5 6 7]]

>>> print cf.broadcast_array(a, (3, 2, 4))
[[[0 1 2 3]
  [4 5 6 0]]

 [[0 1 2 3]
  [4 5 6 0]]

 [[0 1 2 3]
  [4 5 6 0]]]

>>> a = numpy.arange(8).reshape(2, 1, 4)
[[[0 1 2 3]]

 [[4 5 6 7]]]

>>> print cf.broadcast_array(a, (2, 3, 4))
[[[0 1 2 3]
  [0 1 2 3]
  [0 1 2 3]]

 [[4 5 6 7]
  [4 5 6 7]
  [4 5 6 7]]]

>>> a = numpy.ma.arange(8).reshape(2, 4)
>>> a[1, 3] = numpy.ma.masked
>>> print a
[[0 1 2 3]
 [4 5 6 --]]

>>> cf.broadcast_array(a, (3, 2, 4))
[[[0 1 2 3]
  [4 5 6 --]]

 [[0 1 2 3]
  [4 5 6 --]]

 [[0 1 2 3]
  [4 5 6 --]]]

'''
    a_shape = numpy_shape(array)
    if a_shape == shape:
        return array

    tile = [(m if n == 1 else 1)
            for n, m in zip(a_shape[::-1], shape[::-1])]
    tile = shape[0:len(shape)-len(a_shape)] + tuple(tile[::-1])
    
    return numpy_tile(array, tile)
#--- End: def

def allclose(x, y, rtol=None, atol=None):
    '''

Returns True if two broadcastable arrays have equal values to within
numerical tolerance, False otherwise.

The tolerance values are positive, typically very small numbers. The
relative difference (``rtol * abs(b)``) and the absolute difference
``atol`` are added together to compare against the absolute difference
between ``a`` and ``b``.

:Parameters:

    x, y: array_like
        Input arrays to compare.

    atol: float, optional
        The absolute tolerance for all numerical comparisons, By
        default the value returned by the `ATOL` function is used.

    rtol: float, optional
        The relative tolerance for all numerical comparisons, By
        default the value returned by the `RTOL` function is used.

:Returns:

    out: bool
        Returns True if the arrays are equal, otherwise False.

:Examples:

'''    
    if rtol is None:
        rtol = RTOL()
    if atol is None:
        atol = ATOL()

    allclose = getattr(x, 'allclose', None)
    if callable(allclose):
        # x has a callable allclose method
       return allclose(y, rtol=rtol, atol=atol)

    allclose = getattr(y, 'allclose', None)
    if callable(allclose):
        # y has a callable allclose method
       return allclose(x, rtol=rtol, atol=atol)

    # x nor y has a callable allclose method
    return _numpy_allclose(x, y, rtol=rtol, atol=atol)
#--- End: def

def _section(o, axes=None, data=False, stop=None, chunks=False,
             min_step=1, **kwargs):
    """

Return a list of m dimensional sections of a Field of n dimensions or
a dictionary of m dimensional sections of a Data object of n
dimensions, where m <= n. In the case of a Data object the keys of the
dictionary are the indicies of the sections in the original Data
object. The m dimensions that are not sliced are marked with None as a
placeholder making it possible to reconstruct the original data
object. The corresponding values are the resulting sections of type
cf.Data.

:Parameters:

    axes: *optional*
        In the case of a Field this is a query for the m axes that
        define the sections of the Field as accepted by the Field
        object's axes method.  The keyword arguments are also passed
        to this method. See `cf.Field.axes` for details. If an axis is
        returned that is not a data axis it is ignored, since it is
        assumed to be a dimension coordinate of size 1. In the case of
        a Data object this should be a tuple or a list of the m
        indices of the m axes that define the sections of the Data
        object. If axes is None (the default) all axes are selected.
    
    data: bool, optional
        If True this indicates that a data object has been passed, if
        False it indicates that a field object has been passed. By
        default it is False.

    stop: int, optional
        Stop after taking this number of sections and return. If stop
        is None all sections are taken.
    
    chunks: bool, optional
        If True return sections that are of the maximum possible size
        that will fit in one chunk of memory instead of sectioning
        into slices of size 1 along the dimensions that are being
        sectioned.
    
    min_step: int, optional
        The minimum step size when making chunks. By default this is
        1. Can be set higher to avoid size 1 dimensions, which are
        problematic for bilinear regridding.

