File: write.py

package info (click to toggle)
cf-python 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,996 kB
  • sloc: python: 51,733; ansic: 2,736; makefile: 78; sh: 2
file content (2309 lines) | stat: -rw-r--r-- 75,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
import netCDF4
import random
import json
import os

from os      import remove
from os.path import isfile
from os.path import expandvars as os_path_expandvars
from os.path import expanduser as os_path_expanduser
from string  import hexdigits

from numpy import array       as numpy_array
from numpy import bool_       as numpy_bool_
from numpy import dtype       as numpy_dtype
from numpy import ndindex     as numpy_ndindex
from numpy import integer     as numpy_integer
from numpy import intersect1d as numpy_intersect1d
from numpy import floating    as numpy_floating
from numpy import size        as numpy_size

from numpy.ma import empty  as numpy_ma_empty
from numpy.ma import isMA   as numpy_ma_isMA
from numpy.ma import masked as numpy_ma_masked

from ..                 import __Conventions__
from ..cfdatetime       import dt2rt
from ..coordinate       import Coordinate
from ..coordinatebounds import CoordinateBounds
from ..field            import Field, FieldList
from ..functions        import equals, flat, relpath, abspath

from ..data.data        import Data

from .filearray import NetCDFFileArray
from .functions import _close_netcdf_file, _open_netcdf_file

class NetCDFError(Exception):
    '''A runtime netCDF error'''
    pass

def write(fields, filename, fmt='NETCDF3_CLASSIC', overwrite=True,
          verbose=False, cfa_options=None, mode='w',
          least_significant_digit=None, endian='native', compress=0,
          fletcher32=False, no_shuffle=False, datatype=None,
          single=False, double=False, reference_datetime=None,
          variable_attributes=None, HDF_chunks=None, unlimited=None):
    '''Write fields to a CF-netCDF or CFA-netCDF file.
    
NetCDF dimension and variable names will be taken from variables'
`~Variable.ncvar` attributes and the domain attribute
`~Domain.nc_dimensions` if present, otherwise they are inferred from
standard names or set to defaults. NetCDF names may be automatically
given a numerical suffix to avoid duplication.

Output netCDF file global properties are those which occur in the set
of CF global properties and non-standard data variable properties and
which have equal values across all input fields.

Logically identical field components are only written to the file
once, apart from when they need to fulfil both dimension coordinate
and auxiliary coordinate roles for different data variables.

:Parameters:

    fields : (arbitrarily nested sequence of) cf.Field or cf.FieldList
        The field or fields to write to the file.

    filename : str
        The output CF-netCDF file. Various type of expansion are
        applied to the file names:
        
          ====================  ======================================
          Expansion             Description
          ====================  ======================================
          Tilde                 An initial component of ``~`` or
                                ``~user`` is replaced by that *user*'s
                                home directory.
           
          Environment variable  Substrings of the form ``$name`` or
                                ``${name}`` are replaced by the value
                                of environment variable *name*.
          ====================  ======================================
    
        Where more than one type of expansion is used in the same
        string, they are applied in the order given in the above
        table.

          Example: If the environment variable *MYSELF* has been set
          to the "david", then ``'~$MYSELF/out.nc'`` is equivalent to
          ``'~david/out.nc'``.
  
    fmt : str, optional
        The format of the output file. One of:

           =====================  ================================================
           fmt                    Description
           =====================  ================================================
           ``'NETCDF3_CLASSIC'``  Output to a CF-netCDF3 classic format file
           ``'NETCDF3_64BIT'``    Output to a CF-netCDF3 64-bit offset format file
           ``'NETCDF4_CLASSIC'``  Output to a CF-netCDF4 classic format file
           ``'NETCDF4'``          Output to a CF-netCDF4 format file
           ``'CFA3'``             Output to a CFA-netCDF3 classic format file 
           ``'CFA4'``             Output to a CFA-netCDF4 format file 
           =====================  ================================================

        By default the *fmt* is ``'NETCDF3_CLASSIC'``. Note that the
        netCDF3 formats may be slower than any of the other options.

    overwrite: bool, optional
        If False then raise an exception if the output file
        pre-exists. By default a pre-existing output file is over
        written.

    verbose : bool, optional
        If True then print one-line summaries of each field written.

    cfa_options : dict, optional
        A dictionary giving parameters for configuring the output
        CFA-netCDF file:

           ==========  ===============================================
           Key         Value
           ==========  ===============================================
           ``'base'``  * If ``None`` (the default) then file names
                         within CFA-netCDF files are stored with
                         absolute paths.

                       * If set to an empty string then file names
                         within CFA-netCDF files are given relative to
                         the directory or URL base containing the
                         output CFA-netCDF file.

                       * If set to a string then file names within
                         CFA-netCDF files are given relative to the
                         directory or URL base described by the
                         value. For example: ``'../archive'``.
           ==========  ===============================================        

        By default no parameters are specified.
    
    mode : str, optional
        Specify the mode of write access for the output file. One of:
 
           =======  ==================================================
           mode     Description
           =======  ==================================================
           ``'w'``  Create the file. If it already exists and
                    *overwrite* is True then the file is deleted prior
                    to being recreated.
           =======  ==================================================
       
        By default the file is opened with write access mode ``'w'``.

    datatype : dict, optional
        Specify data type conversions to be applied prior to writing
        data to disk. Arrays with data types which are not specified
        remain unchanged. By default, array data types are preserved.

          **Example:**
            To convert 64 bit floats and integers to their 32 bit
            counterparts: ``datatype={numpy.dtype(float):
            numpy.dtype('float32'), numpy.dtype(int):
            numpy.dtype('int32')}``.
       
    single : bool, optional
        Write 64-bit floats as 32-bit floats and 64-bit integers as
        32-bit integers. By default, input data types are
        preserved. Note that ``single=True`` is equivalent to
        ``datatype={numpy.dtype('float64'): numpy.dtype('float32'),
        numpy.dtype('int64'): numpy.dtype('int32')}``.
       
    double : bool, optional
        Write 32-bit floats as 64-bit floats and 32-bit integers as
        64-bit integers. By default, input data types are
        preserved. Note that ``double=True`` is equivalent to
        ``datatype={numpy.dtype('float32'): numpy.dtype('float64'),
        numpy.dtype('int32'): numpy.dtype('int64')}``.
 
:Returns:

    None

:Raises:

    IOError :
        If *overwrite* is False and the output file pre-exists.

    ValueError :
        If a field does not have information required to write certain
        aspects of a CF-netCDF file.

:Examples:

>>> f
[<CF Field: air_pressure(30, 24)>,
 <CF Field: u_compnt_of_wind(19, 29, 24)>,
 <CF Field: v_compnt_of_wind(19, 29, 24)>,
 <CF Field: potential_temperature(19, 30, 24)>]
>>> write(f, 'file')

>>> type(f)
<class 'cf.field.FieldList'>
>>> type(g)
<class 'cf.field.Field'>
>>> cf.write([f, g], 'file.nc', verbose=True)
[<CF Field: air_pressure(30, 24)>,
 <CF Field: u_compnt_of_wind(19, 29, 24)>,
 <CF Field: v_compnt_of_wind(19, 29, 24)>,
 <CF Field: potential_temperature(19, 30, 24)>]

    ''' 
    compress = int(compress)
    zlib = bool(compress)

    if fmt not in ('NETCDF3_CLASSIC', 'NETCDF3_64BIT', 'CFA3',
                   'NETCDF4', 'NETCDF4_CLASSIC', 'CFA4'):
        raise ValueError("Unknown output file format: {0}".format(fmt))

    if compress and fmt in ('NETCDF3_CLASSIC', 'NETCDF3_64BIT', 'CFA3'):
        raise ValueError("Can't compress {0} format file".format(fmt))
    
    if least_significant_digit and fmt in ('CFA3', 'CFA4'):
        raise ValueError("Can't truncate data variables in {0} format file".format(fmt))

    # ----------------------------------------------------------------
    # Set up non-global attributes
    # ----------------------------------------------------------------
    if variable_attributes:
        if isinstance(variable_attributes, basestring):
            variable_attributes = set((variable_attributes,))
        else:
            variable_attributes = set(variable_attributes)
    else:
        variable_attributes = set()
        
