1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
// Copyright (c) 1997 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Min_sphere_d/include/CGAL/Optimisation_sphere_d.h $
// $Id: Optimisation_sphere_d.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Sven Schoenherr <sven@inf.fu-berlin.de>
// Bernd Gaertner
#ifndef CGAL_OPTIMISATION_SPHERE_D_H
#define CGAL_OPTIMISATION_SPHERE_D_H
CGAL_BEGIN_NAMESPACE
// Class declarations
// ==================
// general template
template <class Rep_tag, class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d;
template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Homogeneous_tag, FT, RT, PT, Traits>;
template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Cartesian_tag, FT, RT, PT, Traits>;
CGAL_END_NAMESPACE
// Class interfaces and implementation
// ==================================
// includes
#include <CGAL/Optimisation/basic.h>
#include <CGAL/Optimisation/assertions.h>
CGAL_BEGIN_NAMESPACE
// Cartesian version
// -----------------
template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Cartesian_tag, FT, RT, PT, Traits>
{
private:
typedef
typename Traits::Access_coordinates_begin_d::Coordinate_iterator It;
// hack needed for egcs, see also test programs
typedef FT FT_;
int d; // dimension
int m; // |B|
int s; // |B\cup S|
FT** q; // the q_j's
FT*** inv; // the A^{-1}_{B^j}'s
FT* v_basis; // the vector v_B
FT* x; // solution vector
FT* v; // auxiliary vector
FT* c; // center, for internal use
PT ctr; // center, for external use
FT sqr_r; // squared_radius
Traits tco;
public:
Optimisation_sphere_d& get_sphere (Cartesian_tag)
{return *this;}
const Optimisation_sphere_d&
get_sphere (Cartesian_tag) const
{return *this;}
Optimisation_sphere_d (const Traits& t = Traits())
: d(-1), m(0), s(0), tco (t)
{}
void set_tco (const Traits& tcobj)
{
tco = tcobj;
}
void init (int ambient_dimension)
{
d = ambient_dimension;
m = 0;
s = 0;
sqr_r = -FT(1);
q = new FT*[d+1];
inv = new FT**[d+1];
v_basis = new FT[d+2];
x = new FT[d+2];
v = new FT[d+2];
c = new FT[d];
for (int j=0; j<d+1; ++j) {
q[j] = new FT[d];
inv[j] = new FT*[j+2];
for (int row=0; row<j+2; ++row)
inv[j][row] = new FT[row+1];
}
for (int i=0; i<d; ++i)
c[i] = FT(0);
v_basis[0] = FT(1);
}
~Optimisation_sphere_d ()
{
if (d != -1)
destroy();
}
void destroy ()
{
for (int j=0; j<d+1; ++j) {
for (int row=0; row<j+2; ++row)
delete[] inv[j][row];
delete[] inv[j];
delete[] q[j];
}
delete[] c;
delete[] v;
delete[] x;
delete[] v_basis;
delete[] inv;
delete[] q;
}
void set_size (int ambient_dimension)
{
if (d != -1)
destroy();
if (ambient_dimension != -1)
init(ambient_dimension);
else {
d = -1;
m = 0;
s = 0;
}
}
void push (const PT& p)
{
// store q_m = p by copying its cartesian coordinates into q[m]
It i(tco.access_coordinates_begin_d_object()(p)); FT *o;
for (o=q[m]; o<q[m]+d; *(o++)=*(i++));
// update v_basis by appending q_m^Tq_m
v_basis[m+1] = prod(q[m],q[m],d);
if (m==0)
{
// set up A^{-1}_{B^0} directly
FT** M = inv[0];
M[0][0] = -FT_(2)*v_basis[1];
M[1][0] = FT_(1);
M[1][1] = FT_(0);
} else {
// set up vector v by computing 2q_j^T q_m, j=0,...,m-1
v[0] = FT_(1);
for (int j=0; j<m; ++j)
v[j+1] = FT_(2)*prod(q[j],q[m],d);
// compute a_0,...,a_m
multiply (m-1, v, x); // x[j]=a_j, j=0,...,m
// compute z
FT z = FT_(2)*v_basis[m+1] - prod(v,x,m+1);
CGAL_optimisation_assertion (!CGAL_NTS is_zero (z));
FT inv_z = FT_(1)/z;
// set up A^{-1}_{B^m}
FT** M = inv[m-1]; // A^{-1}_B, old matrix
FT** M_new = inv[m]; // A^{-1}_{B'}, new matrix
