File: read.py

package info (click to toggle)
cf-python 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,996 kB
  • sloc: python: 51,733; ansic: 2,736; makefile: 78; sh: 2
file content (1316 lines) | stat: -rw-r--r-- 43,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
import re
from netCDF4  import Dataset as netCDF4_Dataset
from operator import mul
from json     import loads as json_loads
from ast      import literal_eval as ast_literal_eval
from struct   import unpack as struct_unpack
from struct   import error  as struct_error


from numpy import dtype       as numpy_dtype
from numpy import result_type as numpy_result_type

from ..coordinate          import DimensionCoordinate, AuxiliaryCoordinate
from ..coordinatebounds    import CoordinateBounds
from ..cellmeasure         import CellMeasure
from ..coordinatereference import CoordinateReference
from ..field               import Field, FieldList
from ..cellmethods         import CellMethods
from ..units               import Units
from ..functions           import abspath, dirname, pathjoin

from ..data.data import Data

from .functions import _open_netcdf_file
from .filearray import NetCDFFileArray

def read(filename, fmt=None, promote=(), verbose=False):
    ''' 

Read fields from an input netCDF file on disk or from an OPeNDAP
server location.

The file may be big or little endian.

NetCDF dimension names are stored in the `nc_dimensions` attribute of
a field's domain and netCDF variable names are stored in the `ncvar`
attributes of the field and its domain components (coordinates,
coordinate bounds, cell measures and coordinate referencess).

:Parameters:

    filename : str or file
        A string giving the file name or OPenDAP URL, or an open file
        object, from which to read fields. Note that if a file object
        is given it will be closed and reopened.

    fmt : str, optional
        Only read the file if it is the given format. Valid formats
        are ``'NETCDF'`` for a CF-netCDF file and ``'CFA'`` for
        CFA-netCDF file. By default a file of any of these formats is
        read.

    promote : sequence of str, optional

    verbose : bool, optional
        If True then print information to stdout.
    
:Returns:

    out : FieldList
        The fields in the file.

:Examples:

>>> f = cf.netcdf.read('file.nc')
>>> type(f)
<class 'cf.field.FieldList'>
>>> f
[<CF Field: pmsl(30, 24)>,
 <CF Field: z-squared(17, 30, 24)>,
 <CF Field: temperature(17, 30, 24)>,
 <CF Field: temperature_wind(17, 29, 24)>]

>>> cf.netcdf.read('file.nc')[0:2]
[<CF Field: pmsl(30, 24)>,
 <CF Field: z-squared(17, 30, 24)>]

>>> cf.netcdf.read('file.nc', units='K')
[<CF Field: temperature(17, 30, 24)>,
 <CF Field: temperature_wind(17, 29, 24)>]

>>> cf.netcdf.read('file.nc')[0]
<CF Field: pmsl(30, 24)>

'''
    if isinstance(filename, file):
        name = filename.name
        filename.close()
        filename = name
    #--- End: if
    
    # ----------------------------------------------------------------
    # Parse promote
    # ----------------------------------------------------------------
    try:
        iter(promote)
    except TypeError:
        raise ValueError(
            "Can't read: Bad parameter value: promote=%r" % promote)
            
    if 'all' in promote:
        promote = set(('reference', 'ancillary', 'dimension', 'auxiliary', 'measure'))
    else:
        if 'field' in promote:
            promote = set(promote).union(('reference', 'ancillary'))
        if 'coordinate' in promote:
            promote = set(promote).union(('dimension', 'auxiliary'))

    top_level = set()

    filename = abspath(filename)

    # Read the netCDF file 
    nc = _open_netcdf_file(filename, 'r') 

    # Set of all of the netCDF variable names in the file.
    #
    # For example:
    # >>> variables
    # set(['lon','lat','tas'])
    variables = set(map(str, nc.variables))

    # ----------------------------------------------------------------
    # Put the file's global attributes into the global
    # 'global_attributes' dictionary
    # ----------------------------------------------------------------
    global_attributes = {}
    for attr in map(str, nc.ncattrs()):
        try:
            value = nc.getncattr(attr)
            if isinstance(value, basestring):
                try:
                    global_attributes[attr] = str(value)
                except UnicodeEncodeError:
                    global_attributes[attr] = value.encode(errors='ignore')          
            else:
                global_attributes[attr] = value     
        except UnicodeDecodeError:
            pass
    #--- End: for
        
    # Find out if this is a CFA file
    cfa = 'CFA' in global_attributes.get('Conventions', [])

    if (fmt and 
        (not cfa and fmt == 'CFA') or (cfa and fmt == 'NETCDF')):
        # Return an empty field list
        return FieldList()

