1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
// Copyright (c) 2001 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Polygon/include/CGAL/Polygon_2_simplicity.h $
// $Id: Polygon_2_simplicity.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Geert-Jan Giezeman <geert@cs.uu.nl>
#ifndef CGAL_POLYGON_2_SIMPLICITY_H
#define CGAL_POLYGON_2_SIMPLICITY_H
#include <CGAL/enum.h>
#include <CGAL/polygon_assertions.h>
#include <set>
#include <vector>
#include <algorithm>
/*
A polygon is called simple of no edges intersect each other, except
consecutive edges, which intersect in their common vertex.
The test for simplicity is implemented by means of a sweep line algorithm.
The vertical line is swept from left to right. The edges of the polygon that
are crossed by the sweep line are stored in a tree from bottom to top.
We discern three types of events:
- insertion events. When both edges of a polygon vertex extend to the right
we need to insert both edges in the tree. We need to search with the vertex
to find out between which edges the new edges are to be inserted.
- deletion events. When both edges extend to the left of the vertex we need
to remove both edges from the tree. We have to check that the vertex lies
between the edges above and below the removed edges.
- replacement event. In the other case we need to replace the edge that
extends to the left by the edge that extends to the right. We need to check
that the vertex lies between the edges above and below the current edge.
We represent the tree by a std::set. This is not a perfect fit for the
operations described above. In particular, the fact that we search with a
VERTEX, while the set contains EDGES, is not directly supported. The
insertion of edges is also complicated by the fact that we need to insert
two edges starting at the same vertex. The order in which they are inserted
in the tree does matter, because the edges go in separate directions.
Because of this the set needs a special associated comparison function.
Every edge has a flag 'is_in_tree', which is true for the edges in the tree
but false for the edges when they are inserted. The comparison function
treats the latter type of edge as a vertex. Another flag, is_left_to_right,
tells which of the two vertices to take. The problem of the coinciding
vertices is solved by the convention that the highest edges is always
inserted first. The comparison function uses this fact.
Vertex indices of the polygon play a double role. The number v can be used to
identify vertex v or the edge from vertex v to vertex v+1.
*/
namespace CGAL {
namespace i_polygon {
// namespace CGAL::i_polygon is used for internal functions
typedef std::vector<int>::size_type Index_t;
struct Vertex_index {
Vertex_index() {}
explicit Vertex_index(Index_t i): m_i(i) {}
Index_t as_int() const {return m_i;}
Vertex_index operator++() {++m_i; return *this; }
private:
Index_t m_i;
};
struct Vertex_order {
explicit Vertex_order(Index_t i): m_i(i) {}
Index_t as_int() {return m_i;}
private:
Index_t m_i;
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data ;
template <class VertexData>
class Less_segments {
typedef VertexData Vertex_data;
Vertex_data *m_vertex_data;
bool less_than_in_tree(Vertex_index i, Vertex_index j);
public:
Less_segments(Vertex_data *vertex_data) : m_vertex_data(vertex_data) {}
bool operator()(Vertex_index i, Vertex_index j);
};
// The data in Edge_data is attached to an edge when it is (about to be)
// inserted in the tree.
// Although conceptually this data belongs in the tree, it is stored with
// the vertices in the Vertex_data structure.
template <class LessSegments>
struct Edge_data {
typedef std::set<Vertex_index, LessSegments> Tree;
Edge_data() : is_in_tree(false) {}
Edge_data(typename Tree::iterator it) : tree_it(it), is_in_tree(false) {}
typename Tree::iterator tree_it; // The iterator of the edge in the tree.