// first m rows
int row, col;
for (row=0; row<m+1; ++row)
for (col=0; col<row+1; ++col)
M_new [row][col] = M[row][col] + x[row]*x[col]*inv_z;
// last row
for (col=0; col<m+1; ++col)
M_new [m+1][col] = -x[col]*inv_z;
M_new [m+1][m+1] = inv_z;
}
s = ++m;
compute_c_and_sqr_r(); // side effect: sets x
}
void pop ()
{
--m;
}
FT excess (const PT& p) const
{
// compute (c-p)^2
FT sqr_dist (FT(0));
It i(tco.access_coordinates_begin_d_object()(p));
FT *j;
for (j=c; j<c+d; ++i, ++j)
sqr_dist += CGAL_NTS square(*i-*j);
return sqr_dist - sqr_r;
}
PT center () const
{
return tco.construct_point_d_object()(d, c, c+d);
}
FT squared_radius () const
{
return sqr_r;
}
int number_of_support_points () const
{
return s;
}
int size_of_basis () const
{
return m;
}
bool is_valid (bool verbose = false, int level = true) const
{
Verbose_ostream verr (verbose);
for (int j=1; j<m+1; ++j)
if (!CGAL_NTS is_positive (x[j]))
return (_optimisation_is_valid_fail
(verr, "center not in convex hull of support points"));
return (true);
}
private:
void multiply (int j, const FT* vec, FT* res)
{
FT** M = inv[j];
for (int row=0; row<j+2; ++row) {
res[row] = prod(M[row],vec,row+1);
for (int col = row+1; col<j+2; ++col)
res[row] += M[col][row]*vec[col];
}
}
void compute_c_and_sqr_r ()
{
multiply (m-1, v_basis, x);
for (int i=0; i<d; ++i) c[i] = FT(0);
for (int j=0; j<m; ++j) {
FT l = x[j+1], *q_j = q[j];
for (int i=0; i<d; ++i)
c[i] += l*q_j[i];
}
sqr_r = x[0] + prod(c,c,d);
}
FT prod (const FT* v1, const FT* v2, int k) const
{
FT res(FT(0));
for (const FT *i=v1, *j=v2; i<v1+k; res += (*(i++))*(*(j++)));
return res;
}
};
// Homogeneous version
// -----------------
template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Homogeneous_tag, FT, RT, PT, Traits>
{
private:
typedef
typename Traits::Access_coordinates_begin_d::Coordinate_iterator It;
// hack needed for egcs, see also test programs
typedef RT RT_;
int d; // dimension
int m; // |B|
int s; // |B\cup S|
RT** q; // the q_j's
RT*** inv; // the \tilde{A}^{-1}_{B^j}'s
RT* denom; // corresponding denominators
RT** v_basis; // the \tilde{v}_B^j
RT* x; // solution vector
mutable RT* v; // auxiliary vector
RT* c; // center, for internal use
PT ctr; // center, for external use
RT sqr_r; // numerator of squared_radius
Traits tco;
public:
Optimisation_sphere_d& get_sphere (Homogeneous_tag t)
{return *this;}
const Optimisation_sphere_d&
get_sphere (Homogeneous_tag t) const
{return *this;}
Optimisation_sphere_d (const Traits& t = Traits())
: d(-1), m(0), s(0), tco(t)
{}
void set_tco (const Traits& tcobj)
{
tco = tcobj;
}
void init (int ambient_dimension)
{
d = ambient_dimension;
m = 0;
s = 0;
sqr_r = -RT(1);
q = new RT*[d+1];
inv = new RT**[d+1];
denom = new RT[d+1];
v_basis = new RT*[d+1];
x = new RT[d+2];
v = new RT[d+2];
c = new RT[d+1];
for (int j=0; j<d+1; ++j) {
q[j] = new RT[d];
inv[j] = new RT*[j+2];
v_basis[j] =new RT[j+2];
for (int row=0; row<j+2; ++row)
inv[j][row] = new RT[row+1];
}
for (int i=0; i<d; ++i)
c[i] = RT(0);
c[d] = RT(1);
}
~Optimisation_sphere_d ()
{
if (d != -1)
destroy();
}
void destroy ()
{
for (int j=0; j<d+1; ++j) {
for (int row=0; row<j+2; ++row)
delete[] inv[j][row];
delete[] v_basis[j];
delete[] inv[j];
delete[] q[j];
}
delete[] c;
delete[] v;
delete[] x;
delete[] v_basis;
delete[] denom;
delete[] inv;
delete[] q;
}
void set_size (int ambient_dimension)
{
if (d != -1)
destroy();
if (ambient_dimension != -1)
init(ambient_dimension);
else {
d = -1;
m = 0;
s = 0;
}
}
void push (const PT& p)
{