    # ----------------------------------------------------------------
    # Create a dictionary keyed by nc variable names where each key's
    # value is a dictionary of that variable's nc
    # attributes. E.g. attributes['tas']['units']='K'
    # ----------------------------------------------------------------
    attributes = {}
    for ncvar in variables:
        attributes[ncvar] = {}
        for attr in map(str, nc.variables[ncvar].ncattrs()):
            try:
                attributes[ncvar][attr] = nc.variables[ncvar].getncattr(attr)
                if isinstance(attributes[ncvar][attr], basestring):
                    try:
                        attributes[ncvar][attr] = str(attributes[ncvar][attr])
                    except UnicodeEncodeError:
                        attributes[ncvar][attr] = attributes[ncvar][attr].encode(errors='ignore')
            except UnicodeDecodeError:
                pass
        #--- End: for  

        # Check for bad units
        try:
            Units(attributes[ncvar].get('units', None), 
                  attributes[ncvar].get('calendar', None))
        except (ValueError, TypeError):
            # Units in file have been set to unknown units so 1) give
            # a warning, 2) set the 'nonCF_units' property to the bad
            # units and 3) remove the offending units.
            attributes[ncvar]['nonCF_Units'] = \
                attributes[ncvar].pop('units', '')
            attributes[ncvar]['nonCF_Units'] += \
                ' '+attributes[ncvar].pop('calendar', '')
            if verbose:
                print(
"WARNING: Moving unsupported units to 'nonCF_Units': %s" % attributes[ncvar]['nonCF_Units'])
    #--- End: for

    # ----------------------------------------------------------------
    # Remove everything bar data variables from the list of
    # variables. I.e. remove dimension and auxiliary coordinates,
    # their bounds and grid_mapping variables
    # ----------------------------------------------------------------
    nc_dimensions = map(str, nc.dimensions)

    for ncvar in variables.copy():

        # Remove dimension coordinates and their bounds
        if ncvar in nc_dimensions:

            if ncvar in variables:

                if 'dimension' in promote:
                    # Add the dimension coordinate to the set of
                    # top-level fields, so that it doesn't get demoted
                    # if the auxiliary coordinate is also in a
                    # coordinate reference.
                    top_level.add(ncvar)
                else:
                    # Do not promote an auxiliary coordinate to also
                    # appear as a top-level field
                    variables.discard(ncvar)

#                variables.discard(ncvar)
                for attr in ('bounds', 'climatology'):
                    if attr not in attributes[ncvar]:
                        continue
                
                    # Check the dimensionality of the coordinate's
                    # bounds. If it is not right, then it can't be a
                    # bounds variable and so promote to an independent
                    # data variable
                    bounds = attributes[ncvar][attr]
                    if bounds in nc.variables:
                        if nc.variables[bounds].ndim == nc.variables[ncvar].ndim+1:
                            variables.discard(bounds)
                        else:
                            del attributes[ncvar][attr]

                        break
                    else:
                        del attributes[ncvar][attr]
                        if verbose:
                            print(
"WARNING: Missing bounds variable '%(bounds)s' in %(filename)s" %
locals())
                #--- End: for
            #--- End: if

            continue
        #--- End: if

        # Still here? Then remove auxiliary coordinates (unless they
        # have been promoted) and their bounds.
        if 'coordinates' in attributes[ncvar]:
            # Allow for (incorrect) comma separated lists
            for aux in re.split('\s+|\s*,\s*', attributes[ncvar]['coordinates']):
                if aux in variables:
                    
                    if 'auxiliary' in promote:
                        # Add the auxiliary coordinate to the set of
                        # top-level fields, so that it doesn't get
                        # demoted if the auxiliary coordinate is also
                        # in a coordinate reference.
                        top_level.add(aux)
                    else:
                        # Do not promote an auxiliary coordinate to
                        # also appear as a top-level field
                        variables.discard(aux)

                    for attr in ('bounds', 'climatology'):
                        if attr not in attributes[aux]:
                            continue

                        # Check the dimensionality of the coordinate's
                        # bounds. If it is not right, then it can't be
                        # a bounds variable and so promote to an
                        # independent data variable.
                        bounds = attributes[aux][attr]
                        if bounds in nc.variables:
                            if nc.variables[bounds].ndim == nc.variables[aux].ndim+1:
                                variables.discard(bounds)
                            else:
                                del attributes[aux][attr]

                            break
                        else:
                            del attributes[aux][attr]
                            if verbose:
                                print(
"WARNING: Missing bounds variable '%(bounds)s' in %(filename)s" %
locals())
                    #--- End: for
                #--- End: if
            #--- End: for
        #--- End: if

        # Remove grid mapping variables
        if 'grid_mapping' in attributes[ncvar]:
            variables.discard(attributes[ncvar]['grid_mapping'])