// Needed for cross reference. If edge j
// is in the tree: *edges[j].tree_it == j
bool is_in_tree :1; // Must be set -after- inserting the edge
// in the tree. Plays a role in the
// comparison function of the tree.
bool is_left_to_right :1; // Direction of edge from vertex v to v+1
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data_base {
public:
typedef typename PolygonTraits::Point_2 Point_2;
// ForwardIterator points_start;
std::vector<ForwardIterator> iterators;
std::vector<Vertex_order> m_order_of;
std::vector<Vertex_index> m_idx_at_rank;
std::vector<Vertex_index>::size_type m_size;
typename PolygonTraits::Orientation_2 orientation_2;
typename PolygonTraits::Less_xy_2 less_xy_2;
bool is_simple_result;
Vertex_data_base(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgnt);
bool ordered_left_to_right(Vertex_index v1, Vertex_index v2)
{ return m_order_of[v1.as_int()].as_int() <
m_order_of[v2.as_int()].as_int();}
Vertex_index index_at_rank(Vertex_order vo) const
{ return m_idx_at_rank[vo.as_int()];}
Vertex_index next(Vertex_index k) const
{ ++k; return k.as_int() == m_size ? Vertex_index(0) : k;}
Vertex_index prev(Vertex_index k) const
{ return k.as_int() == 0
? Vertex_index(m_size-1)
: Vertex_index(k.as_int()-1);
}
Point_2 point(Vertex_index i)
{ return *iterators[i.as_int()];}
// { return points_start[i.as_int()];}
};
template <class ForwardIterator, class PolygonTraits>
class Vertex_data : public Vertex_data_base<ForwardIterator, PolygonTraits> {
public:
typedef Vertex_data Self; // Indirection needed by Borland compiler
typedef Less_segments<Self> Less_segs;
typedef std::set<Vertex_index, Less_segs> Tree;
typedef Vertex_data_base<ForwardIterator, PolygonTraits> Base_class;
using Base_class::ordered_left_to_right;
using Base_class::next;
using Base_class::prev;
using Base_class::index_at_rank;
using Base_class::point;
std::vector<Edge_data<Less_segs> > edges;
Vertex_data(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgnt);
void init(Tree *tree);
void left_and_right_index(Vertex_index &left, Vertex_index &right,
Vertex_index edge);
Vertex_index left_index(Vertex_index edge)
{ return edges[edge.as_int()].is_left_to_right ? edge : next(edge); }
void sweep(Tree *tree);
bool insertion_event(Tree *tree,
Vertex_index i, Vertex_index j, Vertex_index k);
bool replacement_event(Tree *tree,
Vertex_index cur, Vertex_index to_insert);
bool deletion_event(Tree *tree, Vertex_index i, Vertex_index j);
bool on_right_side(Vertex_index vt, Vertex_index edge, bool above);
};
template <class VertexData>
class Less_vertex_data {
VertexData *m_vertex_data;
public:
Less_vertex_data(VertexData *vd)
: m_vertex_data(vd) {}
bool operator()(Vertex_index i, Vertex_index j);
};
} // end of namespace i_polygon
// ----- implementation of i_polygon functions. -----
namespace i_polygon {
template <class VertexData>
bool Less_segments<VertexData>::
operator()(Vertex_index i, Vertex_index j)
{
if (m_vertex_data->edges[j.as_int()].is_in_tree) {
return less_than_in_tree(i,j);
} else {
return !less_than_in_tree(j,i);
}
}
template <class VertexData>
bool Less_segments<VertexData>::
less_than_in_tree(Vertex_index new_edge, Vertex_index tree_edge)
{
CGAL_polygon_precondition(
m_vertex_data->edges[tree_edge.as_int()].is_in_tree);
CGAL_polygon_precondition(
!m_vertex_data->edges[new_edge.as_int()].is_in_tree);
Vertex_index left, mid, right;
m_vertex_data->left_and_right_index(left, right, tree_edge);
mid = m_vertex_data->left_index(new_edge);
if (mid.as_int() == left.as_int()) {
return true;
}
switch (m_vertex_data->orientation_2( m_vertex_data->point(left),
