File: Fixed_border_parameterizer_3.h

package info (click to toggle)
cgal 3.2.1-2
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 47,752 kB
  • ctags: 72,510
  • sloc: cpp: 397,707; ansic: 10,393; sh: 4,232; makefile: 3,713; perl: 394; sed: 9
file content (632 lines) | stat: -rw-r--r-- 24,715 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// Copyright (c) 2005  INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Surface_mesh_parameterization/include/CGAL/Fixed_border_parameterizer_3.h $
// $Id: Fixed_border_parameterizer_3.h 29623 2006-03-20 11:22:05Z lsaboret $
//
//
// Author(s)     : Laurent Saboret, Pierre Alliez, Bruno Levy


#ifndef CGAL_FIXED_BORDER_PARAMETERIZER_3_H
#define CGAL_FIXED_BORDER_PARAMETERIZER_3_H

#include <CGAL/circulator.h>
#include <CGAL/Timer.h>
#include <OpenNL/linear_solver.h>

#include <CGAL/Parameterizer_traits_3.h>
#include <CGAL/Circular_border_parameterizer_3.h>
#include <CGAL/Parameterization_mesh_feature_extractor.h>
#include <CGAL/surface_mesh_parameterization_assertions.h>

#include <iostream>

CGAL_BEGIN_NAMESPACE


// ------------------------------------------------------------------------------------
// Declaration
// ------------------------------------------------------------------------------------

/// The class Fixed_border_parameterizer_3
/// is the base class of fixed border parameterization methods (Tutte, Floater, ...).
///
/// One-to-one mapping is guaranteed if surface's border is mapped onto a convex polygon.
///
/// This class is a pure virtual class, thus cannot be instantiated.
/// Anyway, it implements most of the parameterization algorithm parameterize().
/// Subclasses are Strategies [GHJV95] that modify the behavior of this algorithm:
/// - They provide BorderParameterizer_3 and SparseLinearAlgebraTraits_d template
///   parameters that make sense.
/// - They implement compute_w_ij() to compute w_ij = (i, j) coefficient of matrix A
///   for j neighbor vertex of i.
/// - They may implement an optimized version of is_one_to_one_mapping().
///
/// @todo Fixed_border_parameterizer_3 should remove border vertices
/// from the linear systems in order to have a symmetric definite positive
/// matrix for Tutte Barycentric Mapping and Discrete Conformal Map algorithms.
///
/// Concept:
/// Model of the ParameterizerTraits_3 concept (although you cannot instantiate this class).
///
/// Design Pattern:
/// Fixed_border_parameterizer_3<ParameterizationMesh_3, ...> class is a
/// Strategy [GHJV95]: it implements (part of) a strategy of surface parameterization
/// for models of ParameterizationMesh_3.

template
<
    class ParameterizationMesh_3,       ///< 3D surface mesh
    class BorderParameterizer_3         ///< Strategy to parameterize the surface border
                = Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
    class SparseLinearAlgebraTraits_d   ///< Traits class to solve a sparse linear system
                = OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh_3::NT>
>
class Fixed_border_parameterizer_3
    : public Parameterizer_traits_3<ParameterizationMesh_3>
{
// Private types
private:
    // Superclass
    typedef Parameterizer_traits_3<ParameterizationMesh_3>
                                            Base;

// Public types
public:
    // We have to repeat the types exported by superclass
    /// @cond SKIP_IN_MANUAL
    typedef typename Base::Error_code       Error_code;
    typedef ParameterizationMesh_3          Adaptor;
    /// @endcond

    /// Export BorderParameterizer_3 template parameter.
    typedef BorderParameterizer_3           Border_param;
    /// Export SparseLinearAlgebraTraits_d template parameter.
    typedef SparseLinearAlgebraTraits_d     Sparse_LA;

