File: Optimisation_sphere_d.h

package info (click to toggle)
cgal 3.2.1-2
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 47,752 kB
  • ctags: 72,510
  • sloc: cpp: 397,707; ansic: 10,393; sh: 4,232; makefile: 3,713; perl: 394; sed: 9
file content (605 lines) | stat: -rw-r--r-- 18,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// Copyright (c) 1997  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Min_sphere_d/include/CGAL/Optimisation_sphere_d.h $
// $Id: Optimisation_sphere_d.h 28567 2006-02-16 14:30:13Z lsaboret $
// 
//
// Author(s)     : Sven Schoenherr <sven@inf.fu-berlin.de>
//                 Bernd Gaertner

#ifndef CGAL_OPTIMISATION_SPHERE_D_H
#define CGAL_OPTIMISATION_SPHERE_D_H

CGAL_BEGIN_NAMESPACE

// Class declarations
// ==================
// general template
template <class Rep_tag, class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d;

template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Homogeneous_tag, FT, RT, PT, Traits>;

template <class FT, class RT, class PT, class Traits>
class Optimisation_sphere_d<Cartesian_tag, FT, RT, PT, Traits>;
    
CGAL_END_NAMESPACE

    // Class interfaces and implementation
    // ==================================
    // includes


    #include <CGAL/Optimisation/basic.h>

    #include <CGAL/Optimisation/assertions.h>


    CGAL_BEGIN_NAMESPACE

    // Cartesian version
    // -----------------
    template <class FT, class RT, class PT, class Traits>
    class Optimisation_sphere_d<Cartesian_tag, FT, RT, PT, Traits>
    {
    private:
        typedef
          typename Traits::Access_coordinates_begin_d::Coordinate_iterator  It;
        
        // hack needed for egcs, see also test programs
        typedef             FT                              FT_;
        
        int                 d;                      // dimension
        int                 m;                      // |B|
        int                 s;                      // |B\cup S|
        
        FT**                q;                      // the q_j's
        FT***               inv;                    // the A^{-1}_{B^j}'s
        FT*                 v_basis;                // the vector v_B
        
        FT*                 x;                      // solution vector
        FT*                 v;                      // auxiliary vector
        
        FT*                 c;                      // center, for internal use
        PT                  ctr;                    // center, for external use
        FT                  sqr_r;                  // squared_radius
        
        Traits              tco;
        

    public:

        Optimisation_sphere_d& get_sphere (Cartesian_tag)
        {return *this;}

        const Optimisation_sphere_d&
          get_sphere (Cartesian_tag) const
        {return *this;}

        Optimisation_sphere_d (const Traits& t = Traits())
            : d(-1), m(0), s(0), tco (t)
        {}
        
        void set_tco (const Traits& tcobj)
        {
            tco = tcobj;
        }
        
        
        void init (int ambient_dimension)
        {
            d = ambient_dimension;
            m = 0;
            s = 0;
            sqr_r = -FT(1);
        
            q =             new FT*[d+1];
            inv =           new FT**[d+1];
            v_basis =       new FT[d+2];
            x =             new FT[d+2];
            v =             new FT[d+2];
            c =             new FT[d];
        
            for (int j=0; j<d+1; ++j) {
                q[j] =      new FT[d];
                inv[j] =    new FT*[j+2];
                for (int row=0; row<j+2; ++row)
                    inv[j][row] = new FT[row+1];
            }
        
            for (int i=0; i<d; ++i)
                c[i] = FT(0);
            v_basis[0] = FT(1);
        }
        
        
        ~Optimisation_sphere_d ()
        {
            if (d != -1)
               destroy();
        }
        
        
        void destroy ()
        {
            for (int j=0; j<d+1; ++j) {
                for (int row=0; row<j+2; ++row)
                    delete[] inv[j][row];
                delete[] inv[j];
                delete[] q[j];
            }
            delete[] c;
            delete[] v;
            delete[] x;
            delete[] v_basis;
            delete[] inv;
            delete[] q;
        }
        
        
        void set_size (int ambient_dimension)
        {
            if (d != -1)
                destroy();
            if (ambient_dimension != -1)
                init(ambient_dimension);
            else {
                d = -1;
                m = 0;
                s = 0;
            }
        }
        
        
        void push (const PT& p)
        {
            // store q_m = p by copying its cartesian coordinates into q[m]
            It i(tco.access_coordinates_begin_d_object()(p)); FT *o;
            for (o=q[m]; o<q[m]+d; *(o++)=*(i++));
        
