1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
/*
Copyright 2024 Northern.tech AS
This file is part of CFEngine 3 - written and maintained by Northern.tech AS.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
To the extent this program is licensed as part of the Enterprise
versions of CFEngine, the applicable Commercial Open Source License
(COSL) may apply to this file if you as a licensee so wish it. See
included file COSL.txt.
*/
#include <platform.h>
#include <threaded_queue.h>
#include <alloc.h>
#include <logging.h>
#include <mutex.h>
#include <pthread.h>
#define EXPAND_FACTOR 2
#define DEFAULT_CAPACITY 16
/** @struct ThreadedQueue_
@brief An implementation of a thread safe queue based on a circular array
Can enqueue, dequeue and give various statistics about its contents, like
amount of elements, capacity and if it is empty. Has the ability to block
if queue is empty, waiting for new elements to be queued.
*/
struct ThreadedQueue_ {
pthread_mutex_t *lock; /**< Thread lock for accessing data. */
pthread_cond_t *cond_non_empty; /**< Blocking condition if empty */
pthread_cond_t *cond_empty; /**< Blocking condition if not empty */
void (*ItemDestroy) (void *item); /**< Data-specific destroy function. */
void **data; /**< Internal array of elements. */
size_t head; /**< Current position in queue. */
size_t tail; /**< Current end of queue. */
size_t size; /**< Current size of queue. */
size_t capacity; /**< Current memory allocated. */
};
static void DestroyRange(ThreadedQueue *queue, size_t start, size_t end);
static void ExpandIfNecessary(ThreadedQueue *queue);
ThreadedQueue *ThreadedQueueNew(size_t initial_capacity,
void (ItemDestroy) (void *item))
{
ThreadedQueue *queue = xcalloc(1, sizeof(ThreadedQueue));
if (initial_capacity == 0)
{
initial_capacity = DEFAULT_CAPACITY;
}
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
// enables errorchecking for deadlocks
int ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to use error-checking mutexes for queue, "
"falling back to normal ones (pthread_mutexattr_settype: %s)",
GetErrorStrFromCode(ret));
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
}
queue->lock = xmalloc(sizeof(pthread_mutex_t));
ret = pthread_mutex_init(queue->lock, &attr);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize mutex (pthread_mutex_init: %s)",
GetErrorStrFromCode(ret));
pthread_mutexattr_destroy(&attr);
free(queue->lock);
free(queue);
return NULL;
}
pthread_mutexattr_destroy(&attr);
queue->cond_non_empty = xmalloc(sizeof(pthread_cond_t));
ret = pthread_cond_init(queue->cond_non_empty, NULL);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize thread condition (pthread_cond_init: %s)",
GetErrorStrFromCode(ret));
free(queue->lock);
free(queue->cond_non_empty);
free(queue);
return NULL;
}
queue->cond_empty = xmalloc(sizeof(pthread_cond_t));
ret = pthread_cond_init(queue->cond_empty, NULL);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize thread condition "
"(pthread_cond_init: %s)",
GetErrorStrFromCode(ret));
free(queue->lock);
free(queue->cond_empty);
free(queue->cond_non_empty);
free(queue);
return NULL;
}
queue->capacity = initial_capacity;
queue->head = 0;
queue->tail = 0;
queue->size = 0;
queue->data = xmalloc(sizeof(void *) * initial_capacity);
queue->ItemDestroy = ItemDestroy;
return queue;
}
void ThreadedQueueDestroy(ThreadedQueue *queue)
{
if (queue != NULL)
{
ThreadLock(queue->lock);
DestroyRange(queue, queue->head, queue->tail);
ThreadUnlock(queue->lock);
ThreadedQueueSoftDestroy(queue);
}
}
void ThreadedQueueSoftDestroy(ThreadedQueue *queue)
{
if (queue != NULL)
{
if (queue->lock != NULL)
{
pthread_mutex_destroy(queue->lock);
free(queue->lock);
}
if (queue->cond_non_empty != NULL)
{
pthread_cond_destroy(queue->cond_non_empty);
free(queue->cond_non_empty);
}
if (queue->cond_empty != NULL)
{
pthread_cond_destroy(queue->cond_empty);
free(queue->cond_empty);
}
free(queue->data);
free(queue);
}
}
bool ThreadedQueuePop(ThreadedQueue *queue, void **item, int timeout)
{
assert(queue != NULL);
ThreadLock(queue->lock);
if (queue->size == 0 && timeout != 0)
{
int res = 0;
do {
res = ThreadWait(queue->cond_non_empty, queue->lock, timeout);
if (res != 0)
{
/* Lock is reacquired even when timed out, so it needs to be
released again. */