// Private types
private:
    // Mesh_Adaptor_3 subtypes:
    typedef typename Adaptor::NT            NT;
    typedef typename Adaptor::Point_2       Point_2;
    typedef typename Adaptor::Point_3       Point_3;
    typedef typename Adaptor::Vector_2      Vector_2;
    typedef typename Adaptor::Vector_3      Vector_3;
    typedef typename Adaptor::Facet         Facet;
    typedef typename Adaptor::Facet_handle  Facet_handle;
    typedef typename Adaptor::Facet_const_handle
                                            Facet_const_handle;
    typedef typename Adaptor::Facet_iterator Facet_iterator;
    typedef typename Adaptor::Facet_const_iterator
                                            Facet_const_iterator;
    typedef typename Adaptor::Vertex        Vertex;
    typedef typename Adaptor::Vertex_handle Vertex_handle;
    typedef typename Adaptor::Vertex_const_handle
                                            Vertex_const_handle;
    typedef typename Adaptor::Vertex_iterator Vertex_iterator;
    typedef typename Adaptor::Vertex_const_iterator
                                            Vertex_const_iterator;
    typedef typename Adaptor::Border_vertex_iterator
                                            Border_vertex_iterator;
    typedef typename Adaptor::Border_vertex_const_iterator
                                            Border_vertex_const_iterator;
    typedef typename Adaptor::Vertex_around_facet_circulator
                                            Vertex_around_facet_circulator;
    typedef typename Adaptor::Vertex_around_facet_const_circulator
                                            Vertex_around_facet_const_circulator;
    typedef typename Adaptor::Vertex_around_vertex_circulator
                                            Vertex_around_vertex_circulator;
    typedef typename Adaptor::Vertex_around_vertex_const_circulator
                                            Vertex_around_vertex_const_circulator;

    // SparseLinearAlgebraTraits_d subtypes:
    typedef typename Sparse_LA::Vector      Vector;
    typedef typename Sparse_LA::Matrix      Matrix;

// Public operations
public:
    /// Constructor
    Fixed_border_parameterizer_3(Border_param border_param = Border_param(),
                                    ///< Object that maps the surface's border to 2D space
                               Sparse_LA sparse_la = Sparse_LA())
                                    ///< Traits object to access a sparse linear system
        : m_borderParameterizer(border_param), m_linearAlgebra(sparse_la)
    {}

    // Default copy constructor and operator =() are fine

    /// Compute a one-to-one mapping from a triangular 3D surface 'mesh'
    /// to a piece of the 2D space.
    /// The mapping is linear by pieces (linear in each triangle).
    /// The result is the (u,v) pair image of each vertex of the 3D surface.
    ///
    /// Preconditions:
    /// - 'mesh' must be a surface with one connected component.
    /// - 'mesh' must be a triangular mesh.
    /// - the mesh border must be mapped onto a convex polygon.
    virtual Error_code  parameterize(Adaptor& mesh);

// Protected operations
protected:
    /// Check parameterize() preconditions:
    /// - 'mesh' must be a surface with one connected component.
    /// - 'mesh' must be a triangular mesh.
    /// - the mesh border must be mapped onto a convex polygon.
    virtual Error_code  check_parameterize_preconditions(Adaptor& mesh);

    /// Initialize A, Bu and Bv after border parameterization.
    /// Fill the border vertices' lines in both linear systems:
    /// "u = constant" and "v = constant".
    ///
    /// Preconditions:
    /// - vertices must be indexed.
    /// - A, Bu and Bv must be allocated.
    /// - border vertices must be parameterized.
    void  initialize_system_from_mesh_border (Matrix& A, Vector& Bu, Vector& Bv,
                                              const Adaptor& mesh);

    /// Compute w_ij = (i, j) coefficient of matrix A for j neighbor vertex of i.
    /// Implementation note: Subclasses must at least implement compute_w_ij().
    virtual NT compute_w_ij(const Adaptor& mesh,
                            Vertex_const_handle main_vertex_v_i,
                            Vertex_around_vertex_const_circulator neighbor_vertex_v_j)
    = 0;

    /// Compute the line i of matrix A for i inner vertex:
    /// - call compute_w_ij() to compute the A coefficient w_ij for each neighbor v_j.
    /// - compute w_ii = - sum of w_ijs.
    ///
    /// Preconditions:
    /// - vertices must be indexed.
    /// - vertex i musn't be already parameterized.
    /// - line i of A must contain only zeros.
    virtual Error_code setup_inner_vertex_relations(Matrix& A,
                                                    Vector& Bu,
                                                    Vector& Bv,
                                                    const Adaptor& mesh,
                                                    Vertex_const_handle vertex);

    /// Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
    void  set_mesh_uv_from_system (Adaptor& mesh,
                                   const Vector& Xu, const Vector& Xv);

    /// Check parameterize() postconditions:
    /// - 3D -> 2D mapping is one-to-one.
    virtual Error_code check_parameterize_postconditions(const Adaptor& mesh,
                                                         const Matrix& A,
                                                         const Vector& Bu,
                                                         const Vector& Bv);