            // update v_basis by appending q_m^Tq_m
            v_basis[m+1] = prod(q[m],q[m],d);
        
            if (m==0)
            {
                // set up A^{-1}_{B^0} directly
                FT** M = inv[0];
                M[0][0] = -FT_(2)*v_basis[1];
                M[1][0] = FT_(1);
                M[1][1] = FT_(0);
            } else {
                // set up vector v by computing 2q_j^T q_m, j=0,...,m-1
                v[0] = FT_(1);
                for (int j=0; j<m; ++j)
                    v[j+1] = FT_(2)*prod(q[j],q[m],d);
        
                // compute a_0,...,a_m
                multiply (m-1, v, x);               // x[j]=a_j, j=0,...,m
        
                // compute z
                FT z = FT_(2)*v_basis[m+1] - prod(v,x,m+1);
                CGAL_optimisation_assertion (!CGAL_NTS is_zero (z));
                FT inv_z = FT_(1)/z;
        
                // set up A^{-1}_{B^m}
                FT** M = inv[m-1];          // A^{-1}_B, old matrix
                FT** M_new = inv[m];        // A^{-1}_{B'}, new matrix
        
                // first m rows
                int row, col;
                for (row=0; row<m+1; ++row)
                    for (col=0; col<row+1; ++col)
                        M_new [row][col] = M[row][col] + x[row]*x[col]*inv_z;
        
                // last row
                for (col=0; col<m+1; ++col)
                    M_new [m+1][col] = -x[col]*inv_z;
                M_new [m+1][m+1] = inv_z;
            }
            s = ++m;
            compute_c_and_sqr_r();  // side effect: sets x
        }
        
        
        void pop ()
        {
            --m;
        }
        
        
        FT excess (const PT& p) const
        {
            // compute (c-p)^2
            FT sqr_dist (FT(0));
            It i(tco.access_coordinates_begin_d_object()(p));
            FT *j;
            for (j=c; j<c+d; ++i, ++j)
                sqr_dist += CGAL_NTS square(*i-*j);
            return sqr_dist - sqr_r;
         }
        
        
        
        PT center () const
        {
             return tco.construct_point_d_object()(d, c, c+d);
        }
        
        FT squared_radius () const
        {
             return sqr_r;
        }
        
        int number_of_support_points () const
        {
             return s;
        }
        
        int size_of_basis () const
        {
             return m;
        }
        
        
        bool is_valid (bool verbose = false, int level = true) const
        {
            Verbose_ostream verr (verbose);
            for (int j=1; j<m+1; ++j)
                if (!CGAL_NTS is_positive (x[j]))
                    return (_optimisation_is_valid_fail
                        (verr, "center not in convex hull of support points"));
            return (true);
        }
        
        
    private:
        void multiply (int j, const FT* vec, FT* res)
        {
            FT** M = inv[j];
            for (int row=0; row<j+2; ++row) {
                res[row] = prod(M[row],vec,row+1);
                for (int col = row+1; col<j+2; ++col)
                    res[row] += M[col][row]*vec[col];
            }
        }
        
        
        void compute_c_and_sqr_r ()
        {
            multiply (m-1, v_basis, x);
        
            for (int i=0; i<d; ++i) c[i] = FT(0);
            for (int j=0; j<m; ++j) {
                FT l = x[j+1], *q_j = q[j];
                for (int i=0; i<d; ++i)
                    c[i] += l*q_j[i];
            }
            sqr_r = x[0] + prod(c,c,d);
        }
        
        
        FT prod (const FT* v1, const FT* v2, int k) const
        {
            FT res(FT(0));
            for (const FT *i=v1, *j=v2; i<v1+k; res += (*(i++))*(*(j++)));
            return res;
        }
        
        
    };


    // Homogeneous version
    // -----------------
    template <class FT, class RT, class PT, class Traits>
    class Optimisation_sphere_d<Homogeneous_tag, FT, RT, PT, Traits>
    {
    private:
        typedef
          typename Traits::Access_coordinates_begin_d::Coordinate_iterator  It;
        