    # ----------------------------------------------------------------
    # Set up data type conversions
    # ----------------------------------------------------------------
    dtype_conversions = {numpy_dtype(bool)  : numpy_dtype('int32'),
                         numpy_dtype(object): numpy_dtype(float)}
    if datatype:
        if single:
            raise ValueError("Can't set datatype and single")
        if double:
            raise ValueError("Can't set datatype and double")
        dtype_conversions.update(datatype)
    else:
        if single and double:
            raise ValueError("Can't set single and double")
        if single:
            dtype_conversions[numpy_dtype(float)] = numpy_dtype('float32')
            dtype_conversions[numpy_dtype(int)]   = numpy_dtype('int32')
        if double:
            dtype_conversions[numpy_dtype('float32')] = numpy_dtype(float)
            dtype_conversions[numpy_dtype('int32')]   = numpy_dtype(int)
    datatype = dtype_conversions
    
    if not unlimited:
        unlimited = ()

    # ----------------------------------------------------------------
    # Initialize dictionary of useful global variables
    # ----------------------------------------------------------------
    g = {'netcdf'           : None,    # - netCDF4.Dataset instance
                                       #-----------------------------
         'nc'               : {},      # - Map netCDF variable names
                                       #   to netCDF4.Variable
                                       #   instances
         'ncdim_to_size'    : {},      # - Map netCDF dimension names
                                       #   to netCDF dimension sizes
         'ncpdim_to_size'   : {},      # - Dictionary of PARTITION
                                       #   dimension sizes keyed by
                                       #   netCDF dimension names.
         'seen'             : {},      # - Dictionary of netCDF
                                       #   variable names and netCDF
                                       #   dimensions keyed by items
                                       #   of the field (such as a
                                       #   coordinate or a coordinate
                                       #   reference).
                                       # -----------------------------
         'ncvar_names'      : set(()), # - Set of all netCDF
                                       #   dimension and netCDF
                                       #   variable names.

         'global_properties'  : set(()), # - Set of global or
                                         #   non-standard CF properties
                                         #   which have identical
                                         #   values across all input
                                         #   fields.
                                         #-----------------------------
         'variable_attributes': variable_attributes,
                                         #-----------------------------
         'dimN'             : 1,       # - Counter
         'auxN'             : 1,       # - Counter
         'scalarN'          : 1,       # - Counter
         'cmN'              : 1,       # - Counter
         'dataN'            : 1,       # - Counter
         'gmN'              : 1,       # - Counter
         'bndN'             : 1,       # - Counter
         'bnddimN'          : 1,       # - Counter
         'strlenN'          : 1,       # - Counter
         'partition_arrayN' : 1,       # - Counter
         'partitionN'       : 1,       # - Counter
         # -----------------------------------------------------------
         # CFA parameters
         # -----------------------------------------------------------
         'cfa'        : False,   # - flag to use the CFA
                                 #   convention, or not.
         'cfa_options': {},      # - 
         'CFA_ncdims' : set(()), # - set of all private CFA
                                 #   netCDF dimension names.
         'CFAdimN'    : 1,       # - Counter
         # -----------------------------------------------------------
         # Compression/endian
         # -----------------------------------------------------------
         'compression'            : {'zlib'       : zlib,
                                     'complevel'  : compress,
                                     'fletcher32' : fletcher32,
                                     'shuffle'    : not no_shuffle},
         'endian'                 : endian,
         'least_significant_digit': least_significant_digit,
         # -----------------------------------------------------------
         # CF properties which need not be set on bounds if they're
         # set on the parent coordinate
         # -----------------------------------------------------------
         'omit_bounds_properties': ('units', 'standard_name', 'axis',
                                    'positive', 'calendar', 'month_lengths',
                                    'leap_year', 'leap_month'),

         'least_significant_digit': least_significant_digit,
         # ------------------------------------------------------------
         # Specify data type conversions to be applied prior to writing
         # ------------------------------------------------------------
         'datatype': datatype,
         # ------------------------------------------------------------
         # Specify unit conversions to be applied prior to writing
         # ------------------------------------------------------------
         'reference_datetime': reference_datetime,
         # ------------------------------------------------------------
         # 
         # ------------------------------------------------------------
         'unlimited': unlimited,
    }

    if fmt == 'CFA3':
        g['cfa'] = True
        fmt = 'NETCDF3_CLASSIC'
        if cfa_options:
            g['cfa_options'] = cfa_options
    elif fmt == 'CFA4':
        g['cfa'] = True
        fmt = 'NETCDF4'
        if cfa_options:
            g['cfa_options'] = cfa_options  
    
    g['fmt'] = fmt

    # ---------------------------------------------------------------
    # Flatten the sequence of intput fields
    # ---------------------------------------------------------------
    fields = FieldList(flat(fields))

    # ---------------------------------------------------------------
    # Still here? Open the output netCDF file.
    # ---------------------------------------------------------------
#    if mode != 'w':
#        raise ValueError("Can only set mode='w' at the moment")

    filename = os_path_expanduser(os_path_expandvars(filename))

    if mode == 'w' and isfile(filename):
        if not overwrite:
            raise IOError(
                "Can't write to an existing file unless overwrite=True: {0}".format(
                    abspath(filename)))
                
        if not os.access(filename, os.W_OK):
            raise IOError(
                "Can't overwrite an existing file without permission: {0}".format(
                    abspath(filename)))
            
        _close_netcdf_file(filename)
        remove(filename)
    #--- End: if          

    g['netcdf'] = _open_netcdf_file(filename, mode, fmt)
#netCDF4.Dataset(filename, mode, format=fmt)

    # ---------------------------------------------------------------
    # Set the fill mode for a Dataset open for writing to off. This
    # will prevent the data from being pre-filled with fill values,
    # which may result in some performance improvements.
    # ---------------------------------------------------------------
    g['netcdf'].set_fill_off()

    # ---------------------------------------------------------------
    # Write global properties to the file first. This is important as
    # doing it later could slow things down enormously. This function
    # also creates the g['global_properties'] set, which is used in
    # the _write_a_field function.
    # ---------------------------------------------------------------
    _create_global_properties(fields, g=g)

    # ---------------------------------------------------------------
    # ---------------------------------------------------------------
    for f in fields:

        # Set HDF chunking
        org_chunks = f.HDF_chunks(HDF_chunks)
        default_chunks = f.HDF_chunks()
        chunks = org_chunks.copy()
        shape = f.shape
        for i, size in org_chunks.iteritems():
            if size is None:
                size = default_chunks[i]
            dim_size = shape[i]
            if size is None or size > dim_size:
                size = dim_size
            chunks[i] = size
        #--- End: for
        f.HDF_chunks(chunks)

        # Write the field
        _write_a_field(f, g=g)

        # Reset HDF chunking
        f.HDF_chunks(org_chunks)

        if verbose:
            for e in f:            
                print repr(e)
    #-- End: for

    # ---------------------------------------------------------------
    # Write all of the buffered data to disk
    # ---------------------------------------------------------------
    g['netcdf'].close()
#--- End: def

def _check_name(base, counter, g=None, dimsize=None, cfa=False):
    '''

:Parameters:

    base : str

    counter : int

    g : dict

    dimsize : int, optional

    cfa : bool, optional

:Returns:

    ncvar : str
        NetCDF dimension name or netCDF variable name.

    counter : int

'''
    ncvar_names = g['ncvar_names']

    if dimsize is not None:
        if not cfa:
            if base in ncvar_names and dimsize == g['ncdim_to_size'][base]:
                # Return the name of an existing netCDF dimension with
                # this size
                return base, counter
            
        elif base in g['CFA_ncdims']:
            # Return the name of an existing private CFA-netCDF
            # dimension with this size
            return base, counter
    #--- End: if

    if base in ncvar_names:
        ncvar = '%(base)s_%(counter)d' % locals()
        while ncvar in ncvar_names:
            counter += 1
            ncvar = '%(base)s_%(counter)d' % locals()
    else:
        ncvar = base

    ncvar_names.add(ncvar)

    return ncvar, counter
#--- End: def

def _write_attributes(netcdf_var, netcdf_attrs):
    '''

:Parameters:

    netcdf_var : netCDF4.Variable

    netcdf_attrs : dict

:Returns:

    None

:Examples:


'''
    if hasattr(netcdf_var, 'setncatts'):
        # Use the faster setncatts
        netcdf_var.setncatts(netcdf_attrs)
    else:
        # Otherwise use the slower setncattr
        for attr, value in netcdf_attrs.iteritems():
            netcdf_var.setncattr(attr, value)
#--- End: def

def _character_array(array):
    '''

Convert a numpy string array to a numpy character array wih an extra
trailing dimension.

