1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
// Copyright (c) 2005 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Surface_mesh_parameterization/include/CGAL/Fixed_border_parameterizer_3.h $
// $Id: Fixed_border_parameterizer_3.h 29623 2006-03-20 11:22:05Z lsaboret $
//
//
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
#ifndef CGAL_FIXED_BORDER_PARAMETERIZER_3_H
#define CGAL_FIXED_BORDER_PARAMETERIZER_3_H
#include <CGAL/circulator.h>
#include <CGAL/Timer.h>
#include <OpenNL/linear_solver.h>
#include <CGAL/Parameterizer_traits_3.h>
#include <CGAL/Circular_border_parameterizer_3.h>
#include <CGAL/Parameterization_mesh_feature_extractor.h>
#include <CGAL/surface_mesh_parameterization_assertions.h>
#include <iostream>
CGAL_BEGIN_NAMESPACE
// ------------------------------------------------------------------------------------
// Declaration
// ------------------------------------------------------------------------------------
/// The class Fixed_border_parameterizer_3
/// is the base class of fixed border parameterization methods (Tutte, Floater, ...).
///
/// One-to-one mapping is guaranteed if surface's border is mapped onto a convex polygon.
///
/// This class is a pure virtual class, thus cannot be instantiated.
/// Anyway, it implements most of the parameterization algorithm parameterize().
/// Subclasses are Strategies [GHJV95] that modify the behavior of this algorithm:
/// - They provide BorderParameterizer_3 and SparseLinearAlgebraTraits_d template
/// parameters that make sense.
/// - They implement compute_w_ij() to compute w_ij = (i, j) coefficient of matrix A
/// for j neighbor vertex of i.
/// - They may implement an optimized version of is_one_to_one_mapping().
///
/// @todo Fixed_border_parameterizer_3 should remove border vertices
/// from the linear systems in order to have a symmetric definite positive
/// matrix for Tutte Barycentric Mapping and Discrete Conformal Map algorithms.
///
/// Concept:
/// Model of the ParameterizerTraits_3 concept (although you cannot instantiate this class).
///
/// Design Pattern:
/// Fixed_border_parameterizer_3<ParameterizationMesh_3, ...> class is a
/// Strategy [GHJV95]: it implements (part of) a strategy of surface parameterization
/// for models of ParameterizationMesh_3.
template
<
class ParameterizationMesh_3, ///< 3D surface mesh
class BorderParameterizer_3 ///< Strategy to parameterize the surface border
= Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
class SparseLinearAlgebraTraits_d ///< Traits class to solve a sparse linear system
= OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh_3::NT>
>
class Fixed_border_parameterizer_3
: public Parameterizer_traits_3<ParameterizationMesh_3>
{
// Private types
private:
// Superclass
typedef Parameterizer_traits_3<ParameterizationMesh_3>
Base;
// Public types
public:
// We have to repeat the types exported by superclass
/// @cond SKIP_IN_MANUAL
typedef typename Base::Error_code Error_code;
typedef ParameterizationMesh_3 Adaptor;
/// @endcond
/// Export BorderParameterizer_3 template parameter.
typedef BorderParameterizer_3 Border_param;
/// Export SparseLinearAlgebraTraits_d template parameter.