        # Remove cell measure variables (unless they have been promoted).
        if 'measure' not in promote and 'cell_measures' in attributes[ncvar]:
            cell_measures = re.split('\s*(\w+):\s*',
                                     attributes[ncvar]['cell_measures'])
            for ncvar in cell_measures[2::2]:
                variables.discard(ncvar)
        #--- End: if

    #--- End: for

    # ----------------------------------------------------------------
    # Everything left in the variables set is now a proper data
    # variable, so make a list of fields, each of which contains one
    # data variable and the relevant shared metadata.
    # ----------------------------------------------------------------

    # Dictionary mapping netCDF variable names of domain components to
    # their cf Variables.
    #
    # For example:
    # >>> seen_in_file
    # {'lat': <CF Coordinate: (73)>}
    seen_in_file = {}

    # Set
    #
    # For example:
    # >>> 
    #
    coordref_field_pointers = set()

    ancillary_variables = set()
    fields_in_file      = FieldList()

    for data_ncvar in variables:
        # Don't turn private CFA variables into fields
        if _is_cfa_private_variable(nc.variables[data_ncvar], cfa):
            continue

        f = _create_Field(filename,
                          nc,
                          data_ncvar,
                          attributes,
                          seen_in_file,
                          ancillary_variables, 
                          coordref_field_pointers,
                          global_attributes,
                          cfa=cfa,
                          verbose=verbose)
        
        fields_in_file.append(f)
    #--- End: for

    # ----------------------------------------------------------------
    # Find which fields are being pointed to from coordinate
    # references
    # ----------------------------------------------------------------
    if 'reference' in promote:
        # Promote coordinate conversion fields to also appear at the
        # top level
        top_level.update(coordref_field_pointers)

    ncvar_to_field = {}
    if coordref_field_pointers:
        i = 0        
        while i < len(fields_in_file):
            f = fields_in_file[i]
            ncvar = f.ncvar            
            if ncvar in coordref_field_pointers:   
                # Map the pointer to the field so that later we'll be
                # able to replace the pointer with the field
                if ncvar not in ncvar_to_field:
                    ncvar_to_field[ncvar] = f.copy()

                if ncvar not in top_level:
                    del fields_in_file[i]
                    i -= 1
            #--- End: if

            i += 1
    #--- End: if

    # ----------------------------------------------------------------
    # Inside coordinate references, replace pointers to fields with
    # the actual fields themselves.
    # ----------------------------------------------------------------
    if ncvar_to_field:
        for f in fields_in_file:
            for key, ref in f.refs().items():
                for term, value in ref.iteritems():
                    if isinstance(value, dict):
                        # Define this coordinate conversion field
                        try:
                            g = ncvar_to_field[value['ncvar']].copy()
                            # If this coordinate conversion field has a
                            # coordinate reference which contains itself
                            # then remove that coordinate reference.
                            for key2, ref2 in g.refs().iteritems():
                                for value2 in ref2.itervalues():
                                    if isinstance(value2, dict) and value2['ncvar'] == g.ncvar:
                                        g.remove_item(key2)
                            #--- End: for
                            ref[term] = g
                        except KeyError:
                            # Something went wrong. Most likely an
                            # inappropriate coordinate reference
                            # belonging to a promotes dimension or
                            # auxiliary corodinate. Just get rid of
                            # the coordinate reference.
                            f.remove_item(key)
                            break
    #--- End: if
        
    # ----------------------------------------------------------------
    # For each field that has ancillary variables, replace its list of
    # netCDF variable names with a FieldList object.
    # ----------------------------------------------------------------
    if 'ancillary' in promote:
        # Promote ancillary fields to also appear at the top level
        top_level.update(ancillary_variables)

    if ancillary_variables:
        ncvar_to_field = {}
        i = 0
        while ancillary_variables:
            try:
                f = fields_in_file[i]
            except IndexError:
                # No more fields
                break
            
            ncvar = f.ncvar            
            if ncvar in ancillary_variables:
                # This field is being used as an ancillary variable in
                # another field
                ancillary_variables.discard(ncvar)
                ncvar_to_field[ncvar] = f
                if ncvar not in top_level:                    
                    del fields_in_file[i]
                    i -= 1 
            #--- End: if

            i += 1
        #--- End: while
        
        for f in fields_in_file:
            if not hasattr(f, 'ancillary_variables'):
                continue

            av = [ncvar_to_field[ncvar].copy() 
                  for ncvar in f.ancillary_variables]

#            f.ancillary_variables = AncillaryVariables(av)
            f.ancillary_variables = FieldList(av)
        #--- End: for
    #--- End: if

    return fields_in_file
#--- End: def

def _create_Field(filename,
                  nc,
                  data_ncvar,
                  attributes,
                  seen_in_file,
                  ancillary_variables, 
                  coordref_field_pointers,
                  global_attributes,
                  cfa=False,
                  verbose=False):
    '''

Create a field for a given netCDF variable.