:Parameters:

    array : numpy array

:Returns:

    out : numpy array

:Examples:

>>> print a, a.shape, a.dtype.itemsize
['fu' 'bar'] (2,) 3
>>> b = _character_array(a)
>>> print b, b.shape, b.dtype.itemsize
[['f' 'u' ' ']
 ['b' 'a' 'r']] (2, 3) 1

>>> print a, a.shape, a.dtype.itemsize
[-- 'bar'] (2,) 3
>>> b = _character_array(a)
>>> print b, b.shape, b.dtype.itemsize
[[-- -- --]
 ['b' 'a' 'r']] (2, 3) 1

'''
    strlen = array.dtype.itemsize
    shape  = array.shape

    new = numpy_ma_empty(shape + (strlen,), dtype='S1')
    
    for index in numpy_ndindex(shape):
        value = array[index]
        if value is numpy_ma_masked:
            new[index] = numpy_ma_masked
        else:
            new[index] = tuple(value.ljust(strlen, ' ')) 
    #--- End: for

    return new
#--- End: def

def _datatype(variable, g=None):
    '''

Return the netCDF4.createVariable datatype corresponding to the
datatype of the array of the input variable

For example, if variable.dtype is 'float32', then 'f4' will be
returned.

Numpy string data types will return 'S1' regardless of the numpy
string length. This means that the required conversion of
multi-character datatype numpy arrays into single-character datatype
numpy arrays (with an extra trailing dimension) is expected to be done
elsewhere (currently in the _create_netcdf_variable function).

If the input variable has no `!dtype` attribute (or it is None) then
'S1' is returned.

:Parameters:

    variable : 
        Any object with a `!dtype` attribute whose value is a
        `numpy.dtype` object or None.

    g : dict

:Returns:

    out : str
        The netCDF4.createVariable datatype corresponding to the
        datatype of the array of the input variable.

'''
    if (not hasattr(variable, 'dtype') or
        variable.dtype.char == 'S'     or
        variable.dtype is None):
        return 'S1'            

    dtype = variable.dtype

    convert_dtype = g['datatype']

    new_dtype = convert_dtype.get(dtype, None)
    if new_dtype is not None:
        dtype = new_dtype
        
    return '{0}{1}'.format(dtype.kind, dtype.itemsize)
#--- End: def

def _string_length_dimension(size, g=None):
    '''

Create, if necessary, a netCDF dimension for string variables.

:Parameters:

    size : int

    g : dict


:Returns:

    out : str
        The netCDF dimension name.

'''
    # ----------------------------------------------------------------
    # Create a new dimension for the maximum string length
    # ----------------------------------------------------------------
    ncdim, g['strlenN'] = _check_name('strlen%d' % size, g['strlenN'],
                                      dimsize=size, g=g)
    
    if ncdim not in g['ncdim_to_size']:
        # This string length dimension needs creating
        g['ncdim_to_size'][ncdim] = size
        g['netcdf'].createDimension(ncdim, size)

    return ncdim
#--- End: def

def _random_hex_string(size=10):
    '''

Return a random hexadecimal string with the given number of
characters.

:Parameters:

    size : int, optional
        The number of characters in the generated string.

:Returns:

    out : str
        The hexadecimal string.

:Examples:

>>> _random_hex_string()
'C3eECbBBcf'
>>> _random_hex_string(6)
'7a4acc'

'''                        
    return ''.join(random.choice(hexdigits) for i in xrange(size))
#--- End: def
    
def _cfa_dimension(size, g=None):
    '''

Write a private CFA dimension to the netCDF file, unless one for the
given size already exists. In either case returns the netCDF dimension
name.

.. note:: This function updates ``g['CFA_ncdims']``,
          ``g['ncvar_names']``, ``g['netcdf']``.

:Parameters:

  
    size : int
        The size of the private CFA dimension.

    g : dict

:Returns:

     out : str
         The netCDF dimension name.

:Examples:

>>> _cfa_dimension(10, g=g)
'cfa10'

'''        
    ncdim, g['CFAdimN'] = _check_name('cfa%d' % size, g['CFAdimN'], g=g, 
                                      dimsize=size, cfa=True)

    if ncdim not in g['CFA_ncdims']:
        g['CFA_ncdims'].add(ncdim)
        g['netcdf'].createDimension(ncdim, size)

    return ncdim
#--- End: def

def _write_cfa_variable(ncvar, ncdimensions, netcdf_attrs, data, g=None):
    '''

Write a CFA variable to the netCDF file.

Any CFA private variables required will be autmatically created and
written to the file.

:Parameters:

    ncvar : str
        The netCDF name for the variable.

    ncdimensions : sequence of str

    netcdf_attrs : dict

    data : cf.Data
        
    g : dict

:Returns:

    None

:Examples:

'''
    fill_value = data.fill_value # False, None speed?

    g['nc'][ncvar] = g['netcdf'].createVariable(ncvar, _datatype(data, g=g), (),
                                                fill_value=fill_value,
                                                least_significant_digit=None,
                                                endian=g['endian'],
                                                **g['compression'])

    netcdf_attrs['cf_role']        = 'cfa_variable'
    netcdf_attrs['cfa_dimensions'] = ' '.join(ncdimensions)

    # Create a dictionary representation of the data object
    data = data.copy()
    axis_map = {}
    for axis0, axis1 in zip(data._axes, ncdimensions):
        axis_map[axis0] = axis1
    data._change_axis_names(axis_map)
    data._move_flip_to_partitions()

    cfa_array = data.dumpd()

    # Modify the dictionary so that it is suitable for JSON
    # serialization
    del cfa_array['_axes']
    del cfa_array['shape']
    del cfa_array['Units']
    del cfa_array['dtype']
    cfa_array.pop('_cyclic', None)
    cfa_array.pop('_fill', None)
    cfa_array.pop('fill_value', None)

    pmshape = cfa_array.pop('_pmshape', None)
    if pmshape:
        cfa_array['pmshape'] = pmshape
        
    pmaxes = cfa_array.pop('_pmaxes', None)
    if pmaxes:
        cfa_array['pmdimensions'] = pmaxes
        
    pda_args = data.pda_args(revert_to_file=True)
 
    base = g['cfa_options'].get('base', None)
    if base is not None:
        cfa_array['base'] = base

    convert_dtype = g['datatype']

    for attrs in cfa_array['Partitions']:
        fmt = attrs.get('format', None)

        if fmt is None:
            # --------------------------------------------------------
            # This partition has an internal sub-array. This could be
            # a numpy array or a temporary FileArray object.
            # -------------------------------------------------------- 
            index = attrs.get('index', ())
            if len(index) == 1:
                index = index[0]
            else:
                index = tuple(index)

            partition = data.partitions.matrix.item(index)

            array = partition.dataarray(**pda_args)

            # Convert data type
            new_dtype = convert_dtype.get(array.dtype, None)
            if new_dtype is not None:
                array = array.astype(new_dtype)  
                
            shape = array.shape        
            ncdim_strlen = []
            if array.dtype.kind == 'S':
                # This is an array of strings
                strlen = array.dtype.itemsize    
                if strlen > 1:
                    # Convert to an array of characters
                    array = _character_array(array)
                    # Get the netCDF dimension for the string length
                    ncdim_strlen = [_string_length_dimension(strlen, g=None)]
            #--- End: if

            # Create a name for the netCDF variable to contain the array
            p_ncvar = 'cfa_'+_random_hex_string()
            while p_ncvar in g['ncvar_names']:
                p_ncvar = 'cfa_'+_random_hex_string()
            #--- End: while
            g['ncvar_names'].add(p_ncvar)
          
            # Get the private CFA netCDF dimensions for the array.
            cfa_dimensions = [_cfa_dimension(n, g=g) for n in array.shape]
            
            # Create the private CFA variable and write the array to it
            v = g['netcdf'].createVariable(p_ncvar, _datatype(array, g=g),
                                           cfa_dimensions + ncdim_strlen,
                                           fill_value=fill_value,
                                           least_significant_digit=None,
                                           endian=g['endian'],
                                           **g['compression'])
            