typedef SparseLinearAlgebraTraits_d Sparse_LA;
// Private types
private:
// Mesh_Adaptor_3 subtypes:
typedef typename Adaptor::NT NT;
typedef typename Adaptor::Point_2 Point_2;
typedef typename Adaptor::Point_3 Point_3;
typedef typename Adaptor::Vector_2 Vector_2;
typedef typename Adaptor::Vector_3 Vector_3;
typedef typename Adaptor::Facet Facet;
typedef typename Adaptor::Facet_handle Facet_handle;
typedef typename Adaptor::Facet_const_handle
Facet_const_handle;
typedef typename Adaptor::Facet_iterator Facet_iterator;
typedef typename Adaptor::Facet_const_iterator
Facet_const_iterator;
typedef typename Adaptor::Vertex Vertex;
typedef typename Adaptor::Vertex_handle Vertex_handle;
typedef typename Adaptor::Vertex_const_handle
Vertex_const_handle;
typedef typename Adaptor::Vertex_iterator Vertex_iterator;
typedef typename Adaptor::Vertex_const_iterator
Vertex_const_iterator;
typedef typename Adaptor::Border_vertex_iterator
Border_vertex_iterator;
typedef typename Adaptor::Border_vertex_const_iterator
Border_vertex_const_iterator;
typedef typename Adaptor::Vertex_around_facet_circulator
Vertex_around_facet_circulator;
typedef typename Adaptor::Vertex_around_facet_const_circulator
Vertex_around_facet_const_circulator;
typedef typename Adaptor::Vertex_around_vertex_circulator
Vertex_around_vertex_circulator;
typedef typename Adaptor::Vertex_around_vertex_const_circulator
Vertex_around_vertex_const_circulator;
// SparseLinearAlgebraTraits_d subtypes:
typedef typename Sparse_LA::Vector Vector;
typedef typename Sparse_LA::Matrix Matrix;
// Public operations
public:
/// Constructor
Fixed_border_parameterizer_3(Border_param border_param = Border_param(),
///< Object that maps the surface's border to 2D space
Sparse_LA sparse_la = Sparse_LA())
///< Traits object to access a sparse linear system
: m_borderParameterizer(border_param), m_linearAlgebra(sparse_la)
{}
// Default copy constructor and operator =() are fine
/// Compute a one-to-one mapping from a triangular 3D surface 'mesh'
/// to a piece of the 2D space.
/// The mapping is linear by pieces (linear in each triangle).
/// The result is the (u,v) pair image of each vertex of the 3D surface.
///
/// Preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
virtual Error_code parameterize(Adaptor& mesh);
// Protected operations
protected:
/// Check parameterize() preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
virtual Error_code check_parameterize_preconditions(Adaptor& mesh);
/// Initialize A, Bu and Bv after border parameterization.
/// Fill the border vertices' lines in both linear systems:
/// "u = constant" and "v = constant".
///
/// Preconditions:
/// - vertices must be indexed.
/// - A, Bu and Bv must be allocated.
/// - border vertices must be parameterized.
void initialize_system_from_mesh_border (Matrix& A, Vector& Bu, Vector& Bv,
const Adaptor& mesh);
/// Compute w_ij = (i, j) coefficient of matrix A for j neighbor vertex of i.
/// Implementation note: Subclasses must at least implement compute_w_ij().
virtual NT compute_w_ij(const Adaptor& mesh,
Vertex_const_handle main_vertex_v_i,
Vertex_around_vertex_const_circulator neighbor_vertex_v_j)
= 0;
/// Compute the line i of matrix A for i inner vertex:
/// - call compute_w_ij() to compute the A coefficient w_ij for each neighbor v_j.
/// - compute w_ii = - sum of w_ijs.
///
/// Preconditions:
/// - vertices must be indexed.
/// - vertex i musn't be already parameterized.
/// - line i of A must contain only zeros.
virtual Error_code setup_inner_vertex_relations(Matrix& A,
Vector& Bu,
Vector& Bv,
const Adaptor& mesh,
Vertex_const_handle vertex);
/// Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
void set_mesh_uv_from_system (Adaptor& mesh,
const Vector& Xu, const Vector& Xv);
/// Check parameterize() postconditions:
/// - 3D -> 2D mapping is one-to-one.
virtual Error_code check_parameterize_postconditions(const Adaptor& mesh,
const Matrix& A,
const Vector& Bu,
const Vector& Bv);
/// Check if 3D -> 2D mapping is one-to-one.
/// The default implementation checks each normal.
virtual bool is_one_to_one_mapping(const Adaptor& mesh,
const Matrix& A,
const Vector& Bu,
const Vector& Bv);
// Protected accessors
protected:
/// Get the object that maps the surface's border onto a 2D space.
Border_param& get_border_parameterizer() { return m_borderParameterizer; }
/// Get the sparse linear algebra (traits object to access the linear system).
Sparse_LA& get_linear_algebra_traits() { return m_linearAlgebra; }
// Fields
private:
/// Object that maps the surface's border onto a 2D space.
Border_param m_borderParameterizer;
/// Traits object to solve a sparse linear system
Sparse_LA m_linearAlgebra;
};
// ------------------------------------------------------------------------------------
// Implementation
// ------------------------------------------------------------------------------------
/// Compute a one-to-one mapping from a triangular 3D surface 'mesh'
/// to a piece of the 2D space.