ThreadUnlock(queue->lock);
return false;
}
} while (queue->size == 0);
// Reevaluate predicate to protect against spurious wakeups
}
bool ret = true;
if (queue->size > 0)
{
size_t head = queue->head;
*item = queue->data[head];
queue->data[head++] = NULL;
head %= queue->capacity;
queue->head = head;
queue->size--;
} else {
ret = false;
*item = NULL;
}
if (queue->size == 0)
{
// Signals that the queue is empty for ThreadedQueueWaitEmpty
pthread_cond_broadcast(queue->cond_empty);
}
ThreadUnlock(queue->lock);
return ret;
}
size_t ThreadedQueuePopN(ThreadedQueue *queue,
void ***data_array,
size_t num,
int timeout)
{
assert(queue != NULL);
ThreadLock(queue->lock);
if (queue->size == 0 && timeout != 0)
{
int res = 0;
do {
res = ThreadWait(queue->cond_non_empty, queue->lock, timeout);
if (res != 0)
{
/* Lock is reacquired even when timed out, so it needs to be
released again. */
ThreadUnlock(queue->lock);
*data_array = NULL;
return 0;
}
} while (queue->size == 0);
// Reevaluate predicate to protect against spurious wakeups
}
size_t size = num < queue->size ? num : queue->size;
void **data = NULL;
if (size > 0)
{
data = xcalloc(size, sizeof(void *));
size_t head = queue->head;
for (size_t i = 0; i < size; i++)
{
data[i] = queue->data[head];
queue->data[head++] = NULL;
head %= queue->capacity;
}
queue->head = head;
queue->size -= size;
}
if (queue->size == 0)
{
// Signals that the queue is empty for ThreadedQueueWaitEmpty
pthread_cond_broadcast(queue->cond_empty);
}
*data_array = data;
ThreadUnlock(queue->lock);
return size;
}
size_t ThreadedQueuePopNIntoArray(ThreadedQueue *queue,
void **data_array,
size_t num,
int timeout)
{
assert(queue != NULL);
ThreadLock(queue->lock);
if (queue->size == 0 && timeout != 0)
{
int res = 0;
do {
res = ThreadWait(queue->cond_non_empty, queue->lock, timeout);
if (res != 0)
{
/* Lock is reacquired even when timed out, so it needs to be
released again. */
ThreadUnlock(queue->lock);
return 0;
}
} while (queue->size == 0);
// Reevaluate predicate to protect against spurious wakeups
}
size_t size = num < queue->size ? num : queue->size;
if (size > 0)
{
size_t head = queue->head;
for (size_t i = 0; i < size; i++)
{
data_array[i] = queue->data[head];
queue->data[head++] = NULL;
head %= queue->capacity;
}
queue->head = head;
queue->size -= size;
}
if (queue->size == 0)
{
// Signals that the queue is empty for ThreadedQueueWaitEmpty
pthread_cond_broadcast(queue->cond_empty);
}
ThreadUnlock(queue->lock);
return size;
}
size_t ThreadedQueuePush(ThreadedQueue *queue, void *item)
{
assert(queue != NULL);
ThreadLock(queue->lock);
ExpandIfNecessary(queue);
queue->data[queue->tail++] = item;
queue->size++;
size_t const size = queue->size;
pthread_cond_signal(queue->cond_non_empty);
ThreadUnlock(queue->lock);
return size;
}
size_t ThreadedQueuePushN(ThreadedQueue *queue, void **items, size_t n_items)
{
assert(queue != NULL);
ThreadLock(queue->lock);
for (size_t i = 0; i < n_items; i++)
{
/* This should be a no-op in most iterations of the loop. */
ExpandIfNecessary(queue);
queue->data[queue->tail++] = items[i];
queue->size++;
}
size_t const size = queue->size;
pthread_cond_signal(queue->cond_non_empty);
ThreadUnlock(queue->lock);
return size;
}
size_t ThreadedQueueCount(ThreadedQueue const *queue)
{
assert(queue != NULL);
ThreadLock(queue->lock);
size_t const count = queue->size;
ThreadUnlock(queue->lock);
return count;
}
size_t ThreadedQueueCapacity(ThreadedQueue const *queue)
{
assert(queue != NULL);
ThreadLock(queue->lock);
size_t const capacity = queue->capacity;
ThreadUnlock(queue->lock);
return capacity;
}
bool ThreadedQueueIsEmpty(ThreadedQueue const *queue)
{
assert(queue != NULL);
ThreadLock(queue->lock);
bool const empty = (queue->size == 0);
ThreadUnlock(queue->lock);
return empty;
}
bool ThreadedQueueWaitEmpty(ThreadedQueue const *queue, int timeout)
{
assert(queue != NULL);
bool ret = true;
ThreadLock(queue->lock);
if (queue->size != 0)
{
if (timeout != 0)
{
int res = 0;
do {
res = ThreadWait(queue->cond_empty, queue->lock, timeout);
if (res != 0)
{
/* Lock is reacquired even when timed out, so it needs to
be released again. */
ThreadUnlock(queue->lock);
return false;
}
} while (queue->size != 0);
// Reevaluate predicate to protect against spurious wakeups
}
else
{
ret = false;