:Parameters:

    filename : str
        The name of the netCDF file.

    nc : netCDF4.Dataset
        The entire netCDF file in a `netCDF4.Dataset` instance.

    data_ncvar : str
        The name of the netCDF variable to be turned into a field.

    attributes : dict
        Dictionary of the data variable's netCDF attributes.

    seen_in_file : dict

    ancillary_variables : set

    global_attributes : dict

    cfa : bool
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

:Returns:

    out : Field
        The new field.

'''
    properties = attributes[data_ncvar]

    # Add global attributes to the data variable's properties, unless
    # the data variables already has a property with the same name.
    for attr, value in global_attributes.iteritems():
        if attr not in properties:
            properties[attr] = value

    # Take cell_methods out of the data variable's properties since it
    # will need special processing once the domain has been defined
    if 'cell_methods' in properties:
        cell_methods = properties.pop('cell_methods')
        try:
            cell_methods = CellMethods(cell_methods)
        except:
            # Something went wrong whilst trying to parse the cell
            # methods string
            properties['nonCF_cell_methods'] = cell_methods
            if verbose:
                print(
"WARNING: Moving unsupported cell methods to 'nonCF_cell_methods': %r" %
cell_methods)
            cell_methods = None
    else:
        cell_methods = None

    # Take add_offset and scale_factor out of the data variable's
    # properties since they will be dealt with by the variable's Data
    # object. Makes sure we note that they were there so we can adjust
    # the field's dtype accordingly
    values = [properties.pop(k, None) for k in ('add_offset', 'scale_factor')]
    unpacked_dtype = values != [None, None]
    if unpacked_dtype:
        try:
            values.remove(None)
        except ValueError:
            pass

        unpacked_dtype = numpy_result_type(*values)
    #--- End: if    

    # Change numpy arrays to tuples for selected attributes
    for attr in ('valid_range',):
#        if attr in attributes[data_ncvar]:
#            attributes[data_ncvar][attr] = tuple(attributes[data_ncvar][attr])
        if attr in properties:
            properties[attr] = tuple(properties[attr])

    # ----------------------------------------------------------------
    # Initialize the field with the data variable and its attributes
    # ----------------------------------------------------------------
    f_Units = Units(properties.pop('units', None),
                    properties.pop('calendar', None))

    f = Field(properties=properties, copy=False)

    f.ncvar = data_ncvar
    f.file  = filename
    f.Units = f_Units

    f._global_attributes = tuple(global_attributes)

    # Map netCDF dimension dimension names to domain dimension names.
    # 
    # For example:
    # >>> ncdim_to_dim
    # {'lat': 'dim0', 'time': 'dim1'}
    ncdim_to_dim = {}

    ncvar_to_key = {}
        
    f.domain._axes['data'] = []
    f.domain.nc_dimensions = {}

    # ----------------------------------------------------------------
    # Add axes and non-scalar dimension coordinates to the field
    # ----------------------------------------------------------------
    field_ncdimensions = _ncdimensions(nc.variables[data_ncvar], cfa)

    for ncdim in field_ncdimensions:
        if ncdim in nc.variables:
            # There is a dimension coordinate for this dimension, so
            # create the coordinate and the dimension.
            if ncdim in seen_in_file:
                coord = seen_in_file[ncdim].copy()
            else:
                coord = _create_Coordinate(nc, ncdim, attributes, f, cfa=cfa,
                                           dimension=True, verbose=verbose)
                seen_in_file[ncdim] = coord                
            #--- End: if

            dim = f.domain.insert_dim(coord, copy=False)
            
            # Set unlimited status of axis
            if nc.dimensions[ncdim].isunlimited():
                f.unlimited({dim: True})

            ncvar_to_key[ncdim] = dim
        else:
            # There is no dimension coordinate for this dimension, so
            # just create a dimension with the correct size.
            dim = f.domain.insert_axis(size=len(nc.dimensions[ncdim]))

            # Set unlimited status of axis
            if nc.dimensions[ncdim].isunlimited():
                f.unlimited({dim: True})
        #--- End: if
        
        # Update data dimension name and set dimension size
        f.domain.nc_dimensions[dim] = ncdim
        f.domain._axes['data'].append(dim)
        
        ncdim_to_dim[ncdim] = dim
    #--- End: for
    
    f.Data = _set_Data(nc, nc.variables[data_ncvar], f, f,
                       unpacked_dtype=unpacked_dtype, cfa=cfa)

    # ----------------------------------------------------------------
    # Add scalar dimension coordinates and auxiliary coordinates to
    # the field
    # ----------------------------------------------------------------
    coordinates = f.getprop('coordinates', None)
    if coordinates is not None:
        