m_vertex_data->point(mid), m_vertex_data->point(right))) {
case LEFT_TURN: return true;
case RIGHT_TURN: return false;
case COLLINEAR: break;
}
m_vertex_data->is_simple_result = false;
return true;
}
template <class VertexData>
bool Less_vertex_data<VertexData>::
operator()(Vertex_index i, Vertex_index j)
{
return m_vertex_data->less_xy_2(
m_vertex_data->point(i), m_vertex_data->point(j));
}
template <class ForwardIterator, class PolygonTraits>
Vertex_data_base<ForwardIterator, PolygonTraits>::
Vertex_data_base(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgn_traits)
: orientation_2(pgn_traits.orientation_2_object()),
less_xy_2(pgn_traits.less_xy_2_object())
{
m_size = std::distance(begin, end);
is_simple_result = true;
m_idx_at_rank.reserve(m_size);
iterators.reserve(m_size);
m_order_of.insert(m_order_of.end(), m_size, Vertex_order(0));
for (Index_t i = 0; i< m_size; ++i, ++begin) {
m_idx_at_rank.push_back(Vertex_index(i));
iterators.push_back(begin);
}
std::sort(m_idx_at_rank.begin(), m_idx_at_rank.end(),
Less_vertex_data<Vertex_data_base>(this));
for (Index_t j = 0; j < m_size; ++j) {
Vertex_order vo(j);
m_order_of[index_at_rank(vo).as_int()] = vo;
}
}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::
left_and_right_index(Vertex_index &left, Vertex_index &right,
Vertex_index edge)
{
if (edges[edge.as_int()].is_left_to_right) {
left = edge; right = next(edge);
} else {
right = edge; left = next(edge);
}
}
template <class ForwardIterator, class PolygonTraits>
Vertex_data<ForwardIterator, PolygonTraits>::
Vertex_data(ForwardIterator begin, ForwardIterator end,
const PolygonTraits& pgn_traits)
: Base_class(begin, end, pgn_traits) {}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::init(Tree *tree)
{
// The initialization cannot be done in the constructor,
// otherwise we copy singular valued iterators.
edges.insert(edges.end(), this->m_size, Edge_data<Less_segs>(tree->end()));
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
insertion_event(Tree *tree, Vertex_index prev_vt,
Vertex_index mid_vt, Vertex_index next_vt)
{
// check which endpoint is above the other
bool left_turn;
switch(this->orientation_2(point(prev_vt), point(mid_vt), point(next_vt))) {
case LEFT_TURN: left_turn = true; break;
case RIGHT_TURN: left_turn = false; break;
default: return false;
}
Edge_data<Less_segs>
&td_prev = edges[prev_vt.as_int()],
&td_mid = edges[mid_vt.as_int()];
td_prev.is_in_tree = false;
td_prev.is_left_to_right = false;
td_mid.is_in_tree = false;
td_mid.is_left_to_right = true;
// insert the highest chain first
std::pair<typename Tree::iterator, bool> result;
if (left_turn) {
result = tree->insert(prev_vt);
// CGAL_polygon_assertion(result.second)
td_prev.tree_it = result.first;
td_prev.is_in_tree = true;
result = tree->insert(mid_vt);
// CGAL_polygon_assertion(result.second)
td_mid.tree_it = result.first;
td_mid.is_in_tree = true;
} else {
result = tree->insert(mid_vt);
// CGAL_polygon_assertion(result.second)
td_mid.tree_it = result.first;
td_mid.is_in_tree = true;
result = tree->insert(prev_vt);
// CGAL_polygon_assertion(result.second)
td_prev.tree_it = result.first;
td_prev.is_in_tree = true;
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
on_right_side(Vertex_index vt, Vertex_index edge_id, bool above)
{
Orientation turn =
this->orientation_2(point(edge_id), point(vt), point(next(edge_id)));
bool left_turn = edges[edge_id.as_int()].is_left_to_right ? above : !above;
if (left_turn) {
if (turn != RIGHT_TURN) {
return false;
}
} else {
if (turn != LEFT_TURN) {
return false;
}
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