}
}
ThreadUnlock(queue->lock);
return ret;
}
ThreadedQueue *ThreadedQueueCopy(ThreadedQueue *queue)
{
assert(queue != NULL);
ThreadLock(queue->lock);
ThreadedQueue *new_queue = xmemdup(queue, sizeof(ThreadedQueue));
new_queue->data = xmalloc(sizeof(void *) * queue->capacity);
memcpy(new_queue->data, queue->data,
sizeof(void *) * new_queue->capacity);
ThreadUnlock(queue->lock);
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
// enables error checking for deadlocks
int ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to use error-checking mutexes for queue, "
"falling back to normal ones (pthread_mutexattr_settype: %s)",
GetErrorStrFromCode(ret));
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
}
new_queue->lock = xmalloc(sizeof(pthread_mutex_t));
ret = pthread_mutex_init(new_queue->lock, &attr);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize mutex (pthread_mutex_init: %s)",
GetErrorStrFromCode(ret));
pthread_mutexattr_destroy(&attr);
free(new_queue->lock);
free(new_queue);
return NULL;
}
new_queue->cond_non_empty = xmalloc(sizeof(pthread_cond_t));
ret = pthread_cond_init(new_queue->cond_non_empty, NULL);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize thread condition "
"(pthread_cond_init: %s)",
GetErrorStrFromCode(ret));
free(new_queue->lock);
free(new_queue->cond_non_empty);
free(new_queue);
return NULL;
}
new_queue->cond_empty = xmalloc(sizeof(pthread_cond_t));
ret = pthread_cond_init(new_queue->cond_empty, NULL);
if (ret != 0)
{
Log(LOG_LEVEL_ERR,
"Failed to initialize thread condition "
"(pthread_cond_init: %s)",
GetErrorStrFromCode(ret));
free(new_queue->lock);
free(new_queue->cond_empty);
free(new_queue->cond_non_empty);
free(new_queue);
return NULL;
}
return new_queue;
}
void ThreadedQueueClear(ThreadedQueue *queue)
{
assert(queue != NULL);
ThreadLock(queue->lock);
DestroyRange(queue, queue->head, queue->tail);
assert(queue->size == 0);
queue->head = 0;
queue->tail = queue->head;
pthread_cond_broadcast(queue->cond_empty);
ThreadUnlock(queue->lock);
}
size_t ThreadedQueueClearAndPush(ThreadedQueue *queue, void *item)
{
assert(queue != NULL);
ThreadLock(queue->lock);
DestroyRange(queue, queue->head, queue->tail);
queue->head = 0;
queue->tail = queue->head;
ExpandIfNecessary(queue);
queue->data[queue->tail++] = item;
queue->size++;
size_t const size = queue->size;
assert(queue->size == 1);
pthread_cond_signal(queue->cond_non_empty);
ThreadUnlock(queue->lock);
return size;
}
/**
@brief Destroys data in range.
@warning Assumes that locks are acquired.
@note If start == end, this means that all elements in queue will be
destroyed. Since the internal array is circular, it will wrap around
when reaching the array bounds.
@param [in] queue Pointer to struct.
@param [in] start Position to start destroying from.
@param [in] end First position to not destroy. Can be same as start.
*/
static void DestroyRange(ThreadedQueue *queue, size_t start, size_t end)
{
assert(queue != NULL);
if (start > queue->capacity || end > queue->capacity)
{
Log(LOG_LEVEL_DEBUG,
"Failed to destroy ThreadedQueue, index greater than capacity: "
"start = %zu, end = %zu, capacity = %zu",
start, end, queue->capacity);
return;
}
if (queue->size > 0)
{
if (queue->ItemDestroy != NULL)
{
queue->ItemDestroy(queue->data[start]);
}
queue->size--;
// In case start == end, start at second element in range
for (size_t i = start + 1; i != end; i++)
{
i %= queue->capacity;
if (queue->ItemDestroy != NULL)
{
queue->ItemDestroy(queue->data[i]);
}
queue->size--;
}
}
}
/**
@brief Either expands capacity of queue, or shifts tail to beginning.
@warning Assumes that locks are acquired.
@param [in] queue Pointer to struct.
*/
static void ExpandIfNecessary(ThreadedQueue *queue)
{
assert(queue != NULL);
assert(queue->size <= queue->capacity);
if (queue->size == queue->capacity)
{
if (queue->tail <= queue->head)
{
size_t old_capacity = queue->capacity;
queue->capacity *= EXPAND_FACTOR;
queue->data = xrealloc(queue->data,
sizeof(void *) * queue->capacity);
memmove(queue->data + old_capacity, queue->data,
sizeof(void *) * queue->tail);
queue->tail += old_capacity;
}
else
{
queue->capacity *= EXPAND_FACTOR;
queue->data = xrealloc(queue->data,
sizeof(void *) * queue->capacity);
}
}
queue->tail %= queue->capacity;
}
|