/// The mapping is linear by pieces (linear in each triangle).
/// The result is the (u,v) pair image of each vertex of the 3D surface.
///
/// Preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
parameterize(Adaptor& mesh)
{
#ifdef DEBUG_TRACE
// Create timer for traces
CGAL::Timer timer;
timer.start();
#endif
// Check preconditions
Error_code status = check_parameterize_preconditions(mesh);
#ifdef DEBUG_TRACE
std::cerr << " parameterization preconditions: " << timer.time() << " seconds." << std::endl;
timer.reset();
#endif
if (status != Base::OK)
return status;
// Count vertices
int nbVertices = mesh.count_mesh_vertices();
// Index vertices from 0 to nbVertices-1
mesh.index_mesh_vertices();
// Mark all vertices as NOT "parameterized"
Vertex_iterator vertexIt;
for (vertexIt = mesh.mesh_vertices_begin();
vertexIt != mesh.mesh_vertices_end();
vertexIt++)
{
mesh.set_vertex_parameterized(vertexIt, false);
}
// Compute (u,v) for border vertices
// and mark them as "parameterized"
status = get_border_parameterizer().parameterize_border(mesh);
#ifdef DEBUG_TRACE
std::cerr << " border vertices parameterization: " << timer.time() << " seconds." << std::endl;
timer.reset();
#endif
if (status != Base::OK)
return status;
// Create two sparse linear systems "A*Xu = Bu" and "A*Xv = Bv" (one line/column per vertex)
Matrix A(nbVertices, nbVertices);
Vector Xu(nbVertices), Xv(nbVertices), Bu(nbVertices), Bv(nbVertices);
// Initialize A, Xu, Xv, Bu and Bv after border parameterization
// Fill the border vertices' lines in both linear systems:
// "u = constant" and "v = constant"
//
// @todo Fixed_border_parameterizer_3 should remove border vertices
// from the linear systems in order to have a symmetric definite positive
// matrix for Tutte Barycentric Mapping and Discrete Conformal Map algorithms.
initialize_system_from_mesh_border (A, Bu, Bv, mesh);
// Fill the matrix for the inner vertices v_i: compute A's coefficient
// w_ij for each neighbor j; then w_ii = - sum of w_ijs
for (vertexIt = mesh.mesh_vertices_begin();
vertexIt != mesh.mesh_vertices_end();
vertexIt++)
{
CGAL_surface_mesh_parameterization_assertion(mesh.is_vertex_on_main_border(vertexIt)
== mesh.is_vertex_parameterized(vertexIt));
// inner vertices only
if( ! mesh.is_vertex_on_main_border(vertexIt) )
{
// Compute the line i of matrix A for i inner vertex
status = setup_inner_vertex_relations(A, Bu, Bv,
mesh,
vertexIt);
if (status != Base::OK)
return status;
}
}
#ifdef DEBUG_TRACE
std::cerr << " matrix filling (" << nbVertices << " x " << nbVertices << "): "
<< timer.time() << " seconds." << std::endl;
timer.reset();
#endif
// Solve "A*Xu = Bu". On success, solution is (1/Du) * Xu.
// Solve "A*Xv = Bv". On success, solution is (1/Dv) * Xv.
NT Du, Dv;
if ( !get_linear_algebra_traits().linear_solver(A, Bu, Xu, Du) ||
!get_linear_algebra_traits().linear_solver(A, Bv, Xv, Dv) )
{
status = Base::ERROR_CANNOT_SOLVE_LINEAR_SYSTEM;
}
#ifdef DEBUG_TRACE
std::cerr << " solving two linear systems: "
<< timer.time() << " seconds." << std::endl;
timer.reset();
#endif
if (status != Base::OK)
return status;
// WARNING: this package does not support homogeneous coordinates!