    /// Check if 3D -> 2D mapping is one-to-one.
    /// The default implementation checks each normal.
    virtual bool  is_one_to_one_mapping(const Adaptor& mesh,
                                        const Matrix& A,
                                        const Vector& Bu,
                                        const Vector& Bv);

// Protected accessors
protected:
    /// Get the object that maps the surface's border onto a 2D space.
    Border_param&   get_border_parameterizer()    { return m_borderParameterizer; }

    /// Get the sparse linear algebra (traits object to access the linear system).
    Sparse_LA&      get_linear_algebra_traits() { return m_linearAlgebra; }

// Fields
private:
    /// Object that maps the surface's border onto a 2D space.
    Border_param    m_borderParameterizer;

    /// Traits object to solve a sparse linear system
    Sparse_LA       m_linearAlgebra;
};


// ------------------------------------------------------------------------------------
// Implementation
// ------------------------------------------------------------------------------------

/// Compute a one-to-one mapping from a triangular 3D surface 'mesh'
/// to a piece of the 2D space.
/// The mapping is linear by pieces (linear in each triangle).
/// The result is the (u,v) pair image of each vertex of the 3D surface.
///
/// Preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
parameterize(Adaptor& mesh)
{
#ifdef DEBUG_TRACE
    // Create timer for traces
    CGAL::Timer timer;
    timer.start();
#endif

    // Check preconditions
    Error_code status = check_parameterize_preconditions(mesh);
#ifdef DEBUG_TRACE
    std::cerr << "  parameterization preconditions: " << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // Count vertices
    int nbVertices = mesh.count_mesh_vertices();

    // Index vertices from 0 to nbVertices-1
    mesh.index_mesh_vertices();

    // Mark all vertices as NOT "parameterized"
    Vertex_iterator vertexIt;
    for (vertexIt = mesh.mesh_vertices_begin();
        vertexIt != mesh.mesh_vertices_end();
        vertexIt++)
    {
        mesh.set_vertex_parameterized(vertexIt, false);
    }

    // Compute (u,v) for border vertices
    // and mark them as "parameterized"
    status = get_border_parameterizer().parameterize_border(mesh);
#ifdef DEBUG_TRACE
    std::cerr << "  border vertices parameterization: " << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // Create two sparse linear systems "A*Xu = Bu" and "A*Xv = Bv" (one line/column per vertex)
    Matrix A(nbVertices, nbVertices);
    Vector Xu(nbVertices), Xv(nbVertices), Bu(nbVertices), Bv(nbVertices);

    // Initialize A, Xu, Xv, Bu and Bv after border parameterization
    // Fill the border vertices' lines in both linear systems:
    // "u = constant" and "v = constant"
    //
    // @todo Fixed_border_parameterizer_3 should remove border vertices
    // from the linear systems in order to have a symmetric definite positive
    // matrix for Tutte Barycentric Mapping and Discrete Conformal Map algorithms.
    initialize_system_from_mesh_border (A, Bu, Bv, mesh);

    // Fill the matrix for the inner vertices v_i: compute A's coefficient
    // w_ij for each neighbor j; then w_ii = - sum of w_ijs
    for (vertexIt = mesh.mesh_vertices_begin();
         vertexIt != mesh.mesh_vertices_end();
         vertexIt++)
    {
        CGAL_surface_mesh_parameterization_assertion(mesh.is_vertex_on_main_border(vertexIt)
                                     == mesh.is_vertex_parameterized(vertexIt));

        // inner vertices only
        if( ! mesh.is_vertex_on_main_border(vertexIt) )
        {
            // Compute the line i of matrix A for i inner vertex
            status = setup_inner_vertex_relations(A, Bu, Bv,
                                                  mesh,
                                                  vertexIt);
            if (status != Base::OK)
                return status;
        }
    }
#ifdef DEBUG_TRACE
    std::cerr << "  matrix filling (" << nbVertices << " x " << nbVertices << "): "
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif

    // Solve "A*Xu = Bu". On success, solution is (1/Du) * Xu.
    // Solve "A*Xv = Bv". On success, solution is (1/Dv) * Xv.
    NT Du, Dv;
    if ( !get_linear_algebra_traits().linear_solver(A, Bu, Xu, Du) ||
         !get_linear_algebra_traits().linear_solver(A, Bv, Xv, Dv) )
    {
        status = Base::ERROR_CANNOT_SOLVE_LINEAR_SYSTEM;
    }
#ifdef DEBUG_TRACE
    std::cerr << "  solving two linear systems: "
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // WARNING: this package does not support homogeneous coordinates!
    CGAL_surface_mesh_parameterization_assertion(Du == 1.0);
    CGAL_surface_mesh_parameterization_assertion(Dv == 1.0);