        # Split the list (allowing for incorrect comma separated
        # lists).
        for ncvar in re.split('\s+|\s*,\s*', coordinates):
            # Skip dimension coordinates which are in the list
            if ncvar in field_ncdimensions:
                continue

            # Skip auxiliary coordinates which are in the list but not
            # in the file
            if ncvar not in nc.variables:
                continue

            # Set dimensions 
            aux_ncdimensions = _ncdimensions(nc.variables[ncvar], cfa)
            dimensions = [ncdim_to_dim[ncdim] for ncdim in aux_ncdimensions
                          if ncdim in ncdim_to_dim]    

            if ncvar in seen_in_file:
                coord = seen_in_file[ncvar].copy()
            else:
                coord = _create_Coordinate(nc, ncvar, attributes, f, cfa=cfa,
                                           dimension=False, verbose=verbose)
                seen_in_file[ncvar] = coord
            #--- End: if

            # --------------------------------------------------------
            # Turn a ..
            # --------------------------------------------------------
            is_dimension_coordinate = False
            if not dimensions:
                if nc.variables[ncvar].dtype.kind is 'S':
                    # String valued scalar coordinate. Is this CF
                    # complaint? Don't worry about it - it'll get
                    # turned into a 1-d, size 1 auxiliary coordinate
                    # construct, anyway
                    dim = f.insert_axis(1)
#                    dim = f.domain.new_axis_identifier()
                    dimensions = [dim]
                else:  
                    # Numeric valued scalar coordinate
                    is_dimension_coordinate = True
            #--- End: if

            if is_dimension_coordinate:
                # Insert dimension coordinate
                coord = coord.asdimension(copy=False)
                dim = f.domain.insert_dim(coord, copy=False)
                f.domain.nc_dimensions[dim]= ncvar
                ncvar_to_key[ncvar] = dim
                seen_in_file[ncvar] = coord
            else:
                # Insert auxiliary coordinate
                aux = f.domain.insert_aux(coord, axes=dimensions,
                                          copy=False)
                ncvar_to_key[ncvar] = aux
        #--- End: for

        f.delprop('coordinates')
    #--- End: if

    # ----------------------------------------------------------------
    # Add formula_terms coordinate references
    # ----------------------------------------------------------------
    for key, coord in f.coords().iteritems():
        formula_terms = attributes[coord.ncvar].get('formula_terms', None)
        if formula_terms is None:
            # This coordinate doesn't have a formula_terms attribute
            continue

        _create_formula_terms_ref(f, key, coord, formula_terms,
                                  attributes, ncvar_to_key,
                                  coordref_field_pointers, seen_in_file)
    #--- End: for

    # ----------------------------------------------------------------
    # Add grid mapping coordinate references
    # ----------------------------------------------------------------
    grid_mapping = f.getprop('grid_mapping', None)
    if grid_mapping is not None:
        _create_grid_mapping_ref(f, grid_mapping, attributes, ncvar_to_key)

    # ----------------------------------------------------------------
    # Add cell measures to the field
    # ----------------------------------------------------------------
    cell_measures = f.getprop('cell_measures', None)

    if cell_measures is not None:

        # Parse the cell measures attribute
        cell_measures = re.split('\s*(\w+):\s*', cell_measures)
        
        for measure, ncvar in zip(cell_measures[1::2], 
                                  cell_measures[2::2]):

            if ncvar not in attributes:
                continue

            # Set cell measures' dimensions 
            cm_ncdimensions = _ncdimensions(nc.variables[ncvar], cfa)
            dimensions = [ncdim_to_dim[ncdim] for ncdim in cm_ncdimensions]

            if ncvar in seen_in_file:
                # Copy the cell measure as it already exists
                cell = seen_in_file[ncvar].copy()
            else:
                cell = _create_CellMeasure(nc, ncvar, attributes, f, cfa=cfa)
                cell.measure = measure
                seen_in_file[ncvar] = cell
            #--- End: if

            clm = f.domain.insert_measure(cell, axes=dimensions, copy=False)

            ncvar_to_key[ncvar] = clm
        #--- End: for

        f.delprop('cell_measures')
    #--- End: if

    # -----------------------------
    # Add cell methods to the field
    # -----------------------------
    if cell_methods is not None:
        f.cell_methods = cell_methods.netcdf_translation(f)
 
    # ----------------------------------------------------------------
    # Parse an ancillary_variables string to a list of netCDF variable
    # names, which will get converted to an FieldList object
    # later. Add these netCDF variable names to the set of all
    # ancillary data variables in the file.
    # ----------------------------------------------------------------
    if hasattr(f, 'ancillary_variables'):  ##dch hasprop?
        f.ancillary_variables = f.ancillary_variables.split()
        ancillary_variables.update(f.ancillary_variables)
    #--- End: if
    
    f.autocyclic()

    # Return the finished field
    return f
#--- End: def

def _create_Coordinate(nc, ncvar, attributes, f, cfa=False,
                       dimension=True, verbose=False):
    '''

Create a coordinate variable, including any bounds.