:Returns:

    out: list or dict
        The list of m dimensional sections of the Field or the
        dictionary of m dimensional sections of the Data object.

:Examples:

Section a field into 2D longitude/time slices, checking the units:

>>> _section(f, {None: 'longitude', units: 'radians'},
...             {None: 'time',
...              'units': 'days since 2006-01-01 00:00:00'})

Section a field into 2D longitude/latitude slices, requiring exact
names:

>>> _section(f, ['latitude', 'longitude'], exact=True)

    """
    
    # retrieve the index of each axis defining the sections
    if data:
        if axes == None:
            axis_indices = range(o.ndim)
        else:
            axis_indices = axes
    else:
        axis_keys = o.axes(axes, **kwargs)
        axis_indices = list()
        for key in axis_keys:
            try:
                axis_indices.append(o.data_axes().index(key))
            except ValueError:
                pass
        #--- End: for
    #--- End: if
    
    # find the size of each dimension
    sizes = o.shape
    
    if chunks:
        steps = list(sizes)
        
        # Define the factor which, when multiplied by the size of the
        # data array, determines how many chunks are in the data array.
        factor = (o.dtype.itemsize + 1.0)/CHUNKSIZE()
        
        # n_chunks = number of equal sized bits the partition
        #            needs to be split up into so that each bit's
        #            size is less than ther chunk size.
        n_chunks = int(math_ceil(o.size*factor))
        
        for (index, axis_size) in enumerate(sizes):
            if int(math_ceil(float(axis_size)/min_step)) <= n_chunks:
                n_chunks = int(math_ceil(n_chunks/float(axis_size)*min_step))
                steps[index] = min_step
                
            else:
                steps[index] = int(axis_size/n_chunks)                
                break
        #--- End: for
    else:
        steps = [1] * len(sizes)
    
    # use recursion to slice out each 2D horizontal section
    if data:
        d = dict()
    else:
        fl = []
    
    indices = [slice(None)] * len(sizes)
    
    nl_vars = {'count': 0}
    def loop_over_index(current_index):
        # Expects an index to loop over in the list indices. If this is less
        # than 0 the horizontal slice defined by indices is appended to the
        # FieldList fl, if it is the specified axis indices the value in
        # indices is left as slice(None) and it calls itself recursively with
        # the next index, otherwise each index is looped over. In this loop
        # the routine is called recursively with the next index. If the count
        # of the number of slices taken is greater than or equal to stop
        # it returns before taking any more slices.
        
        if current_index < 0:
            if data:
                d[tuple([x.start for x in indices])] = o[tuple(indices)]
            else:
                fl.append(o.subspace[tuple(indices)])
            nl_vars['count'] += 1
            return
        
        if current_index in axis_indices:
            loop_over_index(current_index - 1)
            return
        
        for i in range(0, sizes[current_index], steps[current_index]):
            if not stop is None and nl_vars['count'] >= stop:
                return
            indices[current_index] = slice(i, i + steps[current_index])
            loop_over_index(current_index - 1)
    #--- End: def
    
    current_index = len(sizes) - 1
    loop_over_index(current_index)
    
    if data:
        return d
    else:
        return fl
#--- End: def

def ENVIRONMENT():
    '''
'''
    print 'Platform:'      , platform() 
    print 'HDF5 library:'  , netCDF4. __hdf5libversion__
    print 'netcdf library:', netCDF4.__netcdf4libversion__
    print 'python:'        , python_version()   , sys_executable
    print 'netCDF4:'       , netCDF4.__version__, os_path_abspath(netCDF4.__file__)
    print 'numpy:'         , numpy__version__   , os_path_abspath(numpy__file__)
    print 'psutil:'        , psutil.__version__ , os_path_abspath(psutil.__file__)
    print 'cf:'            , __version__        , os_path_abspath(__file__)
#--- End: def