1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
// Copyright (c) 2005 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Surface_mesh_parameterization/include/CGAL/Parameterization_mesh_feature_extractor.h $
// $Id: Parameterization_mesh_feature_extractor.h 29020 2006-03-03 09:33:29Z lsaboret $
//
//
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
#ifndef CGAL_PARAMETERIZATION_MESH_FEATURE_EXTRACTOR_H
#define CGAL_PARAMETERIZATION_MESH_FEATURE_EXTRACTOR_H
#include <CGAL/basic.h>
#include <list>
#include <vector>
CGAL_BEGIN_NAMESPACE
/// The class Parameterization_mesh_feature_extractor
/// computes features (genus, borders, ...) of a 3D surface,
/// model of the ParameterizationMesh_3 concept.
template<class ParameterizationMesh_3> //< 3D surface
class Parameterization_mesh_feature_extractor
{
// Public types
public:
/// Export ParameterizationMesh_3 template parameter.
typedef ParameterizationMesh_3 Adaptor;
/// Type representing a border = STL container of vertex handles.
typedef std::list<typename Adaptor::Vertex_handle>
Border;
/// Type representing the list of all borders of the mesh
/// = STL container of Border elements.
typedef std::vector<Border*> Skeleton;
// Private types
private:
// Mesh_Adaptor_3 subtypes:
typedef typename Adaptor::NT NT;
typedef typename Adaptor::Point_2 Point_2;
typedef typename Adaptor::Point_3 Point_3;
typedef typename Adaptor::Vector_2 Vector_2;
typedef typename Adaptor::Vector_3 Vector_3;
typedef typename Adaptor::Facet Facet;
typedef typename Adaptor::Facet_handle Facet_handle;
typedef typename Adaptor::Facet_const_handle
Facet_const_handle;
typedef typename Adaptor::Facet_iterator Facet_iterator;
typedef typename Adaptor::Facet_const_iterator
Facet_const_iterator;
typedef typename Adaptor::Vertex Vertex;
typedef typename Adaptor::Vertex_handle Vertex_handle;
typedef typename Adaptor::Vertex_const_handle
Vertex_const_handle;
typedef typename Adaptor::Vertex_iterator Vertex_iterator;
typedef typename Adaptor::Vertex_const_iterator
Vertex_const_iterator;
typedef typename Adaptor::Border_vertex_iterator
Border_vertex_iterator;
typedef typename Adaptor::Border_vertex_const_iterator
Border_vertex_const_iterator;
typedef typename Adaptor::Vertex_around_facet_circulator
Vertex_around_facet_circulator;
typedef typename Adaptor::Vertex_around_facet_const_circulator
Vertex_around_facet_const_circulator;
typedef typename Adaptor::Vertex_around_vertex_circulator
Vertex_around_vertex_circulator;
typedef typename Adaptor::Vertex_around_vertex_const_circulator
Vertex_around_vertex_const_circulator;
// Public operations
public:
/// Constructor.
///
/// CAUTION: This class caches the result of feature extractions
/// => The caller must NOT modify 'mesh' during the
/// Parameterization_mesh_feature_extractor life cycle.
Parameterization_mesh_feature_extractor(Adaptor& mesh)
// Store reference to adapted mesh
: m_mesh_adaptor(mesh)
{
// m_mesh_adaptor features are not yet computed
m_nb_connex_components = -1;
m_nb_borders = -1;
m_genus = -1;
}
virtual ~Parameterization_mesh_feature_extractor() {}
/// Get number of borders.
int get_nb_borders()
{
// At first call, extract borders and put longest one first
if (m_nb_borders == -1)
extract_borders();
return m_nb_borders;
}
/// Get extracted borders.
/// The longest border is the first one.
const Skeleton& get_borders()
{
// At first call, extract borders and put longest one first
if (m_nb_borders == -1)
extract_borders();
return m_skeleton;
}
/// Get longest border.
const Border& get_longest_border()
{
// At first call, extract borders and put longest one first
if (m_nb_borders == -1)
extract_borders();
return *(m_skeleton[0]);
}
/// Get # of connected components.
int get_nb_connex_components()
{
// At first call, count the number of connex components
if (m_nb_connex_components == -1)
count_connex_components();
return m_nb_connex_components;
}
/// Get the genus.
int get_genus()
{
// At first call, compute the genus
if (m_genus == -1)
compute_genus();
return m_genus;
}
// Private operations
private:
/// Extract borders and put longest one first.
/// Result is in m_nb_borders and m_skeleton.
void extract_borders()
{
assert(m_skeleton.size() == 0);
// Tag all vertices as unprocessed
const int tag_free = 0;
const int tag_done = 1;
for (Vertex_iterator it = m_mesh_adaptor.mesh_vertices_begin();
it != m_mesh_adaptor.mesh_vertices_end();
it++)
{
m_mesh_adaptor.set_vertex_tag(it, tag_free);
}
// find all closed borders
while (add_border(tag_free,tag_done)) {}
// #borders
m_nb_borders = m_skeleton.size();
// put longest border first if required
if (m_nb_borders>1)
{
int index = get_index_longest_border();
Border *tmp = m_skeleton[0];
m_skeleton[0] = m_skeleton[index];
m_skeleton[index] = tmp;
}
}
/// Add closed border.
bool add_border(int tag_free, int tag_done)
{
// Find a border tagged as "free" and tag it as "processed"
// Return an empty list if not found
std::list<Vertex_handle> border = find_free_border(tag_free, tag_done);
if(border.empty())
return false;
// add one border to list
Border *pNewBorder = new Border;
*pNewBorder = border;
m_skeleton.push_back(pNewBorder);
return true;
}
/// Find a border tagged as "free" and tag it as "processed".