:Parameters:

    nc : netCDF4.Dataset
        The entire netCDF file in a `netCDF4.Dataset` object.

    ncvar : str
        The netCDF name of the coordinate variable.

    attributes : dict
        Dictionary of the coordinate variable's netCDF attributes.

    f : cf.Field

    cfa : bool, optional
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

    dimension : bool, optional
        If True then the a dimension coordinate is created, otherwise
        an auxiliary coordinate is created.

:Returns:

    out : cf.DimensionCoordinate or cf.AuxiliaryCoordinate
        The new coordinate.

'''
    properties = attributes[ncvar].copy()

    c_Units = Units(properties.pop('units', None),
                    properties.pop('calendar', None))

    properties.pop('formula_terms', None)

    ncbounds = properties.pop('bounds', None)
    if ncbounds is None:
        ncbounds = properties.pop('climatology', None)
        climatology = True
    else:
        climatology = False

    if dimension:
        c = DimensionCoordinate(properties=properties, copy=False)
    else:
        c = AuxiliaryCoordinate(properties=properties, copy=False)

    c.ncvar = ncvar
    c.Units = c_Units
    if climatology:
        c.climatology = climatology

    data = _set_Data(nc, nc.variables[ncvar], f, c, cfa=cfa)

    # ------------------------------------------------------------
    # Add any bounds
    # ------------------------------------------------------------
    if ncbounds is None:
        bounds = None
    else:
        properties = attributes[ncbounds].copy()
        properties.pop('formula_terms', None)

        b_Units = Units(properties.pop('units', None),
                        properties.pop('calendar', None))

        bounds = CoordinateBounds(properties=properties, copy=False)

        bounds.ncvar = ncbounds
        bounds.Units = b_Units
    
        bounds.insert_data(
            _set_Data(nc, nc.variables[ncbounds], f, bounds, cfa=cfa),
            copy=False)

        if not b_Units:
            bounds.override_units(c_Units, i=True)
           
        if b_Units and not b_Units.equivalent(c_Units):
            bounds.override_units(c_Units, i=True)
            if verbose:
                print(
"WARNING: Overriding %r of '%s' bounds ('%s') with %r" %
(b_Units, ncvar, ncbounds, c_Units))
 
        # Make sure that the bounds dimensions are in the same order
        # as its parent's dimensions
        c_ncdims = nc.variables[ncvar].dimensions
        b_ncdims = nc.variables[ncbounds].dimensions
        if c_ncdims != b_ncdims[:-1]:
            iaxes = [c_ncdims.index(ncdim) for ncdim in b_ncdims[:-1]]
            iaxes.append(-1)
            bounds.transpose(iaxes, i=True)
        #--- End: if

    #--- End: if

    c.insert_data(data, bounds=bounds, copy=False)

    # ---------------------------------------------------------
    # Return the coordinate
    # ---------------------------------------------------------
    return c
#--- End: def

def _create_CellMeasure(nc, ncvar, attributes, f, cfa=False): #, key=None):
    '''

Create a cell measure variable.

:Parameters:

    nc : netCDF4.Dataset
        The entire netCDF file in a `netCDF4.Dataset` instance.

    ncvar : str
        The netCDF name of the cell measure variable.

    attributes : dict
        Dictionary of the cell measure variable's netCDF attributes.

    f : Field

    cfa : bool, optional
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

:Returns:

    out : CellMeasure
        The new cell measure.

'''
    clm       = CellMeasure(properties=attributes[ncvar])
    clm.ncvar = ncvar

    data = _set_Data(nc, nc.variables[ncvar], f, clm, cfa=cfa)

    clm.insert_data(data, copy=False)

    return clm
#--- End: def

def _ncdimensions(ncvariable, cfa=False):
    '''

Return a list of the netCDF dimension names for a netCDF variable.

:Parameters:

    ncvariable : netCDF4.Variable
    
    cfa : bool, optional
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

:Returns:

    out : list
        The list of netCDF dimension names.