    // Copy Xu and Xv coordinates into the (u,v) pair of each vertex
    set_mesh_uv_from_system (mesh, Xu, Xv);
#ifdef DEBUG_TRACE
    std::cerr << "  copy computed UVs to mesh :"
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif


    // Check postconditions
    status = check_parameterize_postconditions(mesh, A, Bu, Bv);
#ifdef DEBUG_TRACE
    std::cerr << "  parameterization postconditions: " << timer.time() << " seconds." << std::endl;
#endif
    if (status != Base::OK)
        return status;

    return status;
}


/// Check parameterize() preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_preconditions(Adaptor& mesh)
{
    Error_code status = Base::OK;	    // returned value

    // Helper class to compute genus or count borders, vertices, ...
    typedef Parameterization_mesh_feature_extractor<Adaptor>
                                            Mesh_feature_extractor;
    Mesh_feature_extractor feature_extractor(mesh);

    // Allways check that mesh is not empty
    if (mesh.mesh_vertices_begin() == mesh.mesh_vertices_end())
        status = Base::ERROR_EMPTY_MESH;
    if (status != Base::OK)
        return status;

    // The whole surface parameterization package is restricted to triangular meshes
    CGAL_surface_mesh_parameterization_expensive_precondition_code(            \
        status = mesh.is_mesh_triangular() ? Base::OK                         \
                                            : Base::ERROR_NON_TRIANGULAR_MESH; \
    );
    if (status != Base::OK)
        return status;

    // The whole package is restricted to surfaces: genus = 0,
    // one connected component and at least one border
    CGAL_surface_mesh_parameterization_expensive_precondition_code(         \
        int genus = feature_extractor.get_genus();                          \
        int nb_borders = feature_extractor.get_nb_borders();                \
        int nb_components = feature_extractor.get_nb_connex_components();   \
        status = (genus == 0 && nb_borders >= 1 && nb_components == 1)      \
               ? Base::OK                                                   \
               : Base::ERROR_NO_SURFACE_MESH;                               \
    );
    if (status != Base::OK)
        return status;

    // One-to-one mapping is guaranteed if all w_ij coefficients are > 0 (for j vertex neighbor of i)
    // and if the surface border is mapped onto a 2D convex polygon
    CGAL_surface_mesh_parameterization_precondition_code(       \
        status = get_border_parameterizer().is_border_convex()  \
               ? Base::OK                                       \
               : Base::ERROR_INVALID_BORDER;                    \
    );
    if (status != Base::OK)
        return status;

    return status;
}

/// Initialize A, Bu and Bv after border parameterization.
/// Fill the border vertices' lines in both linear systems: "u = constant" and "v = constant".
///
/// Preconditions:
/// - vertices must be indexed.
/// - A, Bu and Bv must be allocated.
/// - border vertices must be parameterized.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
initialize_system_from_mesh_border (Matrix& A, Vector& Bu, Vector& Bv,
                                    const Adaptor& mesh)
{
    for (Border_vertex_const_iterator it = mesh.mesh_main_border_vertices_begin();
         it != mesh.mesh_main_border_vertices_end();
         it++)
    {
        CGAL_surface_mesh_parameterization_assertion(mesh.is_vertex_parameterized(it));

        // Get vertex index in sparse linear system
        int index = mesh.get_vertex_index(it);

        // Write a as diagonal coefficient of A
        A.set_coef(index, index, 1);

        // Write constant in Bu and Bv
        Point_2 uv = mesh.get_vertex_uv(it);
        Bu[index] = uv.x();
        Bv[index] = uv.y();
    }
}

/// Compute the line i of matrix A for i inner vertex:
/// - call compute_w_ij() to compute the A coefficient w_ij for each neighbor v_j.
/// - compute w_ii = - sum of w_ijs.
///
/// Preconditions:
/// - vertices must be indexed.
/// - vertex i musn't be already parameterized.
/// - line i of A must contain only zeros.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
setup_inner_vertex_relations(Matrix& A,
                             Vector& Bu,
                             Vector& Bv,
                             const Adaptor& mesh,
                             Vertex_const_handle vertex)
{
    CGAL_surface_mesh_parameterization_assertion( ! mesh.is_vertex_on_main_border(vertex) );
    CGAL_surface_mesh_parameterization_assertion( ! mesh.is_vertex_parameterized(vertex) );

    int i = mesh.get_vertex_index(vertex);