/// Return an empty list if not found.
std::list<Vertex_handle> find_free_border(int tag_free, int tag_done)
{
std::list<Vertex_handle> border; // returned list
// get any border vertex with "free" tag
Vertex_handle seed_vertex = NULL;
for (Vertex_iterator pVertex = m_mesh_adaptor.mesh_vertices_begin();
pVertex != m_mesh_adaptor.mesh_vertices_end();
pVertex++)
{
if (m_mesh_adaptor.is_vertex_on_border(pVertex) &&
m_mesh_adaptor.get_vertex_tag(pVertex) == tag_free)
{
seed_vertex = pVertex;
break;
}
}
if (seed_vertex == NULL)
return border; // return empty list
// Get the border containing seed_vertex
border = m_mesh_adaptor.get_border(seed_vertex);
// Tag border vertices as "processed"
typename std::list<Vertex_handle>::iterator it;
for(it = border.begin(); it != border.end(); it++)
m_mesh_adaptor.set_vertex_tag(*it, tag_done);
return border;
}
/// Get index of the longest border.
int get_index_longest_border() const
{
int index = 0;
double max = 0.0;
// #borders
int nb = m_skeleton.size();
for(int i=0;i<nb;i++)
{
const Border *pBorder = m_skeleton[i];
double length = len(*pBorder);
if (length > max)
{
index = i;
max = length;
}
}
return index;
}
/// Compute total len of a border.
double len(const Border& border) const
{
double len = 0.0;
typename std::list<typename Adaptor::Vertex_handle>::const_iterator it;
for(it = border.begin(); it != border.end(); it++)
{
// Get next iterator (looping)
typename std::list<typename Adaptor::Vertex_handle>::const_iterator next = it;
next++;
if (next == border.end())
next = border.begin();
Vector_3 v = m_mesh_adaptor.get_vertex_position(*next)
- m_mesh_adaptor.get_vertex_position(*it);
len += std::sqrt(v*v);
}
return len;
}
/// Count # of connected components.
/// Result is in m_nb_connex_components.
void count_connex_components()
{
m_nb_connex_components = 0;
const int tag_free = 0;
const int tag_done = 1;
for (Vertex_iterator it = m_mesh_adaptor.mesh_vertices_begin();
it != m_mesh_adaptor.mesh_vertices_end();
it++)
{
m_mesh_adaptor.set_vertex_tag(it, tag_free);
}
Vertex_handle seed_vertex = NULL;
while((seed_vertex = get_any_vertex_tag(tag_free)) != NULL)
{
m_nb_connex_components++;
tag_component(seed_vertex, tag_free, tag_done);
}
}
/// Get any vertex with tag.
Vertex_handle get_any_vertex_tag(int tag)
{
for (Vertex_iterator it = m_mesh_adaptor.mesh_vertices_begin();
it != m_mesh_adaptor.mesh_vertices_end();
it++)
{
if (m_mesh_adaptor.get_vertex_tag(it) == tag)
return it;
}
return NULL;
}
/// Tag component.
void tag_component(Vertex_handle pSeedVertex,
const int tag_free,
const int tag_done)
{
assert(m_mesh_adaptor.get_vertex_tag(pSeedVertex) == tag_free);
std::list<Vertex_handle> vertices;
vertices.push_front(pSeedVertex);
while (!vertices.empty())
{
Vertex_handle pVertex = vertices.front();
vertices.pop_front();
// Stop if already done
if (m_mesh_adaptor.get_vertex_tag(pVertex) == tag_done)
continue;
m_mesh_adaptor.set_vertex_tag(pVertex, tag_done);
Vertex_around_vertex_circulator cir, cir_end;
cir = m_mesh_adaptor.vertices_around_vertex_begin(pVertex);
cir_end = cir;
CGAL_For_all(cir,cir_end)
if (m_mesh_adaptor.get_vertex_tag(cir) == tag_free)
vertices.push_front(cir);
}
}
/// Compute the genus. Result is in m_genus.
///
/// Implementation note:
/// G = (2*C + E - B - F - V)/2 with
/// G : genus
/// C : # of connected components
/// E : # of edges
/// B : # of borders
/// F : # of facets
/// V : # of vertices
void compute_genus()
{
int c = get_nb_connex_components();
int b = get_nb_borders();
int v = m_mesh_adaptor.count_mesh_vertices();
int e = m_mesh_adaptor.count_mesh_halfedges()/2;
int f = m_mesh_adaptor.count_mesh_facets();
m_genus = (2*c+e-b-f-v)/2;
}
// Fields
private:
/// Pointer to mesh to parse
Adaptor& m_mesh_adaptor;
/// m_mesh_adaptor features:
int m_nb_borders;
Skeleton m_skeleton; ///< List of borders of m_mesh_adaptor
int m_nb_connex_components;
int m_genus;
}; // Parameterization_mesh_feature_extractor
CGAL_END_NAMESPACE
#endif // CGAL_SURFACE_MESH_PARAMETERIZATION_MESH_FEATURE_EXTRACTOR_H
|