            _write_attributes(v, {'cf_role': 'cfa_private'})
            
            v[...] = array

            # Update the attrs dictionary.
            #
            # Note that we don't need to set 'part', 'dtype', 'units',
            # 'calendar', 'dimensions' and 'reverse' since the
            # partition's in-memory data array always matches up with
            # the master data array.
            attrs['subarray'] = {'shape' : shape,
                                 'ncvar' : p_ncvar}

        else:
            # --------------------------------------------------------
            # This partition has an external sub-array
            # --------------------------------------------------------
            # PUNITS, PCALENDAR: Change from Units object to netCDF
            #                    string(s)
            units = attrs.pop('Units', None)
            if units is not None:
                attrs['punits'] = units.units
                if hasattr(units, 'calendar'):
                    attrs['pcalendar'] = units.calendar

            # PDIMENSIONS: 
            p_axes = attrs.pop('axes', None)
            if p_axes is not None:
                attrs['pdimensions'] = p_axes

            # REVERSE                
            p_flip = attrs.pop('flip', None)
            if p_flip:
                attrs['reverse'] = p_flip

            # DTYPE: Change from numpy.dtype object to netCDF string
            dtype = attrs['subarray'].pop('dtype', None)
            if dtype is not None:
                if dtype.kind != 'S':
                    attrs['subarray']['dtype'] = _convert_to_netCDF_datatype(dtype)

            # FORMAT: 
            sfmt = attrs.pop('format', None)
            if sfmt is not None:
                attrs['subarray']['format'] = sfmt
        #--- End: if
 
        # LOCATION: Change from python to CFA indexing (i.e. range
        #           includes the final index)
        attrs['location'] = [(x[0], x[1]-1) for x in attrs['location']]
        
        # PART: Change from python to to CFA indexing (i.e. slice
        #       range includes the final index)
        part = attrs.get('part', None)
        if part:
            p = []
            for x, size in zip(part, attrs['subarray']['shape']):
                if isinstance(x, slice):
                    x = x.indices(size)
                    if x[2] > 0:
                        p.append([x[0], x[1]-1, x[2]])
                    elif x[1] == -1:
                        p.append([x[0], 0, x[2]])
                    else:
                        p.append([x[0], x[1]+1, x[2]])
                else:
                    p.append(tuple(x))
            #--- End: for
            attrs['part'] = str(p)
        #--- End: if
                
        if 'base' in cfa_array and 'file' in attrs['subarray']:
            # Make the file name relative to base
            attrs['subarray']['file'] = relpath(attrs['subarray']['file'],
                                                cfa_array['base'])            
    #--- End: for

    # Add the description (as a JSON string) of the partition array to
    # the netcdf attributes.
    netcdf_attrs['cfa_array'] = json.dumps(cfa_array,
                                           default=_convert_to_builtin_type)

    # Write the netCDF attributes to the file
    _write_attributes(g['nc'][ncvar], netcdf_attrs)
#--- End: def

def _convert_to_netCDF_datatype(dtype):
    '''

Convert a numpy.dtype object to a netCDF data type string.

:Parameters:

    dtype : numpy.dtype

:Returns:

    out : str

:Examples:

>>> _convert_to_netCDF_datatype(numpy.dtype('float32'))
'float'
>>> _convert_to_netCDF_datatype(numpy.dtype('float64'))
'double'
>>> _convert_to_netCDF_datatype(numpy.dtype('int8'))
'byte'

'''    
    if dtype.char is 'f':
        return 'float'
    if dtype.char is 'd':
        return 'double'
    if dtype.kind is 'i':  # long int??
        return 'int'
    if dtype.char is 'S':
        return 'char'
    if dtype.char is 'b':
        return 'byte'
    if dtype.char is 'h':
        return 'short'

    raise TypeError("Ho hum de hum")
#--- End: def

def _convert_to_builtin_type(x):
    '''

Convert a non-JSON-encodable object to a JSON-encodable built-in type.

Possible conversions are:

==============  =============  ======================================
Input object    Output object  numpy data types covered
==============  =============  ======================================
numpy.bool_     bool           bool
numpy.integer   int            int, int8, int16, int32, int64, uint8,
                               uint16, uint32, uint64
numpy.floating  float          float, float16, float32, float64
==============  =============  ======================================

:Parameters:

    x : 
        
:Returns: 

    out :

:Raises:

    TypeError :
        If *x* can't be converted to a JSON serializableis type.

:Examples:

>>> type(_convert_to_netCDF_datatype(numpy.bool_(True)))
bool
>>> type(_convert_to_netCDF_datatype(numpy.array([1.0])[0]))
double
>>> type(_convert_to_netCDF_datatype(numpy.array([2])[0]))
int

''' 
    if isinstance(x, numpy_bool_):
        return bool(x)

    if isinstance(x, numpy_integer):
        return int(x)
     
    if isinstance(x, numpy_floating):
        return float(x)

    raise TypeError(
        "{0!r} object is not JSON serializable: {1!r}".format(type(x), x))
#--- End: def

def _grid_ncdimensions(f, key, axis_to_ncdim, g=None):
    '''

Return a tuple of the netCDF dimension names for the axes of a
coordinate or cell measures objects.

:Parameters:

    f : cf.Field

    key : str

    axis_to_ncdim : dict
        Mapping of field axis identifiers to netCDF dimension names.

    g : dict

:Returns:

    out : tuple
        A tuple of the netCDF dimension names.

'''
    domain = f.domain
    
    if domain.get(key).ndim == 0:
        return ()
    else:
#        return tuple(g['axis_to_ncdim'][axis] 
#                     for axis in domain._axes[key])
        return tuple([axis_to_ncdim[axis] for axis in f.item_axes(key)])
#--- End: def
    
def _variable_ncvar(variable, default, counter, g=None):
    '''
    
:Returns:

    variable : cf.Variable
       
    default : str

    counter : int

    g : dict

'''
    ncvar = getattr(variable, 'ncvar', variable.identity(default=default))
    
    return _check_name(ncvar, counter, g=g)        
#--- End: def
    
def _write_dimension(ncdim, f, axis, axis_to_ncdim, unlimited=False, g=None):
    '''Write a dimension to the netCDF file.

.. note:: This function updates ``axis_to_ncdim``, ``g['ncdim_to_size']``.

:Parameters:

    ncdim: `str`
        The netCDF dimension name.

    f: `cf.Field`
   
    axis: `str`
        The field's axis identifier.

    axis_to_ncdim: `dict`
        Mapping of field axis identifiers to netCDF dimension names.

    unlimited: `bool`, optional
        If true then create an unlimited dimension. By default
        dimensions are not unlimited.

    g: `dict`

:Returns:

     `None`

    '''          
    size = f.axis_size(axis)

    g['ncdim_to_size'][ncdim] = size
    axis_to_ncdim[axis] = ncdim

    if unlimited:
        # Create an unlimited dimension
        try:
            g['netcdf'].createDimension(ncdim, None)
        except RuntimeError as error:

            message = "Can't create unlimited dimension in {} file ({}).".format(
                g['netcdf'].file_format, error)

            error = str(error)
            if error == 'NetCDF: NC_UNLIMITED size already in use':
                raise NetCDFError(
message+" Only one unlimited dimension allowed. Consider using a netCDF4 format.")
                
            raise NetCDFError(message)
    else:
        try:
            g['netcdf'].createDimension(ncdim, size)
        except RuntimeError as error:
            raise NetCDFError(
"Can't create dimension of size {} in {} file ({})".format(
    size, g['netcdf'].file_format, error))
#--- End: def

def _change_reference_datetime(coord, g=None):
    '''

:Parameters:

    coord : cf.Coordinate

    g : dict

:Returns:

    out : cf.Coordinate

'''       
    if not coord.Units.isreftime:
        return coord

    reference_datetime = g['reference_datetime']
    if not reference_datetime:
        return coord

    coord2 = coord.copy()
    try:
        coord2.reference_datetime = reference_datetime
    except ValueError:
        raise ValueError(
"Can't override coordinate reference date-time {0!r} with {1!r}".format(
    coord.reference_datetime, reference_datetime))
    else:
        return coord2
#--- End: def

def _write_dimension_coordinate(f, axis, coord, key_to_ncvar, axis_to_ncdim,
                                g=None):
    '''

Write a dimension coordinate and bounds to the netCDF file.