CGAL_surface_mesh_parameterization_assertion(Du == 1.0);
CGAL_surface_mesh_parameterization_assertion(Dv == 1.0);
// Copy Xu and Xv coordinates into the (u,v) pair of each vertex
set_mesh_uv_from_system (mesh, Xu, Xv);
#ifdef DEBUG_TRACE
std::cerr << " copy computed UVs to mesh :"
<< timer.time() << " seconds." << std::endl;
timer.reset();
#endif
// Check postconditions
status = check_parameterize_postconditions(mesh, A, Bu, Bv);
#ifdef DEBUG_TRACE
std::cerr << " parameterization postconditions: " << timer.time() << " seconds." << std::endl;
#endif
if (status != Base::OK)
return status;
return status;
}
/// Check parameterize() preconditions:
/// - 'mesh' must be a surface with one connected component.
/// - 'mesh' must be a triangular mesh.
/// - the mesh border must be mapped onto a convex polygon.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_preconditions(Adaptor& mesh)
{
Error_code status = Base::OK; // returned value
// Helper class to compute genus or count borders, vertices, ...
typedef Parameterization_mesh_feature_extractor<Adaptor>
Mesh_feature_extractor;
Mesh_feature_extractor feature_extractor(mesh);
// Allways check that mesh is not empty
if (mesh.mesh_vertices_begin() == mesh.mesh_vertices_end())
status = Base::ERROR_EMPTY_MESH;
if (status != Base::OK)
return status;
// The whole surface parameterization package is restricted to triangular meshes
CGAL_surface_mesh_parameterization_expensive_precondition_code( \
status = mesh.is_mesh_triangular() ? Base::OK \
: Base::ERROR_NON_TRIANGULAR_MESH; \
);
if (status != Base::OK)
return status;
// The whole package is restricted to surfaces: genus = 0,
// one connected component and at least one border
CGAL_surface_mesh_parameterization_expensive_precondition_code( \
int genus = feature_extractor.get_genus(); \
int nb_borders = feature_extractor.get_nb_borders(); \
int nb_components = feature_extractor.get_nb_connex_components(); \
status = (genus == 0 && nb_borders >= 1 && nb_components == 1) \
? Base::OK \
: Base::ERROR_NO_SURFACE_MESH; \
);
if (status != Base::OK)
return status;
// One-to-one mapping is guaranteed if all w_ij coefficients are > 0 (for j vertex neighbor of i)
// and if the surface border is mapped onto a 2D convex polygon
CGAL_surface_mesh_parameterization_precondition_code( \
status = get_border_parameterizer().is_border_convex() \
? Base::OK \
: Base::ERROR_INVALID_BORDER; \
);
if (status != Base::OK)
return status;
return status;
}
/// Initialize A, Bu and Bv after border parameterization.
/// Fill the border vertices' lines in both linear systems: "u = constant" and "v = constant".
///
/// Preconditions:
/// - vertices must be indexed.
/// - A, Bu and Bv must be allocated.
/// - border vertices must be parameterized.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
initialize_system_from_mesh_border (Matrix& A, Vector& Bu, Vector& Bv,
const Adaptor& mesh)
{
for (Border_vertex_const_iterator it = mesh.mesh_main_border_vertices_begin();
it != mesh.mesh_main_border_vertices_end();
it++)
{
CGAL_surface_mesh_parameterization_assertion(mesh.is_vertex_parameterized(it));
// Get vertex index in sparse linear system
int index = mesh.get_vertex_index(it);
// Write a as diagonal coefficient of A
A.set_coef(index, index, 1);
// Write constant in Bu and Bv
Point_2 uv = mesh.get_vertex_uv(it);
Bu[index] = uv.x();
Bv[index] = uv.y();
}
}
/// Compute the line i of matrix A for i inner vertex:
/// - call compute_w_ij() to compute the A coefficient w_ij for each neighbor v_j.
/// - compute w_ii = - sum of w_ijs.
///
/// Preconditions:
/// - vertices must be indexed.
/// - vertex i musn't be already parameterized.
