1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
// Copyright (c) 1999-2005 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Interval_arithmetic/include/CGAL/Lazy_exact_nt.h $
// $Id: Lazy_exact_nt.h 30667 2006-04-19 16:56:12Z glisse $
//
//
// Author(s) : Sylvain Pion
#ifndef CGAL_LAZY_EXACT_NT_H
#define CGAL_LAZY_EXACT_NT_H
#include <CGAL/basic.h>
#include <CGAL/tags.h>
#include <CGAL/number_utils.h>
#include <CGAL/number_utils_classes.h>
#include <CGAL/Number_type_traits.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/Handle.h>
#include <CGAL/Filtered_exact.h> // to get the overloaded predicates.
#include <CGAL/Kernel/mpl.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Binary_operator_result.h>
#include <CGAL/Lazy_exact_nt_fwd.h>
#include <boost/operators.hpp>
#include <CGAL/Root_of_traits.h>
/*
* This file contains the definition of the number type Lazy_exact_nt<ET>,
* where ET is an exact number type (must provide the exact operations needed).
*
* Lazy_exact_nt<ET> provides a DAG-based lazy evaluation, like LEDA's real,
* Core's Expr, LEA's lazy rationals...
*
* The values are first approximated using Interval_base.
* The exactness is provided when needed by ET.
*
* Lazy_exact_nt<ET> is just a handle to the abstract base class
* Lazy_exact_rep which has pure virtual methods .approx() and .exact().
* From this class derives one class per operation, with one constructor.
*
* The DAG is managed by :
* - Handle and Rep.
* - virtual functions to denote the various operators (instead of an enum).
*
* Other packages with vaguely similar design : APU, MetaCGAL, LOOK.
*/
/*
* TODO :
* - Generalize it for constructions at the kernel level.
* - Add mixed operations with ET too ?
* - Interval refinement functionnality ?
* - Separate the handle and the representation(s) in 2 files (?)
* maybe not a good idea, better if everything related to one operation is
* close together.
* - Add a CT template parameter like Filtered_exact_nt<> ?
* - Add a string constant to provide an expression string (a la MetaCGAL) ?
* // virtual ostream operator<<() const = 0; // or string, like Core ?
* - Have a template-expression (?) thing that evaluates a temporary element,
* and allocates stuff in memory only when really needs to convert to the
* NT. (cf gmp++, and maybe other things, Blitz++, Synaps...)
*/
/*
* Interface of the rep classes:
* - .approx() returns Interval_nt<> (assumes rounding=nearest).
* [ only called from the handle, and declared in the base ]
* - .exact() returns ET, if not already done, computes recursively
*
* - .rafine_approx() ??
*/
CGAL_BEGIN_NAMESPACE
#ifdef CGAL_LAZY_KERNEL_DEBUG
template <class T>
void
print_at(std::ostream& os, const T& at)
{
os << at;
}
template <class T>
void
print_at(std::ostream& os, const std::vector<T>& at)
{
os << "std::vector";
}
template <>
void
print_at(std::ostream& os, const Object& o)
{
os << "CGAL::Object";
}
template <class T1, class T2>
void
print_at(std::ostream& os, const std::pair<T1,T2> & at)
{
os << "[ " << at.first << " | " << at.second << " ]" << std::endl ;
}
template <class ET>
class Lazy_exact_nt;
template <typename ET>
inline
void
print_dag(const Lazy_exact_nt<ET>& l, std::ostream& os, int level=0)
{
l.print_dag(os, level);
}
inline
void
print_dag(double d, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << d << std::endl;
}
void
msg(std::ostream& os, int level, char* s)
{
int i;
for(i = 0; i < level; i++){
os << " ";
}
os << s << std::endl;
}
inline
void
print_dag(const Null_vector& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Null_vector" << std::endl;
}
inline
void
print_dag(const Origin& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Origin" << std::endl;
}
#endif
// Abstract base class for lazy numbers and lazy objects
template <typename AT_, typename ET, typename E2A>
struct Lazy_construct_rep : public Rep
{
typedef AT_ AT;
AT at;
mutable ET *et;
Lazy_construct_rep ()
: at(), et(NULL) {}
Lazy_construct_rep (const AT& a)
: at(a), et(NULL)
{}
Lazy_construct_rep (const AT& a, const ET& e)
: at(a), et(new ET(e))
{}
private:
Lazy_construct_rep (const Lazy_construct_rep&) { std::abort(); } // cannot be copied.