This also writes a new netCDF dimension to the file and, if required,
a new netCDF bounds dimension.

.. note:: This function updates ``axis_to_ndim``, ``g['dimN']``,
          ``g['seen']``.

:Parameters:

    f : cf.Field
   
    axis : str

    coord : cf.DimensionCoordinate

    key_to_ncvar : dict
        Mapping of field item identifiers to netCDF dimension names.

    axis_to_ncdim : dict
        Mapping of field axis identifiers to netCDF dimension names.

    g : dict

:Returns:

    out : str
        The netCDF name of the dimension coordinate.

'''       
    seen = g['seen']
    
    coord = _change_reference_datetime(coord, g)

    create = False
    if not _seen(coord, g=g):
        create = True
    elif seen[id(coord)]['ncdims'] != ():
        if seen[id(coord)]['ncvar'] != seen[id(coord)]['ncdims'][0]:
            # Already seen this coordinate but it was an auxiliary
            # coordinate, so it needs to be created as a dimension
            # coordinate.
            create = True
    #--- End: if

    if create:
        ncdim, g['dimN'] = _variable_ncvar(coord, 'dim', g['dimN'], g=g)

        # Create a new dimension, if it is not a scalar coordinate
        if coord.ndim > 0:
            unlimited = _unlimited(f, axis, g=g)
            _write_dimension(ncdim, f, axis, axis_to_ncdim,
                             unlimited=unlimited, g=g)

        ncdimensions = _grid_ncdimensions(f, axis, axis_to_ncdim, g=g)
        
        # If this dimension coordinate has bounds then create the
        # bounds netCDF variable and add the bounds or climatology
        # attribute to the dictionary of extra attributes
        extra = _write_coordinate_bounds(coord, ncdimensions, ncdim, g=g)

        # Create a new dimension coordinate variable
        _create_netcdf_variable(ncdim, ncdimensions, coord, 
                                extra=extra, g=g)
    else:
        ncdim = seen[id(coord)]['ncvar']

    key_to_ncvar[axis] = ncdim

#    try:    ### ????? why not always do this dch??
    axis_to_ncdim[axis] = ncdim
#    except KeyError:
#        pass

    return ncdim
#--- End: def

def _seen(variable, ncdims=None, g=None):
    '''

Return True if a variable is logically equal any variable in the
g['seen'] dictionary.

If this is the case then the variable has already been written to the
output netCDF file and so we don't need to do it again.

If 'ncdims' is set then a extra condition for equality is applied,
namely that of 'ncdims' being equal to the netCDF dimensions (names
and order) to that of a variable in the g['seen'] dictionary.

When True is returned, the input variable is added to the g['seen']
dictionary.

.. note:: This function updates ``g['seen']``.

:Parameters:

    variable : 

    ncdims : tuple, optional

    g : dict

:Returns:

    out : bool
        True if the variable has already been written to the file,
        False otherwise.

'''
    seen = g['seen']

    for key, value in seen.iteritems():
        if ncdims is not None and ncdims != value['ncdims']:
            # The netCDF dimensions (names and order) of the input
            # variable are different to those of this variable in
            # the 'seen' dictionary
            continue

        # Still here?
        if variable.equals(value['variable']):
            seen[id(variable)] = {'variable': variable,
                                  'ncvar'   : value['ncvar'],
                                  'ncdims'  : value['ncdims']}
            return True
    #--- End: for

    return
#--- End: def

def _write_coordinate_bounds(coord, coord_ncdimensions, coord_ncvar, g=None):
    '''

Create a coordinate's bounds netCDF variable, creating a new bounds
netCDF dimension if required. Return the bounds variable's netCDF
variable name.

.. note:: This function updates ``g['bnddimN']``, ``g['bndN']``,
          ``g['netcdf']``.

:Parameters:

    coord : cf.Coordinate

    coord_ncdimensions : tuple
        The ordered netCDF dimension names of the coordinate's
        dimensions (which do not include the bounds dimension).

    coord_ncvar : str
        The netCDF variable name of the coordinate.

     g : dict

:Returns:

    out : dict

:Examples:

>>> extra = _write_coordinate_bounds(c, ('dim2',), g=g)

'''

    if not (coord._hasbounds and coord.bounds._hasData):
        return {}

    extra = {}

    # Still here? Then this coordinate has a bounds attribute
    # which contains data.
    bounds = coord.bounds

    size = bounds.shape[-1]

    ncdim, g['bnddimN'] = _check_name('bounds%(size)d' % locals(),
                                      g['bnddimN'], dimsize=size, g=g)

    # Check if this bounds variable has not been previously
    # created.
    ncdimensions = coord_ncdimensions +(ncdim,)        
    if _seen(bounds, ncdimensions, g=g):
        # This bounds variable has been previously created, so no
        # need to do so again.
        ncvar = g['seen'][id(bounds)]['ncvar']

    else:

        # This bounds variable has not been previously created, so
        # create it now.
        ncdim_to_size = g['ncdim_to_size']
        if ncdim not in ncdim_to_size:
            ncdim_to_size[ncdim] = size
            g['netcdf'].createDimension(ncdim, size) #ncdim_to_size[ncdim])
        
        ncvar = getattr(bounds, 'ncvar', '%s_bounds' % coord_ncvar)
        
        ncvar, g['bndN'] = _check_name(ncvar, g['bndN'], g=g)
        
        # Note that, in a field, bounds always have equal units to
        # their parent coordinate

        # Select properties to omit
        omit = []
        for prop in g['omit_bounds_properties']:
            if coord.hasprop(prop):
                omit.append(prop)

        # Create the bounds netCDF variable
        _create_netcdf_variable(ncvar, ncdimensions, bounds, omit=omit, g=g)
    #--- End: if

    if getattr(coord, 'climatology', None):
        extra['climatology'] = ncvar
    else:
        extra['bounds'] = ncvar

    return extra
#--- End: def
        
def _write_scalar_coordinate(f, axis, coord, coordinates,
                             key_to_ncvar, axis_to_ncscalar, g=None):
    '''

Write a scalar coordinate and bounds to the netCDF file.

It is assumed that the input coordinate is has size 1, but this is not
checked.

If an equal scalar coordinate has already been written to the file
then the input coordinate is not written.

.. note:: This function updates ``key_to_ncvar``,
          ``axis_to_ncscalar``, ``g['scalarN']``.

:Parameters:

    f : cf.Field
   
    axis : str
        The field's axis identifier for the scalar coordinate.

    key_to_ncvar : dict
        Mapping of field item identifiers to netCDF dimension names.

    axis_to_ncscalar : dict
        Mapping of field axis identifiers to netCDF scalar coordinate
        variable names.

    coordinates : list

    g : dict

:Returns:

    coordinates : list
        The updated list of netCDF auxiliary coordinate names.

'''    
    coord = _change_reference_datetime(coord, g)

    coord = coord.squeeze()

    if not _seen(coord, (), g=g):
        ncvar, g['scalarN'] = _variable_ncvar(coord, 'scalar', g['scalarN'],
                                              g=g)
        # If this scalar coordinate has bounds then create the
        # bounds netCDF variable and add the bounds or climatology
        # attribute to the dictionary of extra attributes
        extra = _write_coordinate_bounds(coord, (), ncvar, g=g)

        # Create a new auxiliary coordinate variable
        _create_netcdf_variable(ncvar, (), coord, extra=extra, g=g)

    else:
        # This scalar coordinate has already been written to the
        # file
        ncvar = g['seen'][id(coord)]['ncvar']

    axis_to_ncscalar[axis] = ncvar

    key_to_ncvar[axis] = ncvar

    coordinates.append(ncvar)

    return coordinates
#--- End: def

def _write_auxiliary_coordinate(f, key, coord, coordinates,
                                key_to_ncvar, axis_to_ncdim, g=None):
    '''

Write an auxiliary coordinate and its bounds to the netCDF file.

If an equal auxiliary coordinate has already been written to the file
then the input coordinate is not written.

.. note:: This function updates ``g['auxN']``.