/// - line i of A must contain only zeros.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
setup_inner_vertex_relations(Matrix& A,
Vector& Bu,
Vector& Bv,
const Adaptor& mesh,
Vertex_const_handle vertex)
{
CGAL_surface_mesh_parameterization_assertion( ! mesh.is_vertex_on_main_border(vertex) );
CGAL_surface_mesh_parameterization_assertion( ! mesh.is_vertex_parameterized(vertex) );
int i = mesh.get_vertex_index(vertex);
// circulate over vertices around 'vertex' to compute w_ii and w_ijs
NT w_ii = 0;
int vertexIndex = 0;
Vertex_around_vertex_const_circulator v_j = mesh.vertices_around_vertex_begin(vertex);
Vertex_around_vertex_const_circulator end = v_j;
CGAL_For_all(v_j, end)
{
// Call to virtual method to do the actual coefficient computation
NT w_ij = -1.0 * compute_w_ij(mesh, vertex, v_j);
// w_ii = - sum of w_ijs
w_ii -= w_ij;
// Get j index
int j = mesh.get_vertex_index(v_j);
// Set w_ij in matrix
A.set_coef(i,j, w_ij);
vertexIndex++;
}
if (vertexIndex < 2)
return Base::ERROR_NON_TRIANGULAR_MESH;
// Set w_ii in matrix
A.set_coef(i,i, w_ii);
return Base::OK;
}
/// Copy Xu and Xv coordinates into the (u,v) pair of each surface vertex.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
set_mesh_uv_from_system(Adaptor& mesh,
const Vector& Xu, const Vector& Xv)
{
Vertex_iterator vertexIt;
for (vertexIt = mesh.mesh_vertices_begin();
vertexIt != mesh.mesh_vertices_end();
vertexIt++)
{
int index = mesh.get_vertex_index(vertexIt);
NT u = Xu[index];
NT v = Xv[index];
// Fill vertex (u,v) and mark it as "parameterized"
mesh.set_vertex_uv(vertexIt, Point_2(u,v));
mesh.set_vertex_parameterized(vertexIt, true);
}
}
/// Check parameterize() postconditions:
/// - 3D -> 2D mapping is one-to-one.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename Parameterizer_traits_3<Adaptor>::Error_code
Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_postconditions(const Adaptor& mesh,
const Matrix& A,
const Vector& Bu,
const Vector& Bv)
{
Error_code status = Base::OK;
// Check if 3D -> 2D mapping is one-to-one
CGAL_surface_mesh_parameterization_postcondition_code( \
status = is_one_to_one_mapping(mesh, A, Bu, Bv) \
? Base::OK \
: Base::ERROR_NO_1_TO_1_MAPPING; \
);
if (status != Base::OK)
return status;
return status;
}
/// Check if 3D -> 2D mapping is one-to-one.
/// The default implementation checks each normal.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
bool Fixed_border_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
is_one_to_one_mapping(const Adaptor& mesh,
const Matrix& A,
const Vector& Bu,
const Vector& Bv)
{
Vector_3 first_triangle_normal;
for (Facet_const_iterator facetIt = mesh.mesh_facets_begin();
facetIt != mesh.mesh_facets_end();
facetIt++)
{
// Get 3 vertices of the facet
Vertex_const_handle v0, v1, v2;
int vertexIndex = 0;
Vertex_around_facet_const_circulator cir = mesh.facet_vertices_begin(facetIt),
end = cir;
CGAL_For_all(cir, end)
{
if (vertexIndex == 0)
v0 = cir;
else if (vertexIndex == 1)
v1 = cir;
else if (vertexIndex == 2)
v2 = cir;
vertexIndex++;
}
CGAL_surface_mesh_parameterization_assertion(vertexIndex >= 3);
// Get the 3 vertices position IN 2D
Point_2 p0 = mesh.get_vertex_uv(v0) ;
Point_2 p1 = mesh.get_vertex_uv(v1) ;
Point_2 p2 = mesh.get_vertex_uv(v2) ;
// Compute the facet normal
Point_3 p0_3D(p0.x(), p0.y(), 0);
Point_3 p1_3D(p1.x(), p1.y(), 0);
Point_3 p2_3D(p2.x(), p2.y(), 0);
Vector_3 v01_3D = p1_3D - p0_3D;
Vector_3 v02_3D = p2_3D - p0_3D;
Vector_3 normal = CGAL::cross_product(v01_3D, v02_3D);
// Check that all normals are oriented the same way
// => no 2D triangle is flipped
if (cir == mesh.facet_vertices_begin(facetIt))
{
first_triangle_normal = normal;
}
else
{
if (first_triangle_normal * normal < 0)
return false;
}
}
return true; // OK if we reach this point
}
CGAL_END_NAMESPACE
#endif //CGAL_FIXED_BORDER_PARAMETERIZER_3_H
|