public:
const AT& approx() const
{
return at;
}
AT& approx()
{
return at;
}
const ET & exact() const
{
if (et==NULL)
update_exact();
return *et;
}
ET & exact()
{
if (et==NULL)
update_exact();
return *et;
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void print_at_et(std::ostream& os, int level) const
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Approximation: ";
CGAL::print_at(os, at);
os << std::endl;
if(! is_lazy()){
for(int i = 0; i < level; i++){
os << " ";
}
os << "Exact: ";
CGAL::print_at(os, *et);
os << std::endl;
}
}
virtual void print_dag(std::ostream& os, int level) const {}
#endif
bool is_lazy() const { return et == NULL; }
virtual void update_exact() = 0;
virtual int depth() const { return 1; }
virtual ~Lazy_construct_rep () { delete et; };
};
// Abstract base representation class for lazy numbers
template <typename ET>
struct Lazy_exact_rep : public Lazy_construct_rep<Interval_nt<false>,
ET, To_interval<ET> >
{
typedef Lazy_construct_rep<Interval_nt<false>, ET, To_interval<ET> > Base;
Lazy_exact_rep (const Interval_nt<false> & i)
: Base(i) {}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
}
#endif
private:
Lazy_exact_rep (const Lazy_exact_rep&) { std::abort(); } // cannot be copied.
};
// int constant
template <typename ET>
struct Lazy_exact_Int_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Int_Cst (int i)
: Lazy_exact_rep<ET>(double(i)) {}
void update_exact() { this->et = new ET((int)this->approx().inf()); }
};
// double constant
template <typename ET>
struct Lazy_exact_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Cst (double d)
: Lazy_exact_rep<ET>(d) {}
void update_exact() { this->et = new ET(this->approx().inf()); }
};
// Exact constant
template <typename ET>
struct Lazy_exact_Ex_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_Ex_Cst (const ET & e)
: Lazy_exact_rep<ET>(to_interval(e))
{
this->et = new ET(e);
}
void update_exact() { CGAL_assertion(false); }
};
// Construction from a Lazy_exact_nt<ET1> (which keeps the lazyness).
template <typename ET, typename ET1>
class Lazy_lazy_exact_Cst : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET1> l;
public:
Lazy_lazy_exact_Cst (const Lazy_exact_nt<ET1> &x)
: Lazy_exact_rep<ET>(x.approx()), l(x) {}
void update_exact()
{
this->et = new ET(l.exact());
this->approx() = l.approx();
prune_dag();
}
int depth() const { return l.depth() + 1; }
void prune_dag() { l = Lazy_exact_nt<ET1>::zero(); }
};
// Unary operations: abs, sqrt, square.
// Binary operations: +, -, *, /, min, max.
// Base unary operation
template <typename ET>
struct Lazy_exact_unary : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET> op1;
Lazy_exact_unary (const Interval_nt<false> &i, const Lazy_exact_nt<ET> &a)
: Lazy_exact_rep<ET>(i), op1(a) {}
int depth() const { return op1.depth() + 1; }
void prune_dag() { op1 = Lazy_exact_nt<ET>::zero(); }
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "Unary number operator:");
CGAL::print_dag(op1, os, level+1);
}
}
#endif
};
// Base binary operation
template <typename ET, typename ET1 = ET, typename ET2 = ET>
struct Lazy_exact_binary : public Lazy_exact_rep<ET>
{
Lazy_exact_nt<ET1> op1;
Lazy_exact_nt<ET2> op2;
Lazy_exact_binary (const Interval_nt<false> &i,
const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b)
: Lazy_exact_rep<ET>(i), op1(a), op2(b) {}
int depth() const { return std::max(op1.depth(), op2.depth()) + 1; }
void prune_dag()
{
op1 = Lazy_exact_nt<ET1>::zero();
op2 = Lazy_exact_nt<ET2>::zero();
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "Binary number operator:");
CGAL::print_dag(op1, os, level+1);
CGAL::print_dag(op2, os, level+1);
}
}
#endif
};
// Here we could use a template class for all operations (STL provides
// function objects plus, minus, multiplies, divides...). But it would require
// a template template parameter, and GCC 2.95 seems to crash easily with them.
