File: control

package info (click to toggle)
cfflib 2.0.5-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,656 kB
  • sloc: python: 11,033; makefile: 91; xml: 2
file content (45 lines) | stat: -rw-r--r-- 1,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Source: cfflib
Section: python
Priority: extra
Maintainer: Debian QA Group <packages@qa.debian.org>
Build-Depends:
 debhelper (>= 7.2.18),
 dh-python,
 python-all,
 python-networkx (>= 1.4),
 python-nibabel (>= 1.1.0),
 python-nose,
 python-numpy,
 python-sphinx,
Standards-Version: 3.9.6
Homepage: http://cmtk.org/cfflib
Vcs-Git: git://github.com/LTS5/cfflib.git
Vcs-Browser: http://github.com/LTS5/cfflib
X-Python-Version: >= 2.6

Package: python-cfflib
Architecture: all
Depends:
 python-lxml,
 python-networkx (>= 1.4),
 python-nibabel (>= 1.1.0),
 python-numpy,
 ${misc:Depends},
 ${python:Depends},
Recommends:
 python-h5py,
 python-nose,
 python-sphinx,
 python-tables,
Description: Multi-modal connectome and metadata management and integration
 The Connectome File Format Library (cfflib) is a Python module for
 multi-modal neuroimaging connectome data and metadata management and
 integration.
 .
 It enables single subject and multi-subject data integration for a
 variety of modalities, such as networks, surfaces, volumes, fiber
 tracks, timeseries, scripts, arbitrary data objects such as
 homogeneous arrays or CSV/JSON files. It relies on existing Python
 modules and the standard library for basic data I/O, and adds a layer
 of metadata annotation as tags or with structured properties to
 individual data objects.