:Parameters:

    f : cf.Field
   
    key : str

    coord : cf.Coordinate

    coordinates : list

    key_to_ncvar : dict
        Mapping of field item identifiers to netCDF dimension names.

    axis_to_ncdim : dict
        Mapping of field axis identifiers to netCDF dimension names.

    g : dict

:Returns:

    coordinates : list
        The list of netCDF auxiliary coordinate names updated in
        place.

:Examples:

>>> coordinates = _write_auxiliary_coordinate(f, 'aux2', coordinates, g=g)

'''
    coord = _change_reference_datetime(coord, g)

    ncdimensions = _grid_ncdimensions(f, key, axis_to_ncdim, g=g)

    if _seen(coord, ncdimensions, g=g):
        ncvar = g['seen'][id(coord)]['ncvar']
    
    else:
        ncvar, g['auxN'] = _variable_ncvar(coord, 'aux', g['auxN'], g=g)
        
        # If this auxiliary coordinate has bounds then create the
        # bounds netCDF variable and add the bounds or climatology
        # attribute to the dictionary of extra attributes
        extra = _write_coordinate_bounds(coord, ncdimensions, ncvar, g=g)

        # Create a new auxiliary coordinate variable
        _create_netcdf_variable(ncvar, ncdimensions, coord, extra=extra, g=g)
    #--- End: if

    key_to_ncvar[key] = ncvar

    coordinates.append(ncvar)

    return coordinates
#--- End: def
  
def _write_cell_measure(f, key, cm, cell_measures,
                        key_to_ncvar, axis_to_ncdim, g=None):
    '''

Write an auxiliary coordinate and bounds to the netCDF file.

If an equal cell measure has already been written to the file then the
input coordinate is not written.

.. note:: This function updates ``g['cmN']``.

:Parameters:

    f : cf.Field
        The field containing the cell measure.

    key : str
        The domain identifier of the cell measure (e.g. 'cmo').

    cell_measures : list

    key_to_ncvar : dict
        Mapping of field item identifiers to netCDF dimension names.

    axis_to_ncdim : dict
        Mapping of field axis identifiers to netCDF dimension names.

    g : dict

:Returns:

    cell_measures : list
        The updated list of netCDF cell_measures 'measure: name'
        pairings.

:Examples:

'''
    ncdimensions = _grid_ncdimensions(f, key, axis_to_ncdim, g=g)

    if _seen(cm, ncdimensions, g=g):
        ncvar = g['seen'][id(cm)]['ncvar']
    else:
        ncvar, g['cmN'] = _variable_ncvar(cm, 'cm', g['cmN'], g=g)
        
        if not hasattr(cm, 'measure'):
            raise ValueError(
                "Can't create a cell measure variable without a 'measure' attribute")

        _create_netcdf_variable(ncvar, ncdimensions, cm, g=g)
    #--- End: if
            
    key_to_ncvar[key] = ncvar

    # Update the cell_measures list
    cell_measures.append('%s: %s' % (cm.measure, ncvar))

    return cell_measures
#--- End: def
  

def _write_grid_mapping(f, coordref, grid_mapping, multiple_grid_mappings,
                        key_to_ncvar, g=None):
    '''

Write a grid mapping georeference to the netCDF file.

.. note:: This function updates ``grid_mapping``, ``g['seen']``.

:Parameters:

    f : cf.Field

    coordref : cf.CoordinateReference
        The grid mapping coordinate reference to write to the file.

    grid_mapping : list
        The list of netCDF grid_mapping names. This is updated in
        place with the netCDF variable name of the input coordinate
        reference object.

    multiple_grid_mappings : bool

    key_to_ncvar : dict
        Mapping of field item identifiers to netCDF variable names.

    g : dict

:Returns:

    None

:Examples:

'''
    if _seen(coordref, g=g):
        # Use existing grid_mapping
        ncvar = g['seen'][id(coordref)]['ncvar']

    else:
        # Create a new grid mapping
        ncvar = getattr(coordref, 'ncvar', coordref.name)
    
        ncvar, g['gmN'] = _check_name(ncvar, g['gmN'], g=g) 
                        
        g['nc'][ncvar] = g['netcdf'].createVariable(ncvar, 'S1', (),
                                                    endian=g['endian'],
                                                    **g['compression'])

        t = f.domain.canonical_ref(coordref)

        # Add properties from key/value pairs
        if hasattr(g['nc'][ncvar], 'setncatts'):
            # Use the faster setncatts
            for term, value in coordref.iteritems():
                if value is None:
                    del t[term]
                elif numpy_size(value) == 1:
                    t[term] = numpy_array(value, copy=False).item()
                else:
                    t[term] = numpy_array(value, copy=False).tolist()
            #--- End: for
            if t.name is not None and 'grid_mapping_name' not in t:
                t['grid_mapping_name'] = t.name
            g['nc'][ncvar].setncatts(t)
        else:
            # Otherwise use the slower setncattr
            for term, value in t.iteritems():
                if value is None:
                    continue

                if numpy_size(value) == 1:
                    value = numpy_array(value, copy=False).item()
                else:
                    value = numpy_array(value, copy=False).tolist()

                g['nc'][ncvar].setncattr(term, value)
            #--- End: for
            if t.name is not None:
                g['nc'][ncvar].setncattr('grid_mapping_name', t.name)
        #--- End: if
        
        # Update the 'seen' dictionary. Note that grid mappings have
        # no netCDF dimensions.
        g['seen'][id(coordref)] = {'variable': coordref, 
                                    'ncvar'   : ncvar, 
                                    'ncdims'  : ()}
    #--- End: if

    # Update the grid_mapping list in place
    if multiple_grid_mappings:
        grid_mapping.append(ncvar+':')
        coords = sorted([key_to_ncvar[key] for key in coordref.coords])
        grid_mapping.extend(coords)
    else:
        grid_mapping.append(ncvar)
#--- End: def

def _create_netcdf_variable(ncvar, dimensions, cfvar, omit=(),
                            extra={}, data_variable=False, g=None):
    '''

Create a netCDF variable from *cfvar* with name *ncvar* and dimensions
*ncdimensions*. The new netCDF variable's properties are given by
cfvar.properties(), less any given by the *omit* argument. If a new
string-length netCDF dimension is required then it will also be
created. The ``seen`` dictionary is updated for *cfvar*.

.. note:: This function updates ``g['strlenN']``,
          ``g['ncdim_to_size']``, ``g['netcdf']``, ``g['nc']``,
          ``g['seen']``.

:Parameters:

    ncvar : str
        The netCDF name of the variable.

    dimensions : tuple
        The netCDF dimension names of the variable

    cfvar : cf.Variable
        The coordinate, cell measure or field object to write to the
        file.

    omit : sequence of str, optional

    extra : dict, optional

    g : dict

:Returns:

    None

'''
    # Set the netCDF4.createVariable datatype
    datatype = _datatype(cfvar, g=g)
    ncdimensions = dimensions
    
    if not cfvar._hasData:
        data = None
    else:
        data = cfvar.Data            
        pda_args = data.pda_args()

        if datatype == 'S1':
            # --------------------------------------------------------
            # Convert a string data type numpy array into a character
            # data type ('S1') numpy array with an extra trailing
            # dimension.
            # --------------------------------------------------------
            strlen = data.dtype.itemsize
            if strlen > 1:
                ncdim = _string_length_dimension(strlen, g=g)
                    
                ncdimensions = dimensions + (ncdim,)

                data = data.copy()

                new_axis = data._new_axis_identifier()

                for partition in data.partitions.flat:                    
                    array = partition.dataarray(**pda_args)
                    
                    # Convert the partition's string array into a
                    # character array. Note that it is very important
                    # to not change the mutable attributes of the
                    # partition object in-place.
                    if partition.part:
                        partition.part = partition.part + [slice(None)]

                    partition.axes     = partition.axes + [new_axis]
                    partition.shape    = partition.shape + [strlen]
                    partition.location = partition.location + [(0, strlen)]

                    partition.subarray    = _character_array(array)

                    partition.close()
                #--- End: for

                data._axes = data._axes + [new_axis]
                data._shape += (strlen,)
                data._ndim += 1
                data.dtype = datatype

                pda_args['axes'] = data._axes
                pda_args['keep_in_memory'] = True
    #--- End: if

    # Find the fill value (note that this is set in the call to
    # netCDF4.createVariable, rather than with setncattr).
    fill_value = cfvar.fill_value()

