File: control

package info (click to toggle)
cfflib 2.0.5-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,676 kB
  • sloc: python: 11,033; makefile: 76; xml: 2
file content (42 lines) | stat: -rw-r--r-- 1,533 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Source: cfflib
Maintainer: Debian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
Uploaders: Andreas Tille <tille@debian.org>
Section: python
Priority: optional
Build-Depends: debhelper (>= 11~),
               dh-python,
               python-all,
               python-networkx,
               python-nibabel,
               python-nose,
               python-numpy,
               python-sphinx
Standards-Version: 4.1.4
Vcs-Browser: https://salsa.debian.org/med-team/cfflib
Vcs-Git: https://salsa.debian.org/med-team/cfflib.git
Homepage: http://cmtk.org/cfflib

Package: python-cfflib
Architecture: all
Depends: python-lxml,
         python-networkx,
         python-nibabel,
         python-numpy,
         ${misc:Depends},
         ${python:Depends}
Recommends: python-h5py,
            python-nose,
            python-sphinx,
            python-tables
Description: Multi-modal connectome and metadata management and integration
 The Connectome File Format Library (cfflib) is a Python module for
 multi-modal neuroimaging connectome data and metadata management and
 integration.
 .
 It enables single subject and multi-subject data integration for a
 variety of modalities, such as networks, surfaces, volumes, fiber
 tracks, timeseries, scripts, arbitrary data objects such as
 homogeneous arrays or CSV/JSON files. It relies on existing Python
 modules and the standard library for basic data I/O, and adds a layer
 of metadata annotation as tags or with structured properties to
 individual data objects.