#ifndef CGAL_CFG_COMMA_BUG
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
typedef typename Lazy_exact_unary<ET>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>((P(), OP(a.approx())), a) {} \
\
void update_exact() \
{ \
this->et = new ET(OP(this->op1.exact())); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#else
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
typedef typename Lazy_exact_unary<ET>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>(a.approx() /* dummy value */, a) \
{ P p; this->approx() = OP(a.approx()); } \
\
void update_exact() \
{ \
this->et = new ET(OP(this->op1.exact())); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#endif
CGAL_LAZY_UNARY_OP(CGAL::opposite, Lazy_exact_Opp)
CGAL_LAZY_UNARY_OP(CGAL_NTS abs, Lazy_exact_Abs)
CGAL_LAZY_UNARY_OP(CGAL_NTS square, Lazy_exact_Square)
CGAL_LAZY_UNARY_OP(CGAL::sqrt, Lazy_exact_Sqrt)
#ifndef CGAL_CFG_COMMA_BUG
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET, typename ET1 = ET, typename ET2 = ET> \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2> \
{ \
typedef typename Lazy_exact_binary<ET,ET1,ET2>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b) \
: Lazy_exact_binary<ET, ET1, ET2>((P(), a.approx() OP b.approx()), a, b) {} \
\
void update_exact() \
{ \
this->et = new ET(this->op1.exact() OP this->op2.exact()); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#else
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET, typename ET1 = ET, typename ET2 = ET> \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2> \
{ \
typedef typename Lazy_exact_binary<ET, ET1, ET2>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b) \
: Lazy_exact_binary<ET, ET1, ET2>(a.approx() /* dummy value */, a, b)\
{P p; this->approx() = a.approx() OP b.approx(); } \
\
void update_exact() \
{ \
this->et = new ET(this->op1.exact() OP this->op2.exact()); \
if (!this->approx().is_point()) \
this->approx() = CGAL::to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
#endif
CGAL_LAZY_BINARY_OP(+, Lazy_exact_Add)
CGAL_LAZY_BINARY_OP(-, Lazy_exact_Sub)
CGAL_LAZY_BINARY_OP(*, Lazy_exact_Mul)
CGAL_LAZY_BINARY_OP(/, Lazy_exact_Div)
// Minimum
template <typename ET>
struct Lazy_exact_Min : public Lazy_exact_binary<ET>
{
Lazy_exact_Min (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(min(a.approx(), b.approx()), a, b) {}
void update_exact()
{
this->et = new ET(min(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point()) this->approx() = CGAL::to_interval(*(this->et));
this->prune_dag();
}
};
// Maximum
template <typename ET>
struct Lazy_exact_Max : public Lazy_exact_binary<ET>
{
Lazy_exact_Max (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>(max(a.approx(), b.approx()), a, b) {}
void update_exact()
{
this->et = new ET(max(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point()) this->approx() = CGAL::to_interval(*(this->et));
this->prune_dag();
}
};
#define CGAL_int(T) typename First_if_different<int, T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
// The real number type, handle class
template <typename ET>
class Lazy_exact_nt
: public Handle
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET>, int >
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET>, double >
{
typedef Lazy_exact_nt<ET> Self;
typedef Lazy_construct_rep<Interval_nt<false>, ET, To_interval<ET> > Self_rep;
public :
typedef typename Number_type_traits<ET>::Has_gcd Has_gcd;
typedef typename Number_type_traits<ET>::Has_division Has_division;
typedef typename Number_type_traits<ET>::Has_sqrt Has_sqrt;
typedef typename Number_type_traits<ET>::Has_exact_sqrt Has_exact_sqrt;
typedef typename Number_type_traits<ET>::Has_exact_division
Has_exact_division;
typedef typename Number_type_traits<ET>::Has_exact_ring_operations
Has_exact_ring_operations;
Lazy_exact_nt (Self_rep *r)
{ PTR = r; }
Lazy_exact_nt ()
: Handle(zero()) {}
Lazy_exact_nt (const CGAL_int(ET) & i)
{ PTR = new Lazy_exact_Int_Cst<ET>(i); }
Lazy_exact_nt (const CGAL_double(ET) & d)
{ PTR = new Lazy_exact_Cst<ET>(d); }
Lazy_exact_nt (const ET & e)
{ PTR = new Lazy_exact_Ex_Cst<ET>(e); }
template <class ET1>
Lazy_exact_nt (const Lazy_exact_nt<ET1> &x)
{ PTR = new Lazy_lazy_exact_Cst<ET, ET1>(x); }
Self operator- () const
{ return new Lazy_exact_Opp<ET>(*this); }
Self & operator+=(const Self& b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(const Self& b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(const Self& b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(const Self& b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
// Mixed operators. (could be optimized ?)