    # Add simple properties (and units and calendar) to the netCDF
    # variable
    netcdf_attrs = cfvar.properties
    for attr in ('units', 'calendar'):
        value = getattr(cfvar, attr, None)
        if value is not None:
            netcdf_attrs[attr] = value
    #--- End: for

    netcdf_attrs.update(extra)
    netcdf_attrs.pop('_FillValue', None)

    for attr in omit:
        netcdf_attrs.pop(attr, None) 

    is1d_coord = (isinstance(cfvar, Coordinate)       and cfvar.ndim <= 1 or
                  isinstance(cfvar, CoordinateBounds) and cfvar.ndim <= 2)

    if not g['cfa'] or data.in_memory or is1d_coord:
        #---------------------------------------------------------
        # Write a normal netCDF variable 
        #---------------------------------------------------------

        # ------------------------------------------------------------
        # Create a new netCDF variable and set the _FillValue
        # ------------------------------------------------------------ 
        if data_variable:
            lsd = g['least_significant_digit']
        else:
            lsd = None

        # Set HDF chunk sizes
        chunksizes = [size for i, size in sorted(cfvar.HDF_chunks().items())]
        if chunksizes == [None] * cfvar.ndim:
            chunksizes = None

        try:
            g['nc'][ncvar] = g['netcdf'].createVariable(
                ncvar,
                datatype, 
                ncdimensions,
                fill_value=fill_value,
                least_significant_digit=lsd,
                endian=g['endian'],
                chunksizes=chunksizes,
                **g['compression']
            )
#        except (TypeError, RuntimeError):
        except RuntimeError as error:
            error = str(error)
            if error == 'NetCDF: Not a valid data type or _FillValue type mismatch':
                raise ValueError(
"Can't write {0} data from {1!r} to a {2} file. Consider using a netCDF4 format or use the 'single' or 'datatype' parameters or change the datatype before writing.".format(
    cfvar.dtype.name, cfvar, g['netcdf'].file_format))
            
            message = "Can't create variable in {} file from {} ({})".format(g['netcdf'].file_format, cfvar, error)

            if error == 'NetCDF: NC_UNLIMITED in the wrong index':            
                raise NetCDFError(
message+". Unlimited dimension must be the first (leftmost) dimension of the variable. Consider using a netCDF4 format.")
                
            raise NetCDFError(message)
        #--- End: try

        _write_attributes(g['nc'][ncvar], netcdf_attrs)

        #-------------------------------------------------------------
        # Add data to the netCDF variable
        #
        # Note that we don't need to worry about scale_factor and
        # add_offset, since if a partition's data array is *not* a
        # numpy array, then it will have its own scale_factor and
        # add_offset parameters which will be applied when the array
        # is realised, and the python netCDF4 package will deal with
        # the case when scale_factor or add_offset are set as
        # properties on the variable.
        # -------------------------------------------------------------
        if data is not None:  

            # Find the missing data values, if any.
            if not fill_value:
                missing_data = None
            else:
                _FillValue    = getattr(cfvar, '_FillValue', None) 
                missing_value = getattr(cfvar, 'missing_value', None)            
                missing_data = [value for value in (_FillValue, missing_value)
                                if value is not None]

            pda_args['revert_to_file'] = True
            
#            if data._isdt:
#                # Convert date-time objects to numeric reference times
#                pda_args['func']   = dt2rt
#                # Turn off data type checking and partition updating
#                pda_args['dtype']  = None
#                pda_args['update'] = False
#            #--- End: if

            convert_dtype = g['datatype']

            for partition in data.partitions.flat:
                array = partition.dataarray(**pda_args)   

                # Convert data type
                new_dtype = convert_dtype.get(array.dtype, None)
                if new_dtype is not None:
                    array = array.astype(new_dtype)  

                # Check that the array doesn't contain any elements
                # which are equal to any of the missing data values
                if missing_data:
                    if partition.masked:
                        temp_array = array.compressed()
                    else:
                        temp_array = array

                    if numpy_intersect1d(missing_data, temp_array):
                        raise ValueError(
"ERROR: Can't write field when array has _FillValue or missing_value at unmasked point: {0!r}".format(
    cfvar))

                # Copy the array into the netCDF variable
                g['nc'][ncvar][partition.indices] = array

                partition.close()
            #--- End: for                  
        #--- End: if

        # Update the 'seen' dictionary
        g['seen'][id(cfvar)] = {'variable': cfvar,
                                'ncvar'   : ncvar,
                                'ncdims'  : dimensions}

        return

    elif data is not None:
        #---------------------------------------------------------
        # Write a CFA variable 
        #---------------------------------------------------------
        _write_cfa_variable(ncvar, ncdimensions, netcdf_attrs, data, g=g)
        return
#--- End: def
 
def _write_a_field(f, add_to_seen=False, allow_data_expand_dims=True,
                   remove_crap_axes=False, g=None):
    '''

:Parameters:

    f : cf.Field

    add_to_seen : bool, optional

    allow_data_expand_dims : bool, optional

    g : dict

:Returns:

    None

'''
    seen = g['seen']
      
    if add_to_seen:
        id_f = id(f)
        org_f = f
        
    f = f.copy()

    data_axes = f.data_axes()

    domain     = f.domain
    dimensions = domain._axes

    # Mapping of field axis identifiers to netCDF dimension names
    axis_to_ncdim = {}

    # Mapping of field axis identifiers to netCDF scalar coordinate
    # variable names
    axis_to_ncscalar = {}

    # Mapping of field item identifiers to netCDF variable names
    key_to_ncvar = {}

    # Initialize the list of the field's auxiliary coordinates
    coordinates = []

    # For each of the field's axes ...
    for axis in sorted(f.axes()):
        
        dim_coord = f.dim(axis)

        if dim_coord is not None:
            # --------------------------------------------------------
            # A dimension coordinate exists for this axis
            # --------------------------------------------------------
            if axis in data_axes:
                # The data array spans this axis, so write the
                # dimension coordinate to the file as a netCDF 1-d
                # coordinate variable.
                ncdim = _write_dimension_coordinate(f, axis, dim_coord,
                                                    key_to_ncvar, axis_to_ncdim,
                                                    g=g)
            else:
                # The data array does not span this axis (and
                # therefore it must have size 1).
                if f.items(role=('a', 'm'), axes=axis):
                    # There ARE auxiliary coordinates/cell measures
                    # which span this axis, so write the dimension
                    # coordinate to the file as a netCDF 1-d
                    # coordinate variable.
                    ncdim = _write_dimension_coordinate(f, axis, dim_coord,
                                                        key_to_ncvar,
                                                        axis_to_ncdim, g=g)

                    # Expand the field's data array to include this
                    # axis
                    f.expand_dims(0, axes=axis, i=True) 
                else:
                    # There are NO auxiliary coordinates/cell measures
                    # which span this axis, so write the dimension
                    # coordinate to the file as a netCDF scalar
                    # coordinate variable.
                    coordinates = _write_scalar_coordinate(f, axis, dim_coord,
                                                           coordinates,
                                                           key_to_ncvar,
                                                           axis_to_ncscalar,
                                                           g=g)
        else:
            # --------------------------------------------------------
            # There is no dimension coordinate for this axis
            # --------------------------------------------------------
            if axis not in data_axes and f.items(role=('a', 'm'), axes=axis):
                # The data array doesn't span the axis but an
                # auxiliary coordinate or cell measure does, so expand
                # the data array to include it.
                f.expand_dims(0, axes=axis, i=True)
                data_axes.append(axis)
                
            # If the data array (now) spans this axis then create a
            # netCDF dimension for it
            if axis in data_axes:
                try:
                    ncdim = domain.nc_dimensions[axis]
                except (AttributeError, KeyError):
                    ncdim = 'dim'
                    
                ncdim, g['dimN'] = _check_name(ncdim, g['dimN'], g=g)

                unlimited = _unlimited(f, axis, g=g)
                _write_dimension(ncdim, f, axis, axis_to_ncdim,
                                 unlimited=unlimited, g=g)
    #--- End: for