replacement_event(Tree *tree, Vertex_index cur_edge, Vertex_index next_edge)
{
// check if continuation point is on the right side of neighbor segments
typedef typename Tree::iterator It;
Edge_data<Less_segs> &td = edges[cur_edge.as_int()];
CGAL_polygon_assertion(td.is_in_tree);
It cur_seg = td.tree_it;
Vertex_index cur_vt = (td.is_left_to_right) ? next_edge : cur_edge;
if (cur_seg != tree->begin()) {
It seg_below = cur_seg;
--seg_below;
if (!on_right_side(cur_vt, *seg_below, true)) {
return false;
}
}
It seg_above = cur_seg;
++ seg_above;
if (seg_above != tree->end()) {
if (!on_right_side(cur_vt, *seg_above, false)) {
return false;
}
}
// replace the segment
Edge_data<Less_segs> &new_td =
edges[next_edge.as_int()];
new_td.is_left_to_right = td.is_left_to_right;
new_td.is_in_tree = false;
tree->erase(cur_seg);
td.is_in_tree = false;
new_td.tree_it = tree->insert(seg_above, next_edge);
new_td.is_in_tree = true;
return true;
}
template <class ForwardIterator, class PolygonTraits>
bool Vertex_data<ForwardIterator, PolygonTraits>::
deletion_event(Tree *tree, Vertex_index prev_vt, Vertex_index mid_vt)
{
// check if continuation point is on the right side of neighbor segments
typedef typename Tree::iterator It;
Edge_data<Less_segs>
&td_prev = edges[prev_vt.as_int()],
&td_mid = edges[mid_vt.as_int()];
It prev_seg = td_prev.tree_it, mid_seg = td_mid.tree_it;
Vertex_index cur_vt = (td_prev.is_left_to_right) ? mid_vt : prev_vt;
It seg_above = prev_seg;
++seg_above;
if (seg_above == mid_seg) {
++seg_above;
} else {
// mid_seg was not above prev_seg, so prev_seg should be above mid_seg
// We check this to see if the edges are really neighbors in the tree.
It prev_seg_copy = mid_seg;
++prev_seg_copy;
if (prev_seg_copy != prev_seg)
return false;
}
// remove the segments
tree->erase(prev_seg);
td_prev.is_in_tree = false;
tree->erase(mid_seg);
td_mid.is_in_tree = false;
// Check if the vertex that is removed lies between the two tree edges.
if (seg_above != tree->end()) {
if (!on_right_side(cur_vt, *seg_above, false))
return false;
}
if (seg_above != tree->begin()) {
--seg_above; // which turns it in seg_below
if (!on_right_side(cur_vt, *seg_above, true))
return false;
}
return true;
}
template <class ForwardIterator, class PolygonTraits>
void Vertex_data<ForwardIterator, PolygonTraits>::
sweep(Tree *tree)
{
if (this->m_size < 3)
return;
bool succes = true;
for (Index_t i=0; i< this->m_size; ++i) {
Vertex_index cur = index_at_rank(Vertex_order(i));
Vertex_index prev_vt = prev(cur), next_vt = next(cur);
if (ordered_left_to_right(cur, next_vt)) {
if (ordered_left_to_right(cur, prev_vt))
succes = insertion_event(tree, prev_vt, cur, next_vt);
else
succes = replacement_event(tree, prev_vt, cur);
} else {
if (ordered_left_to_right(cur, prev_vt))
succes = replacement_event(tree, cur, prev_vt);
else
succes = deletion_event(tree, prev_vt, cur);
}
if (!succes)
break;
}
if (!succes)
this->is_simple_result = false;
}
}
// ----- End of implementation of i_polygon functions. -----
template <class Iterator, class PolygonTraits>
bool is_simple_polygon(Iterator points_begin, Iterator points_end,
const PolygonTraits& polygon_traits)
{
typedef Iterator ForwardIterator;
typedef i_polygon::Vertex_data<ForwardIterator, PolygonTraits> Vertex_data;
typedef std::set<i_polygon::Vertex_index,
i_polygon::Less_segments<Vertex_data> > Tree;
Vertex_data vertex_data(points_begin, points_end, polygon_traits);
Tree tree(&vertex_data);
vertex_data.init(&tree);
vertex_data.sweep(&tree);
return vertex_data.is_simple_result;
}
} // end of namespace CGAL
#endif
|