1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// Copyright (c) 2000 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Cartesian_kernel/include/CGAL/Cartesian/Vector_3.h $
// $Id: Vector_3.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author : Andreas Fabri
#ifndef CGAL_CARTESIAN_VECTOR_3_H
#define CGAL_CARTESIAN_VECTOR_3_H
#include <CGAL/Origin.h>
#include <CGAL/Threetuple.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class VectorC3
{
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Ray_3 Ray_3;
typedef typename R_::Segment_3 Segment_3;
typedef typename R_::Line_3 Line_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Threetuple<FT> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
VectorC3() {}
VectorC3(const Null_vector &n)
{ *this = R().construct_vector_3_object()(n); }
VectorC3(const Point_3 &a, const Point_3 &b)
{ *this = R().construct_vector_3_object()(a, b); }
VectorC3(const Segment_3 &s)
{ *this = R().construct_vector_3_object()(s); }
VectorC3(const Ray_3 &r)
{ *this = R().construct_vector_3_object()(r); }
VectorC3(const Line_3 &l)
{ *this = R().construct_vector_3_object()(l); }
VectorC3(const FT &x, const FT &y, const FT &z)
: base(x, y, z) {}
VectorC3(const FT &x, const FT &y, const FT &z, const FT &w)
{
if (w != FT(1))
base = Rep(x/w, y/w, z/w);
else
base = Rep(x, y, z);
}
const FT & x() const
{
return get(base).e0;
}
const FT & y() const
{
return get(base).e1;
}
const FT & z() const
{
return get(base).e2;
}
const FT & hx() const
{
return x();
}
const FT & hy() const
{
return y();
}
const FT & hz() const
{
return z();
}
FT hw() const
{
return FT(1);
}
const FT & cartesian(int i) const;
const FT & operator[](int i) const;
FT homogeneous(int i) const;
int dimension() const
{
return 3;
}
Vector_3 operator+(const VectorC3 &w) const;
Vector_3 operator-(const VectorC3 &w) const;
Vector_3 operator-() const;
Vector_3 operator/(const FT &c) const;
FT squared_length() const;
Direction_3 direction() const;
Vector_3 transform(const Aff_transformation_3 &t) const
{
return t.transform(*this);
}
};
template < class R >
inline
bool
operator==(const VectorC3<R> &v, const VectorC3<R> &w)
{
return w.x() == v.x() && w.y() == v.y() && w.z() == v.z();
}
template < class R >
inline
bool
operator!=(const VectorC3<R> &v, const VectorC3<R> &w)
{
return !(v == w);
}
template < class R >
inline
bool
operator==(const VectorC3<R> &v, const Null_vector &)
{
return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) &&
CGAL_NTS is_zero(v.z());
}
template < class R >
inline
bool
operator==(const Null_vector &n, const VectorC3<R> &v)
{
return v == n;
}
template < class R >
inline
bool
operator!=(const VectorC3<R> &v, const Null_vector &n)
{
return !(v == n);
}
template < class R >
inline
bool
operator!=(const Null_vector &n, const VectorC3<R> &v)
{
return !(v == n);
}
template < class R >
inline
const typename VectorC3<R>::FT &
VectorC3<R>::cartesian(int i) const
{
CGAL_kernel_precondition( (i>=0) && (i<3) );
if (i==0) return x();
if (i==1) return y();
return z();
}
template < class R >
inline
const typename VectorC3<R>::FT &
VectorC3<R>::operator[](int i) const
{
return cartesian(i);
}
template < class R >
typename VectorC3<R>::FT
VectorC3<R>::homogeneous(int i) const
{
if (i==3) return FT(1);
return cartesian(i);
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::
operator+(const VectorC3<R> &w) const
{
return VectorC3<R>(x() + w.x(), y() + w.y(), z() + w.z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::operator-(const VectorC3<R> &w) const
{
return VectorC3<R>(x() - w.x(), y() - w.y(), z() - w.z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::operator-() const
{
return R().construct_opposite_vector_3_object()(*this);
}
template < class R >
inline
typename VectorC3<R>::FT
VectorC3<R>::squared_length() const
{
return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z());
}
template < class R >
inline
typename VectorC3<R>::Vector_3
VectorC3<R>::
operator/(const typename VectorC3<R>::FT &c) const
{
return VectorC3<R>(x()/c, y()/c, z()/c);
}
template < class R >
inline
typename VectorC3<R>::Direction_3
VectorC3<R>::direction() const
{
return Direction_3(*this);
}
#ifndef CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3
template < class R >
std::ostream &
operator<<(std::ostream &os, const VectorC3<R> &v)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << v.x() << ' ' << v.y() << ' ' << v.z();
case IO::BINARY :
write(os, v.x());
write(os, v.y());
write(os, v.z());
return os;
default:
os << "VectorC3(" << v.x() << ", " << v.y() << ", " << v.z() << ")";
return os;
}
}
#endif // CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3
#ifndef CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3
template < class R >
std::istream &
operator>>(std::istream &is, VectorC3<R> &p)
{
typename R::FT x, y, z;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> x >> y >> z;
break;
case IO::BINARY :
read(is, x);
read(is, y);
read(is, z);
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
p = VectorC3<R>(x, y, z);
return is;
}
#endif // CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_VECTOR_3_H
|