Self & operator+=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_int(ET) b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
Self & operator+=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_double(ET) b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
// % kills filtering
Self & operator%=(const Self& b)
{
CGAL_precondition(b != 0);
ET res = exact();
res %= b.exact();
return *this = Lazy_exact_nt<ET>(res);
}
Self & operator%=(int b)
{
CGAL_precondition(b != 0);
ET res = exact();
res %= b;
return *this = Lazy_exact_nt<ET>(res);
}
Interval_nt<true> interval() const
{
const Interval_nt<false>& i = approx();
return Interval_nt<true>(i.inf(), i.sup());
}
const Interval_nt<false>& approx() const
{ return ptr()->approx(); }
Interval_nt_advanced approx_adv() const
{ return ptr()->approx(); }
const ET & exact() const
{ return ptr()->exact(); }
int depth() const
{ return ptr()->depth(); }
void
print_dag(std::ostream& os, int level) const
{
ptr()->print_dag(os, level);
}
static const double & get_relative_precision_of_to_double()
{
return relative_precision_of_to_double;
}
static void set_relative_precision_of_to_double(const double & d)
{
CGAL_assertion(d > 0 && d < 1);
relative_precision_of_to_double = d;
}
bool identical(const Self& b) const
{
return CGAL::identical(static_cast<const Handle &>(*this),
static_cast<const Handle &>(b));
}
template < typename T >
bool identical(const T&) const
{ return false; }
// We have a static variable for optimizing zero and default constructor.
static const Self & zero()
{
static const Self z = new Lazy_exact_Int_Cst<ET>(0);
return z;
}
private:
Self_rep * ptr() const { return (Self_rep*) PTR; }
static double relative_precision_of_to_double;
};
template <typename ET>
double Lazy_exact_nt<ET>::relative_precision_of_to_double = 0.00001;
template <typename ET1, typename ET2>
bool
operator<(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
if (a.identical(b))
return false;
Uncertain<bool> res = a.approx() < b.approx();
if (is_singleton(res))
return res;
return a.exact() < b.exact();
}
template <typename ET1, typename ET2>
bool
operator==(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
if (a.identical(b))
return true;
Uncertain<bool> res = a.approx() == b.approx();
if (is_singleton(res))
return res;
return a.exact() == b.exact();
}
template <typename ET1, typename ET2>
inline
bool
operator>(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b < a; }
template <typename ET1, typename ET2>
inline
bool
operator>=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a < b); }
template <typename ET1, typename ET2>
inline
bool
operator<=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b >= a; }
template <typename ET1, typename ET2>
inline
bool
operator!=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a == b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
operator%(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{
CGAL_precondition(b != 0);
return Lazy_exact_nt<ET>(a) %= b;
}
// Mixed operators with int.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = a.approx() < b;
if (is_singleton(res))
return res;
return a.exact() < b;
}
template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = b < a.approx();
if (is_singleton(res))
return res;
return b < a.exact();
}
template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, int b)
{
Uncertain<bool> res = b == a.approx();
if (is_singleton(res))
return res;
return b == a.exact();
}
// Mixed operators
template < typename ET1, typename ET2 >
struct Binary_operator_result < Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2> >
{
typedef Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type > type;
};
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator+(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Add<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator-(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Sub<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator*(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
return new Lazy_exact_Mul<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Binary_operator_result<ET1, ET2>::type >
operator/(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_precondition(b != 0);
return new Lazy_exact_Div<typename Binary_operator_result<ET1, ET2>::type,
ET1, ET2>(a, b);
}
template <typename ET>
double
to_double(const Lazy_exact_nt<ET> & a)
{
const Interval_nt<false>& app = a.approx();
if (app.sup() == app.inf())
return app.sup();
// If it's precise enough, then OK.
if ((app.sup() - app.inf())
< Lazy_exact_nt<ET>::get_relative_precision_of_to_double()
* std::max(std::fabs(app.inf()), std::fabs(app.sup())) )
return CGAL::to_double(app);
// Otherwise we trigger exact computation first,
// which will refine the approximation.