        // hack needed for egcs, see also test programs
        typedef             RT                              RT_;
        
        int                 d;                      // dimension
        int                 m;                      // |B|
        int                 s;                      // |B\cup S|
        
        RT**                q;                      // the q_j's
        RT***               inv;                    // the \tilde{A}^{-1}_{B^j}'s
        RT*                 denom;                  // corresponding denominators
        RT**                v_basis;                // the \tilde{v}_B^j
        
        RT*                 x;                      // solution vector
        mutable RT*         v;                      // auxiliary vector
        
        RT*                 c;                      // center, for internal use
        PT                  ctr;                    // center, for external use
        RT                  sqr_r;                  // numerator of squared_radius
        
        Traits              tco;
        
        

    public:

        Optimisation_sphere_d& get_sphere (Homogeneous_tag t)
        {return *this;}

        const Optimisation_sphere_d&
          get_sphere (Homogeneous_tag t) const
        {return *this;}

        Optimisation_sphere_d (const Traits& t = Traits())
            : d(-1), m(0), s(0), tco(t)
        {}
        
        void set_tco (const Traits& tcobj)
        {
            tco = tcobj;
        }
        
        
        void init (int ambient_dimension)
        {
            d = ambient_dimension;
            m = 0;
            s = 0;
            sqr_r = -RT(1);
        
            q =             new RT*[d+1];
            inv =           new RT**[d+1];
            denom =         new RT[d+1];
            v_basis =       new RT*[d+1];
            x =             new RT[d+2];
            v =             new RT[d+2];
            c =             new RT[d+1];
        
            for (int j=0; j<d+1; ++j) {
                q[j] =      new RT[d];
                inv[j] =    new RT*[j+2];
                v_basis[j] =new RT[j+2];
                for (int row=0; row<j+2; ++row)
                    inv[j][row] = new RT[row+1];
            }
        
            for (int i=0; i<d; ++i)
                c[i] = RT(0);
            c[d] = RT(1);
        }
        
        
        ~Optimisation_sphere_d ()
        {
            if (d != -1)
                destroy();
        }
        
        
        void destroy ()
        {
            for (int j=0; j<d+1; ++j) {
                for (int row=0; row<j+2; ++row)
                    delete[] inv[j][row];
                delete[] v_basis[j];
                delete[] inv[j];
                delete[] q[j];
            }
            delete[] c;
            delete[] v;
            delete[] x;
            delete[] v_basis;
            delete[] denom;
            delete[] inv;
            delete[] q;
        }
        
        
        void set_size (int ambient_dimension)
        {
            if (d != -1)
                destroy();
            if (ambient_dimension != -1)
                init(ambient_dimension);
            else {
                d = -1;
                m = 0;
                s = 0;
            }
        }
        
        
        void push (const PT& p)
        {
            // store q_m = p by copying its cartesian part into q[m]
            It i(tco.access_coordinates_begin_d_object()(p)); RT *o;
            for (o=q[m]; o<q[m]+d; *(o++)=*(i++));
        
            // get homogenizing coordinate
            RT hom = *(i++);
        
            if (m==0)
            {
                // set up v_{B^0} directly
                v_basis[0][0] = hom;
                v_basis[0][1] = prod(q[0],q[0],d);
        
                // set up \tilde{A}^{-1}_{B^0} directly
                RT** M = inv[0];
                M[0][0] = RT_(2)*v_basis[0][1];
                M[1][0] = -hom;
                M[1][1] = RT_(0);
                denom[0] = -CGAL_NTS square(hom);  // det(\tilde{A}_{B^0})
        
            } else {
                // set up v_{B^m}
                int j;
                RT sqr_q_m = prod(q[m],q[m],d);
                v_basis[m][m+1] = v_basis[m-1][0]*sqr_q_m;
                for (j=0; j<m+1; ++j)
                    v_basis[m][j] = hom*v_basis[m-1][j];
        
        
                // set up vector v by computing 2q_j^T q_m, j=0,...,m-1
                v[0] = hom;
                for (j=0; j<m; ++j)
                    v[j+1] = RT_(2)*prod(q[j],q[m],d);
        
                // compute \tilde{a}_0,...,\tilde{a}_m
                multiply (m-1, v, x);               // x[j]=\tilde{a}_j, j=0,...,m
        