    # ----------------------------------------------------------------
    # Create auxiliary coordinate variables, except those which might
    # be completely specified elsewhere by a transformation.
    # ----------------------------------------------------------------
    # Initialize the list of 'coordinates' attribute variable values
    # (each of the form 'name')
    for key, aux_coord in sorted(f.auxs().items()):
        coordinates = _write_auxiliary_coordinate(f, key, aux_coord,
                                                  coordinates, key_to_ncvar,
                                                  axis_to_ncdim, g=g)

    # ----------------------------------------------------------------
    # Create cell measures variables
    # ----------------------------------------------------------------
    # Initialize the list of 'cell_measures' attribute values (each of
    # the form 'measure: name')
    cell_measures = []
    for key, clm in sorted(f.measures().items()):
        cell_measures = _write_cell_measure(f, key, clm, cell_measures,
                                            key_to_ncvar, axis_to_ncdim, g=g)

    # ----------------------------------------------------------------
    # Create grid mapping and formula terms variables
    # ----------------------------------------------------------------

    # Find out if there is more than one grid_mapping
    multiple_grid_mappings = len([ref for ref in f.refs().values()
                                  if ref.type == 'grid_mapping']) > 1

    # Initialize the list of 'grid_mapping' attribute netCDF variable
    # names
    grid_mapping = []

    multiple_grid_mappings = False

    for coordref in f.refs().values():
        coordref_type = coordref.type

        if coordref_type == 'grid_mapping': 
            # --------------------------------------------------------
            # This coordinate reference is a grid mapping
            # --------------------------------------------------------
            _write_grid_mapping(f, coordref, grid_mapping,
                                multiple_grid_mappings, key_to_ncvar, g=g)

        elif coordref_type == 'formula_terms':
            # --------------------------------------------------------
            # This coordinate reference is a formula_terms
            # --------------------------------------------------------
            formula_terms = []

            owning_coord = f.coord(coordref.name, exact=True)
            if owning_coord is None:
                # This formula_terms coordinate reference doesn't
                # match up with an existing coordinate
                formula_terms = None
            
            # Still here? Then create the formula_terms attribute
            # string
            for term, value in coordref.iteritems():

                if term in coordref.coord_terms:
                    # The value is a pointer to a coordinate
                    value = f.coord(value, exact=True)
                    if value is None:
                        # Do not create broken formula_terms
                        formula_terms = None

                elif value is None:
                    # Do not create broken formula_terms
                    formula_terms = None

                else:
                    # Make sure that value is a field
                    if not isinstance(value, Field):
                        data = getattr(value, 'data', None)
                        if data is None:
                            data = Data(value)

                        value = Field(data=data)
                    #--- End: if

                    if not _seen(value, g=g):
                        # The field hasn't yet been written to the
                        # file
                        value.ncvar = getattr(value, 'ncvar', term)
                        _write_a_field(value, add_to_seen=True, g=g)
                #--- End: if
               
                # Record the netCDF variable name of the value 
                # formula_terms string
                if formula_terms is not None:
                    ncvar = seen[id(value)]['ncvar']
                    formula_terms.append('%(term)s: %(ncvar)s' % locals())
            #--- End: for
    
            # Add the formula_terms attribute to the output
            # variable
            if formula_terms:
                ncvar = seen[id(owning_coord)]['ncvar']
                g['nc'][ncvar].setncattr('formula_terms',
                                         ' '.join(formula_terms))
        else:
            raise ValueError("Ooops: unknown coordinate reference type: %s" %
                             coordref_type)
    #--- End: for

    # ----------------------------------------------------------------
    # Create ancillary variables
    # ----------------------------------------------------------------
    # Initialize the list of 'ancillary_variables' attribute
    # values
    ancillary_variables = []
    if hasattr(f, 'ancillary_variables'):
        for av in f.ancillary_variables:
            _write_a_field(av, add_to_seen=True, allow_data_expand_dims=False, 
                           remove_crap_axes=1, g=g)
            ancillary_variables.append(seen[id(av)]['ncvar'])

    # ----------------------------------------------------------------
    # Create the data variable
    # ----------------------------------------------------------------
    ncvar = getattr(f, 'ncvar', f.identity(default='data'))

    ncvar, g['dataN'] = _check_name(ncvar, g['dataN'], g=g)

#    axis_to_ncdim    = g['axis_to_ncdim']
#    axis_to_ncscalar = g['axis_to_ncscalar']

    ncdimensions = tuple([axis_to_ncdim[axis] for axis in f.data_axes()])
#                         for dim in domain._axes['data'])

    extra = {}

    # Cell measures
    if cell_measures:
        extra['cell_measures'] = ' '.join(cell_measures)           

    # Auxiliary/scalar coordinates
    if coordinates:
        extra['coordinates'] = ' '.join(coordinates)

    # Grid mapping
    if grid_mapping: 
        extra['grid_mapping'] = ' '.join(grid_mapping)

    # Ancillary variables
    if ancillary_variables:
        extra['ancillary_variables'] = ' '.join(ancillary_variables)
        
    # Flag values
    if hasattr(f, 'flag_values'):
        extra['flag_values'] = f.flag_values

    # Flag masks
    if hasattr(f, 'flag_masks'):
        extra['flag_masks'] = f.flag_masks

    # Flag meanings
    if hasattr(f, 'flag_meanings'):
        extra['flag_meanings'] = ' '.join(f.flag_meanings)

    # Cell methods
    cell_methods = getattr(f, 'cell_methods', None)
    if cell_methods is not None:
        cell_methods = cell_methods.set_axes(f, override=False)
        cell_methods = cell_methods.netcdf_names(
            axis_to_ncdim, axis_to_ncscalar)

        extra['cell_methods'] = str(cell_methods)

    # Create a new data variable
    _create_netcdf_variable(ncvar, ncdimensions, f,
                            omit=g['global_properties'],
                            extra=extra,
                            data_variable=True,
                            g=g)
    
    # Update the 'seen' dictionary, if required
    if add_to_seen:
        g['seen'][id_f] = {'variable': org_f,
                           'ncvar'   : ncvar,
                           'ncdims'  : ncdimensions}
#--- End: def

def _unlimited(f, axis, g=None):
    '''
'''
    unlimited = f.unlimited().get(axis)

    if unlimited is None:
        unlimited = False
        for u in g['unlimited']:
            if f.axis(u) == axis:
                unlimited = True
                break
    
    return unlimited
#--- End: def

def _create_global_properties(fields, g=None):
    '''

Find the netCDF global properties from all of the input fields and
write them to the netCDF4.Dataset.

.. note:: This function updates ``g['global_properties']``.

:Parameters:

    fields : cf.FieldList

    g : dict

:Returns:

    None

'''
    # Data variable properties, as defined in Appendix A, without
    # those which are not simple.
    data_properties = set(('add_offset',
                           'cell_methods',
                           '_FillValue',
                           'flag_masks',
                           'flag_meanings',
                           'flag_values',
                           'long_name',
                           'missing_value',
                           'scale_factor',
                           'standard_error_multiplier',
                           'standard_name',
                           'units',
                           'valid_max',
                           'valid_min',
                           'valid_range',
                           ))

    # Global properties, as defined in Appendix A
    global_properties = set(('comment',
                             'Conventions',
                             'history',
                             'institution',
                             'references',
                             'source',
                             'title',
                             ))

    # Put all non-standard CF properties (i.e. those not in the
    # data_properties set) into the global_properties set, but
    # omitting those which have been requested to be on variables.
    for f in fields:
        for attr in set(f._simple_properties()) - global_properties - g['variable_attributes']:
            if attr not in data_properties:
                global_properties.add(attr)
    #--- End: for

    # Remove properties from the new global_properties set which
    # have different values in different fields
    f0 = fields[0]
    for prop in tuple(global_properties):
        if not f0.hasprop(prop):
            global_properties.remove(prop)
            continue
            
        prop0 = f0.getprop(prop)

        if len(fields) > 1:
            for f in fields[1:]:
                if (not f.hasprop(prop) or 
                    not equals(f.getprop(prop), prop0, traceback=False)):
                    global_properties.remove(prop)
                    break
    #--- End: for

    # Write the global properties to the file
    Conventions = __Conventions__
    if g['cfa']:
        Conventions += ' CFA'

    g['netcdf'].setncattr('Conventions', Conventions)
    
    for attr in global_properties - set(('Conventions',)):
        g['netcdf'].setncattr(attr, f0.getprop(attr)) 

    g['global_properties'] = global_properties
#--- End: def