a.exact();
return CGAL::to_double(a.approx());
}
template <typename ET>
inline
std::pair<double,double>
to_interval(const Lazy_exact_nt<ET> & a)
{
return a.approx().pair();
}
template <typename ET>
inline
Sign
sign(const Lazy_exact_nt<ET> & a)
{
Uncertain<Sign> res = sign(a.approx());
if (is_singleton(res))
return res;
return CGAL_NTS sign(a.exact());
}
template <typename ET1, typename ET2>
inline
Comparison_result
compare(const Lazy_exact_nt<ET1> & a, const Lazy_exact_nt<ET2> & b)
{
if (a.identical(b))
return EQUAL;
Uncertain<Comparison_result> res = compare(a.approx(), b.approx());
if (is_singleton(res))
return res;
return CGAL_NTS compare(a.exact(), b.exact());
}
template <typename ET>
inline
Lazy_exact_nt<ET>
abs(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Abs<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
square(const Lazy_exact_nt<ET> & a)
{ return new Lazy_exact_Square<ET>(a); }
template <typename ET>
inline
Lazy_exact_nt<ET>
sqrt(const Lazy_exact_nt<ET> & a)
{
CGAL_precondition(a >= 0);
return new Lazy_exact_Sqrt<ET>(a);
}
template <typename ET>
inline
Lazy_exact_nt<ET>
min(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Min<ET>(a, b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
max(const Lazy_exact_nt<ET> & a, const Lazy_exact_nt<ET> & b)
{ return new Lazy_exact_Max<ET>(a, b); }
// gcd kills filtering.
template <typename ET>
Lazy_exact_nt<ET>
gcd(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{
return Lazy_exact_nt<ET>(CGAL_NTS gcd(a.exact(), b.exact()));
}
template <typename ET>
std::ostream &
operator<< (std::ostream & os, const Lazy_exact_nt<ET> & a)
{ return os << CGAL::to_double(a); }
template <typename ET>
std::istream &
operator>> (std::istream & is, Lazy_exact_nt<ET> & a)
{
ET e;
is >> e;
a = e;
return is;
}
template <typename ET>
inline
bool
is_finite(const Lazy_exact_nt<ET> & a)
{
return is_finite(a.approx()) || is_finite(a.exact());
}
template <typename ET>
inline
bool
is_valid(const Lazy_exact_nt<ET> & a)
{
return is_valid(a.approx()) || is_valid(a.exact());
}
template <typename ET>
inline
io_Operator
io_tag (const Lazy_exact_nt<ET>&)
{ return io_Operator(); }
template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>, ET >
{
const ET& operator()(const Lazy_exact_nt<ET> &a) const
{ return a.exact(); }
};
// Returns true if the value is representable by a double and to_double()
// would return it. False means "don't know".
template < typename ET >
inline bool
fit_in_double(const Lazy_exact_nt<ET>& l, double& r)
{ return fit_in_double(l.approx(), r); }
// We create a type of new node in Lazy_exact_nt's DAG
// for the make_root_of_2() operation.
#if 0 // To be finished
template <typename ET >
struct Lazy_exact_ro2
: public Lazy_exact_rep< typename Root_of_traits<ET>::RootOf_2 >
{
typedef typename Root_of_traits<ET>::RootOf_2 RO2;
typedef Lazy_exact_rep<RO2> Base;
typedef typename Base::AT::Protector P;
mutable Lazy_exact_nt<ET> op1, op2, op3;
bool smaller;
Lazy_exact_ro2 (const Lazy_exact_nt<ET> &a,
const Lazy_exact_nt<ET> &b,
const Lazy_exact_nt<ET> &c, bool s)
#ifndef CGAL_CFG_COMMA_BUG
: Base((P(), make_root_of_2(a.approx(), b.approx(), c.approx(), s))),
op1(a), op2(b), op3(c), smaller(s) {}
#else
: Base(a.approx() /* dummy value */, a),
op1(a), op2(b), op3(c), smaller(s)
{
P p;
this->approx() = make_root_of_2(a.approx(), b.approx(),
c.approx(), s);
}
#endif
void update_exact()
{
this->et = new RO2(make_root_of_2(op1.exact(), op2.exact(),
op3.exact(), smaller));
if (!this->approx().is_point())
this->at = CGAL::to_interval(*(this->et));
this->prune_dag();
}
void prune_dag() const
{
op1 = op2 = op3 = Lazy_exact_nt<ET>::zero();
}
};
template < typename ET >
inline
Lazy_exact_nt< typename Root_of_traits<ET>::RootOf_2 >
make_root_of_2( const Lazy_exact_nt<ET> &a,
const Lazy_exact_nt<ET> &b,
const Lazy_exact_nt<ET> &c, bool d)
{
return new Lazy_exact_ro2<ET>(a, b, c, d);
}
template <typename NT >
struct Root_of_traits< Lazy_exact_nt < NT > >
{
private:
typedef Root_of_traits<NT> T;
public:
typedef Lazy_exact_nt< typename T::RootOf_1 > RootOf_1;
typedef Lazy_exact_nt< typename T::RootOf_2 > RootOf_2;
};
#endif // 0
#undef CGAL_double
#undef CGAL_int
CGAL_END_NAMESPACE
#endif // CGAL_LAZY_EXACT_NT_H
|