1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
.. currentmodule:: cf
.. default-role:: obj
.. _units:
Units handling by the `cf.Units` object
=======================================
A field (as well as any other object which :ref:`inherits
<inheritance_diagrams>` from `cf.Variable`) always contains a
`cf.Units` object which gives the physical units of the values
contained in its data array.
The `cf.Units` object is stored in the field's `~Field.Units`
attribute but may also be accessed through the field's `~Field.units`
and `~Field.calendar` CF properties, which may take any value allowed
by the `CF conventions
<http://cf-pcmdi.llnl.gov/documents/cf-conventions/latest-cf-conventions-document-1>`_. In
particular, the value of the `~Field.units` CF property is a string
that can be recognized by `UNIDATA's Udunits-2 package
<http://www.unidata.ucar.edu/software/udunits/>`_, with a few
exceptions for greater consistency with CF. These are detailed by the
`cf.Units` object.
Assignment
----------
The Field's units may be assigned directly to its `cf.Units` object:
>>> f.Units.units = 'days since 1-1-1'
>>> f.Units.calendar = 'noleap'
>>> f.Units = cf.Units('metre')
But the same result is achieved by assigning to the field's
`~Field.units` and `~Field.calendar` CF properties:
>>> f.units = 'days since 1-1-1'
>>> f.calendar = 'noleap'
>>> f.Units
<CF Units: days since 1-1-1 calendar=noleap>
>>> f.units
'days since 1-1-1'
>>> f.calendar
'noleap'
Time units
----------
Time units may be given as durations of time or as an amount of time
since a reference time:
>>> f.units = 'day'
>>> f.units = 'seconds since 1992-10-8 15:15:42.5 -6:00'
.. note::
It is recommended that the units ``'year'`` and ``'month'`` be used
with caution, as explained in the following excerpt from the CF
conventions: "The Udunits package defines a year to be exactly
365.242198781 days (the interval between 2 successive passages of
the sun through vernal equinox). It is not a calendar year. Udunits
includes the following definitions for years: a common_year is 365
days, a leap_year is 366 days, a Julian_year is 365.25 days, and a
Gregorian_year is 365.2425 days. For similar reasons the unit
``'month'``, which is defined to be exactly year/12, should also be
used with caution."
Calendar
^^^^^^^^
The date given in reference time units is always associated with one
of the calendars recognized by the CF conventions and may be set with
the *calendar* CF property (on the field or Units object).
If the calendar is not set then, as in the CF conventions, for the
purposes of calculation and comparison, it defaults to the mixed
Gregorian/Julian calendar as defined by Udunits:
>>> f.units = 'days since 2000-1-1'
>>> f.calendar
AttributeError: Can't get 'Field' attribute 'calendar'
>>> g.units = 'days since 2000-1-1'
>>> g.calendar = 'gregorian'
>>> g.Units.equals(f.Units)
True
The calendar is ignored for units other than reference time units.
Changing units
--------------
Changing units to equivalent units causes the variable's data array
values to be modified in place (if required) when they are next
accessed, and not before:
>>> f.units
'metre'
>>> f.array
array([ 0., 1000., 2000., 3000., 4000.])
>>> f.units = 'kilometre'
>>> f.units
'kilometre'
>>> f.array
array([ 0., 1., 2., 3., 4.])
>>> f.units
'hours since 2000-1-1'
>>> f.array
array([-1227192., -1227168., -1227144.])
>>> f.units = 'days since 1860-1-1'
>>> f.array
array([ 1., 2., 3.])
The `cf.Units` object may be operated on with augmented arithmetic
assignments and binary arithmetic operations:
>>> f.units
'kelvin'
>>> f.array
array([ 273.15, 274.15, 275.15, 276.15, 277.15])
>>> f.Units -= 273.15
>>> f.units
'K @ 273.15'
>>> f.array
array([ 0., 1., 2., 3., 4.])
>>> f.Units = f.Units + 273.15
>>> f.units
'K'
>>> f.array
array([ 273.15, 274.15, 275.15, 276.15, 277.15])
>>> f.units = 'K @ 237.15'
'K @ 273.15'
>>> f.array
array([ 0., 1., 2., 3., 4.])
If the field has a data array and its units are changed to
non-equivalent units then a :py:mod:`TypeError` will be raised when
the data are next accessed:
>>> f.units
'm s-1'
>>> f.units = 'K'
>>> f.array
TypeError: Units are not convertible: <CF Units: m s-1>, <CF Units: K>
Overriding units
^^^^^^^^^^^^^^^^
If the units are incorrect, either due to a data manipulation or
an incorrect encoding, it is possible to replace the existing units with
new units, which don't have to be equivalent, without altering the
data values:
>>> f.units
'mm/day'
>>> f.mean()
<CF Data: 3.3455467 mm/day>
>>> g = f.override_units('kg m-2 s-1')
>>> g.mean()
<CF Data: 3.3455467 kg m-2 s-1>
>>> g.override_units('watts m-2', i=True)
>>> g.mean()
<CF Data: 3.3455467 watts m-2>
Overriding the calendar of reference time units is done in a similar manner:
>>> f.calendar
'360_day'
>>> f.array.min()
59.0
>>> f.min()
<CF Data: 1960-02-30 00:00:00 360_day>
>>> g = f.override_calandar('gregorian')
>>> g.array.min()
59.0
>>> g.min()
<CF Data: 1960-02-29 00:00:00 gregorian>
Note that in this case the data values have remained unchanged, but
their date-time interpretation has been redefined.
See `cf.Field.override_units` and `cf.Field.override_calendar` for details.
Equality and equivalence of units
---------------------------------
The `cf.Units` object has methods for assessing whether two units are
equivalent or equal, regardless of their exact string representations.
Two units are equivalent if and only if numeric values in one unit are
convertible to numeric values in the other unit (such as
``'kilometres'`` and ``'metres'``). Two units are equal if and only if
they are equivalent and their conversion is a scale factor of 1 (such
as ``'kilometres'`` and ``'1000 metres'``). Note that equivalence and
equality are based on internally stored binary representations of the
units, rather than their string representations.
>>> f.units = 'm/s'
>>> g.units = 'm s-1'
>>> f.Units == g.Units
True
>>> f.Units.equals(g.Units)
True
>>> g.units = 'km s-1'
>>> f.Units.equivalent(g.Units)
False
>>> f.units = 'days since 1987-12-3'
>>> g.units = 'hours since 2000-12-1'
>>> f.Units == g.Units
False
>>> f.Units.equivalent(g.Units)
True
Coordinate units
----------------
The units of a coordinate's bounds are always the same as the
coordinate itself, and the units of the bounds automatically change
when a coordinate's units are changed:
>>> c.units
'degrees'
>>> c.bounds.units
'degrees'
>>> c.bounds.array
array([ 0., 90.])
>>> c.units = 'radians'
>>> c.bounds.units
'radians'
>>> c.bounds.array
array([ 0. , 1.57079633])
|