// store q_m = p by copying its cartesian part into q[m]
It i(tco.access_coordinates_begin_d_object()(p)); RT *o;
for (o=q[m]; o<q[m]+d; *(o++)=*(i++));
// get homogenizing coordinate
RT hom = *(i++);
if (m==0)
{
// set up v_{B^0} directly
v_basis[0][0] = hom;
v_basis[0][1] = prod(q[0],q[0],d);
// set up \tilde{A}^{-1}_{B^0} directly
RT** M = inv[0];
M[0][0] = RT_(2)*v_basis[0][1];
M[1][0] = -hom;
M[1][1] = RT_(0);
denom[0] = -CGAL_NTS square(hom); // det(\tilde{A}_{B^0})
} else {
// set up v_{B^m}
int j;
RT sqr_q_m = prod(q[m],q[m],d);
v_basis[m][m+1] = v_basis[m-1][0]*sqr_q_m;
for (j=0; j<m+1; ++j)
v_basis[m][j] = hom*v_basis[m-1][j];
// set up vector v by computing 2q_j^T q_m, j=0,...,m-1
v[0] = hom;
for (j=0; j<m; ++j)
v[j+1] = RT_(2)*prod(q[j],q[m],d);
// compute \tilde{a}_0,...,\tilde{a}_m
multiply (m-1, v, x); // x[j]=\tilde{a}_j, j=0,...,m
// compute \tilde{z}
RT old_denom = denom[m-1];
RT z = old_denom*RT_(2)*sqr_q_m - prod(v,x,m+1);
CGAL_optimisation_assertion (!CGAL_NTS is_zero (z));
// set up \tilde{A}^{-1}_{B^m}
RT** M = inv[m-1]; // \tilde{A}^{-1}_B, old matrix
RT** M_new = inv[m]; // \tilde{A}^{-1}_{B'}, new matrix
// first m rows
int row, col;
for (row=0; row<m+1; ++row)
for (col=0; col<row+1; ++col)
M_new [row][col]
= (z*M[row][col] + x[row]*x[col])/old_denom;
// last row
for (col=0; col<m+1; ++col)
M_new [m+1][col] = -x[col];
M_new [m+1][m+1] = old_denom;
// new denominator
denom[m] = z;
}
s = ++m;
compute_c_and_sqr_r();
}
void pop ()
{
--m;
}
RT excess (const PT& p) const
{
// store hD times the cartesian part of p in v
RT hD = c[d];
It i(tco.access_coordinates_begin_d_object()(p)); RT *o;
for ( o=v; o<v+d; *(o++)=hD*(*(i++)));
// get h_p
RT h_p = *(i++);
CGAL_optimisation_precondition (!CGAL_NTS is_zero (h_p));
// compute (h_p h D)^2 (c-p)^2
RT sqr_dist(RT(0));
for (int k=0; k<d; ++k)
sqr_dist += CGAL_NTS square(h_p*c[k]-v[k]);
// compute excess
return sqr_dist - CGAL_NTS square(h_p)*sqr_r;
}
PT center () const
{
return tco.construct_point_d_object()(d,c,c+d+1);
}
FT squared_radius () const
{
return FT(sqr_r)/FT(CGAL_NTS square(c[d]));
}
int number_of_support_points () const
{
return s;
}
int size_of_basis () const
{
return m;
}
bool is_valid (bool verbose = false, int level = true) const
{
if (d==-1) return true;
Verbose_ostream verr (verbose);
int sign_hD = CGAL::sign(c[d]), s_old = 1,
s_new = CGAL::sign(v_basis[0][0]), signum;
for (int j=1; j<m+1; ++j) {
signum = sign_hD * s_old * s_new * CGAL::sign(x[j]);
if (!CGAL_NTS is_positive (signum))
return (_optimisation_is_valid_fail
(verr, "center not in convex hull of support points"));
s_old = s_new; s_new = CGAL::sign(v_basis[j][0]);
}
return true;
}
private:
void multiply (int j, const RT* vec, RT* res)
{
RT** M = inv[j];
for (int row=0; row<j+2; ++row) {
res[row] = prod(M[row],vec,row+1);
for (int col = row+1; col<j+2; ++col)
res[row] += M[col][row]*vec[col];
}
}
void compute_c_and_sqr_r ()
{
// solve
multiply (m-1, v_basis[m-1], x);
// set cartesian part
for (int i=0; i<d; ++i) c[i] = RT(0);
for (int j=0; j<m; ++j) {
RT l = x[j+1], *q_j = q[j];
for (int i=0; i<d; ++i)
c[i] += l*q_j[i];
}
c[d] = v_basis[m-1][0]*denom[m-1]; // hD
sqr_r = x[0]*c[d] + prod(c,c,d); // \tilde{\alpha}hD+c^Tc
}
RT prod (const RT* v1, const RT* v2, int k) const
{
RT res = RT(0);
for (const RT *i=v1, *j=v2; i<v1+k; res += (*(i++))*(*(j++)));
return res;
}
};
CGAL_END_NAMESPACE
#endif // CGAL_OPTIMISATION_SPHERE_D_H
// ===== EOF ==================================================================
|