:Examples: 

>>> ncdims = _ncdimensions(ncvariable)
>>> ncdims = _ncdimensions(ncvariable, cfa=True)

'''
    ncattrs = ncvariable.ncattrs()
    if (cfa and 
        'cf_role' in ncattrs and 
        ncvariable.getncattr('cf_role') == 'cfa_variable'):
        # NetCDF variable is a CFA variable
        if 'cfa_dimensions' in ncattrs:
            ncdimensions = ncvariable.getncattr('cfa_dimensions').split()
        else:
            ncdimensions = []
    else:
        # NetCDF variable is not a CFA variable
        ncdimensions = list(ncvariable.dimensions)
        cfa = False
      
    # Remove a string-length dimension, if there is one. dch alert
    if (not cfa and 
        ncvariable.dtype.kind == 'S' and
        ncvariable.ndim >= 2 and ncvariable.shape[-1] > 1):
        ncdimensions.pop()
     
    return map(str, ncdimensions)
#--- End: def

def _create_grid_mapping_ref(f, grid_mapping, attributes, ncvar_to_key):
    '''

:Parameters:

    f : cf.Field

    grid_mapping : str

    attributes : dict

    ncvar_to_key : dict

:Returns:

    None

'''
    if ':' not in grid_mapping:
        grid_mapping = '%s:' % grid_mapping

    coords = []
    for x in re.sub('\s*:\s*', ': ', grid_mapping).split()[::-1]:
        if not x.endswith(':'):
            try:
                coords.append(ncvar_to_key[x])
            except KeyError:
                continue
        else:
            if not coords:
                coords = None

            grid_mapping = x[:-1]

            if grid_mapping not in attributes:
                coords = []      
                continue
                
            kwargs = attributes[grid_mapping].copy()
            
            name = kwargs.pop('grid_mapping_name', None)                 
  
            coordref = CoordinateReference(name, crtype='grid_mapping',
                                           coords=coords, **kwargs)
            coordref.ncvar = grid_mapping

            f.domain.insert_ref(coordref, copy=False)

            coords = []      
    #--- End: for

    f.delprop('grid_mapping')
#--- End: def

def _create_formula_terms_ref(f, key, coord, formula_terms,
                              attributes, ncvar_to_key,
                              coordref_field_pointers, seen_in_file):
    '''

:Parameters:

    f : cf.Field

    key : str

    coord : cf.Coordinate

    formula_terms : str
        The formula_terms attribute value from the netCDF file.

    attributes : dict

    ncvar_to_key : dict

    coordref_field_pointers : set

:Returns:

    out : cf.CoordinateReference

'''
    standard_name = coord.getprop('standard_name', None)

    # Add the equation terms and references to their values to to
    # new auxiliary coordinate's coordinate reference.
    kwargs      = {}
    coord_terms = []

    ft = re.split('\s+|\s*:\s+', formula_terms)
    ncvars = ft[1::2]

    for term, ncvar in zip(ft[0::2], ncvars):
        if ncvar in ncvar_to_key:
            # CASE 1: The term's value is a coordinate of the field,
            #         so we point to it from the coordinate reference.
            value = ncvar_to_key[ncvar]
            coord_terms.append(term)

##            # Make sure that coordinate has an identity
#            c = seen_in_file[ncvar]
#            if standard_name is not None and not hasattr(c, 'standard_name'):
#                c.id = standard_name + '_formula_term_' + term

        elif ncvar not in attributes:
            # CASE 2: The term's value does not exist as a netCDF
            #         variable in this file
            value = None
            
        else:
            # CASE 3: The term's value is not a coordinate of the
            #         field so it goes into the coordinate reference
            #         as an independent field
            value = {'ncvar': ncvar}
            coordref_field_pointers.add(ncvar)
        #--- End: if
            
        kwargs[term] = value
    #--- End: for 

    coordref = CoordinateReference(standard_name,
                                   crtype='formula_terms',
                                   coords=(key,),
                                   coord_terms=coord_terms,
                                   **kwargs)
    
    f.domain.insert_ref(coordref, copy=False)

    return coordref
#--- End: def

def _set_Data(nc, ncvar, f, variable, unpacked_dtype=False, cfa=False):
    '''

Set the Data attribute of a variable.

:Parameters:

    nc : netCDf4.Dataset

    ncvar : netCDF4.Variable

    f : Field

    variable : cf.Variable

    unpacked_dtype : False or numpy.dtype, optional

    cfa : bool, optional
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

:Returns:

    None

:Examples: 

'''    
    iscfa_variable = variable.getprop('cf_role', None) == 'cfa_variable'

    if cfa and iscfa_variable:

        try:
            cfa_data = json_loads(variable.getprop('cfa_array'))
        except ValueError as error:
            raise ValueError(
                "Error during JSON-decoding of netCDF attribute 'cfa_array': %s" %
                error)

        cfa_data['file']       = f.file
        cfa_data['Units']      = variable.Units      
        cfa_data['fill_value'] = variable.fill_value()
        cfa_data['_pmshape']   = cfa_data.pop('pmshape', ())
        cfa_data['_pmaxes']    = cfa_data.pop('pmdimensions', ())
        
        base = cfa_data.get('base', None)
        if base is not None:
            cfa_data['base'] = abspath(pathjoin(dirname(f.file), base))

        ncdimensions = variable.getprop('cfa_dimensions', '').split()
        dtype = ncvar.dtype
        if dtype.kind == 'S' and ncdimensions:
            strlen = len(nc.dimensions[ncdimensions[-1]])
            if strlen > 1:
                ncdimensions.pop()
                dtype = numpy_dtype('S%d' % strlen)
        #--- End: if
        cfa_data['dtype'] = dtype
        cfa_data['_axes'] = ncdimensions
        cfa_data['shape'] = [len(nc.dimensions[ncdim])
                             for ncdim in ncdimensions]

        for attrs in cfa_data['Partitions']:

            # FORMAT
            sformat = attrs.get('subarray', {}).pop('format', 'netCDF')
            if sformat is not None:
                attrs['format'] = sformat

            # DTYPE
            dtype = attrs.get('subarray', {}).pop('dtype', None)
            if dtype not in (None, 'char'):
                attrs['subarray']['dtype'] = numpy_dtype(dtype)

            # UNITS and CALENDAR
            units    = attrs.pop('punits', None)
            calendar = attrs.pop('pcalendar', None)
            if units is not None or calendar is not None:
                attrs['Units'] = Units(units, calendar)

            # AXES
            pdimensions = attrs.pop('pdimensions', None)
            if pdimensions is not None:
                attrs['axes'] = pdimensions

            # REVERSE
            reverse = attrs.pop('reverse', None)
            if reverse is not None:
                attrs['reverse'] = reverse

            # LOCATION: Change to python indexing (i.e. range does not
            #           include the final index)
            for r in attrs['location']:
                r[1] += 1

            # PART: Change to python indexing (i.e. slice range does
            #       not include the final index)
            part = attrs.get('part', None)
            if part:
                p = []
                for x in ast_literal_eval(part):
                    if isinstance(x, list):
                        if x[2] > 0:
                            p.append(slice(x[0], x[1]+1, x[2]))
                        elif x[1] == 0:
                            p.append(slice(x[0], None, x[2]))
                        else:
                            p.append(slice(x[0], x[1]-1, x[2]))
                    else:
                        p.append(list(x))
                #--- End: for
                attrs['part'] = p
        #--- End: for

        variable.delprop('cf_role')
        variable.delprop('cfa_array')
        if variable.hasprop('cfa_dimensions'):
            variable.delprop('cfa_dimensions')

        data = Data(loadd=cfa_data)

    else:        
        dtype = ncvar.dtype
        if unpacked_dtype is not False:
            dtype = numpy_result_type(dtype, unpacked_dtype)

        ndim  = ncvar.ndim
        shape = ncvar.shape
        size  = ncvar.size
        if size < 2:
            size = int(size)

        if dtype.kind == 'S' and ndim >= 1: #shape[-1] > 1:
            # Has a trailing string-length dimension
            strlen = shape[-1]
            shape = shape[:-1]
            size /= strlen
            ndim -= 1
            dtype = numpy_dtype('S%d' % strlen)
        #--- End: if

        filearray = NetCDFFileArray(file=f.file,
                                    ncvar=ncvar._name,
                                    dtype=dtype,
                                    ndim=ndim,
                                    shape=shape,
                                    size=size)
        
        data = Data(filearray,
                    units=variable.Units,
                    fill_value=variable.fill_value())
    #--- End: if

    return data
#--- End: def

def _is_cfa_private_variable(ncvar, cfa):
    '''

Return True if a netCDF variable is a CFA private variable.

:Parameters:

    ncvar : netCDF4.Variable

    cfa : bool
        If True then netCDF file is a CFA file. By default it is
        assumed that the file is not a CFA file.

:Returns:

    out : bool
        True if *cfa* is True and *ncvar* is a CFA private
        variable. Otherwise False.

:Examples: 

>>> if _is_cfa_private_variable(x, True):
...     print 'This is private CFA'

>>> False == _is_cfa_private_variable(x, False)
True

'''  
    return (cfa and 
            'cf_role' in ncvar.ncattrs() and 
            ncvar.getncattr('cf_role') == 'cfa_private')
#--- End: def

def is_netcdf_file(filename):
    '''Return True if the file is a netCDF file.

Note that the file type is determined by inspecting the file's
contents and any file suffix is not not considered.

:Parameters:

    filename : str

:Returns:

    out : bool

:Examples:

>>> is_netcdf_file('myfile.nc')
True
>>> is_netcdf_file('myfile.pp')
False
>>> is_netcdf_file('myfile.pdf')
False
>>> is_netcdf_file('myfile.txt')
False

    '''
    # Read the magic number 
    try:
        fh = open(filename, 'rb')
        magic_number = struct_unpack('=L', fh.read(4))[0]
    except:
        magic_number = None

    try:
        fh.close()
    except:
        pass

    if magic_number in (21382211, 1128547841, 1178880137, 38159427):
        return True
    else:
        return False
#--- End: def