    // circulate over vertices around 'vertex' to compute w_ii and w_ijs
    NT w_ii = 0;
    int vertexIndex = 0;
    Vertex_around_vertex_const_circulator v_j = mesh.vertices_around_vertex_begin(vertex);
    Vertex_around_vertex_const_circulator end = v_j;
    CGAL_For_all(v_j, end)
    {
        // Call to virtual method to do the actual coefficient computation
        NT w_ij = -1.0 * compute_w_ij(mesh, vertex, v_j);

        // w_ii = - sum of w_ijs
        w_ii -= w_ij;

        // Get j index
        int j = mesh.get_vertex_index(v_j);

        // Set w_ij in matrix
        A.set_coef(i,j, w_ij);

        vertexIndex++;
    }
    if (vertexIndex < 2)
        return Base::ERROR_NON_TRIANGULAR_MESH;

    // Set w_ii in matrix
    A.set_coef(i,i, w_ii);

    return Base::OK;
}

/// Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
set_mesh_uv_from_system(Adaptor& mesh,
                        const Vector& Xu, const Vector& Xv)
{
    Vertex_iterator vertexIt;
    for (vertexIt = mesh.mesh_vertices_begin();
        vertexIt != mesh.mesh_vertices_end();
        vertexIt++)
    {
        int index = mesh.get_vertex_index(vertexIt);

        NT u = Xu[index];
        NT v = Xv[index];

        // Fill vertex (u,v) and mark it as "parameterized"
        mesh.set_vertex_uv(vertexIt, Point_2(u,v));
        mesh.set_vertex_parameterized(vertexIt, true);
    }
}

/// Check parameterize() postconditions:
/// - 3D -> 2D mapping is one-to-one.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_postconditions(const Adaptor& mesh,
                                  const Matrix& A,
                                  const Vector& Bu,
                                  const Vector& Bv)
{
    Error_code status = Base::OK;

    // Check if 3D -> 2D mapping is one-to-one
    CGAL_surface_mesh_parameterization_postcondition_code(  \
        status = is_one_to_one_mapping(mesh, A, Bu, Bv)     \
               ? Base::OK                                   \
               : Base::ERROR_NO_1_TO_1_MAPPING;             \
    );
    if (status != Base::OK)
        return status;

    return status;
}

/// Check if 3D -> 2D mapping is one-to-one.
/// The default implementation checks each normal.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
bool Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
is_one_to_one_mapping(const Adaptor& mesh,
                      const Matrix& A,
                      const Vector& Bu,
                      const Vector& Bv)
{
    Vector_3    first_triangle_normal;

    for (Facet_const_iterator facetIt = mesh.mesh_facets_begin();
         facetIt != mesh.mesh_facets_end();
         facetIt++)
    {
        // Get 3 vertices of the facet
        Vertex_const_handle v0, v1, v2;
        int vertexIndex = 0;
        Vertex_around_facet_const_circulator cir = mesh.facet_vertices_begin(facetIt),
                                             end = cir;
        CGAL_For_all(cir, end)
        {
            if (vertexIndex == 0)
                v0 = cir;
            else if (vertexIndex == 1)
                v1 = cir;
            else if (vertexIndex == 2)
                v2 = cir;

            vertexIndex++;
        }
        CGAL_surface_mesh_parameterization_assertion(vertexIndex >= 3);

        // Get the 3 vertices position IN 2D
        Point_2 p0 = mesh.get_vertex_uv(v0) ;
        Point_2 p1 = mesh.get_vertex_uv(v1) ;
        Point_2 p2 = mesh.get_vertex_uv(v2) ;

        // Compute the facet normal
        Point_3 p0_3D(p0.x(), p0.y(), 0);
        Point_3 p1_3D(p1.x(), p1.y(), 0);
        Point_3 p2_3D(p2.x(), p2.y(), 0);
        Vector_3 v01_3D = p1_3D - p0_3D;
        Vector_3 v02_3D = p2_3D - p0_3D;
        Vector_3 normal = CGAL::cross_product(v01_3D, v02_3D);

        // Check that all normals are oriented the same way
        // => no 2D triangle is flipped
        if (cir == mesh.facet_vertices_begin(facetIt))
        {
            first_triangle_normal = normal;
        }
        else
        {
            if (first_triangle_normal * normal < 0)
                return false;
        }
    }

    return true;            // OK if we reach this point
}


CGAL_END_NAMESPACE

#endif //CGAL_FIXED_BORDER_PARAMETERIZER_3_H