                // compute \tilde{z}
                RT old_denom = denom[m-1];
                RT z = old_denom*RT_(2)*sqr_q_m - prod(v,x,m+1);
                CGAL_optimisation_assertion (!CGAL_NTS is_zero (z));
        
                // set up \tilde{A}^{-1}_{B^m}
                RT** M = inv[m-1];          // \tilde{A}^{-1}_B, old matrix
                RT** M_new = inv[m];        // \tilde{A}^{-1}_{B'}, new matrix
        
                // first m rows
                int row, col;
                for (row=0; row<m+1; ++row)
                    for (col=0; col<row+1; ++col)
                        M_new [row][col]
                            = (z*M[row][col] + x[row]*x[col])/old_denom;
        
                // last row
                for (col=0; col<m+1; ++col)
                    M_new [m+1][col] = -x[col];
                M_new [m+1][m+1] = old_denom;
        
                // new denominator
                denom[m] = z;
            }
            s = ++m;
            compute_c_and_sqr_r();
        }
        
        
        void pop ()
        {
            --m;
        }
        
        
        RT excess (const PT& p) const
        {
            // store hD times the cartesian part of p in v
            RT hD = c[d];
            It i(tco.access_coordinates_begin_d_object()(p)); RT *o;
        
                for ( o=v; o<v+d; *(o++)=hD*(*(i++)));
        
                // get h_p
                RT h_p = *(i++);
                CGAL_optimisation_precondition (!CGAL_NTS is_zero (h_p));
        
                // compute (h_p h D)^2 (c-p)^2
                RT sqr_dist(RT(0));
                for (int k=0; k<d; ++k)
                    sqr_dist += CGAL_NTS square(h_p*c[k]-v[k]);
        
                // compute excess
                return sqr_dist - CGAL_NTS square(h_p)*sqr_r;
             }
        
        
        
        PT center () const
        {
             return tco.construct_point_d_object()(d,c,c+d+1);
        }
        
        FT squared_radius () const
        {
             return FT(sqr_r)/FT(CGAL_NTS square(c[d]));
        }
        
        int number_of_support_points () const
        {
             return s;
        }
        
        int size_of_basis () const
        {
             return m;
        }
        
        
        bool is_valid (bool verbose = false, int level = true) const
        {
            if (d==-1) return true;
            Verbose_ostream verr (verbose);
            int sign_hD = CGAL::sign(c[d]), s_old = 1,
                s_new = CGAL::sign(v_basis[0][0]), signum;
            for (int j=1; j<m+1; ++j) {
                signum = sign_hD * s_old * s_new * CGAL::sign(x[j]);
                if (!CGAL_NTS is_positive (signum))
                    return (_optimisation_is_valid_fail
                        (verr, "center not in convex hull of support points"));
                s_old = s_new; s_new = CGAL::sign(v_basis[j][0]);
            }
            return true;
        }
        
        
    private:
        void multiply (int j, const RT* vec, RT* res)
        {
            RT** M = inv[j];
            for (int row=0; row<j+2; ++row) {
                res[row] = prod(M[row],vec,row+1);
                for (int col = row+1; col<j+2; ++col)
                    res[row] += M[col][row]*vec[col];
            }
        }
        
        
        void compute_c_and_sqr_r ()
        {
            // solve
            multiply (m-1, v_basis[m-1], x);
        
            // set cartesian part
            for (int i=0; i<d; ++i) c[i] = RT(0);
                for (int j=0; j<m; ++j) {
                    RT l = x[j+1], *q_j = q[j];
                    for (int i=0; i<d; ++i)
                        c[i] += l*q_j[i];
            }
            c[d] = v_basis[m-1][0]*denom[m-1];                // hD
            sqr_r = x[0]*c[d] + prod(c,c,d); // \tilde{\alpha}hD+c^Tc
        }
        
        
        RT prod (const RT* v1, const RT* v2, int k) const
        {
            RT res = RT(0);
            for (const RT *i=v1, *j=v2; i<v1+k; res += (*(i++))*(*(j++)));
            return res;
        }
        
        
    };

     CGAL_END_NAMESPACE

    #endif // CGAL_OPTIMISATION_SPHERE_D_H



    // ===== EOF ==================================================================