1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
// Copyright (c) 1997 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Polygon/include/CGAL/Simplicity_test.h $
// $Id: Simplicity_test.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Wieger Wesselink <wieger@cs.uu.nl>
#ifndef CGAL_SIMPLICITY_TEST_H
#define CGAL_SIMPLICITY_TEST_H
#error "FILE IS OBSOLETE AND SHOULD NOT GET INCLUDED"
// ==== This file is now OBSOLETE =====
// ==== The functionality has been placed in Polygon_2_simplicity.h ====
#include <cstdlib>
#include <algorithm>
#include <set>
#include <vector>
#include "CGAL/polygon_assertions.h"
CGAL_BEGIN_NAMESPACE
//-----------------------------------------------------------------------//
// Simplicity_test_2
//-----------------------------------------------------------------------//
// The simplicity test is implemented as a class.
// The algorithm used is a sweep line algorithm. The sweep line is a
// horizontal line that sweeps from top (big y) to bottom.
// In the sweep status the edges are ordered from left (small) to right
// (big).
template <class ForwardIterator, class Traits>
class Simplicity_test_2 {
protected:
std::vector<ForwardIterator> d_index;
// the attribute d_index is just a mapping between the integers and the
// sequence of points
int d_eventpoint;
// the index of the current event point
// the current sweepline is the horizontal line through this point
const Traits& d_traits;
// the traits class for polygons
public:
typedef typename Traits::Point_2 Point_2;
Simplicity_test_2(const Traits& tr): d_traits(tr) {}
~Simplicity_test_2() {}
const Traits& traits() const { return d_traits; }
const Point_2& Vertex(int i) const { return *d_index[i]; }
int NumberOfVertices() const { return d_index.size(); }
const Point_2& EventPoint() const { return Vertex(d_eventpoint); }
// return the current event point
bool Test(ForwardIterator first, ForwardIterator last);
// tests if the polygon with points in the range [first,last) is simple
bool EdgesDoIntersect(int e1, int e2) const;
// tests if the edges e1 and e2 have an intersection
// N.B. the common vertex of two consecutive edges is not counted
// as an intersection!
bool VertexCompare(int i, int j) const;
// compares the (lexicographical) order of vertex(i) and vertex(j)
class VertexComp {
protected:
const Simplicity_test_2<ForwardIterator, Traits>* s;
public:
VertexComp() {}
VertexComp(
const Simplicity_test_2<ForwardIterator, Traits>* s0): s(s0)
{}
bool operator() (int i, int j) const { return s->VertexCompare(i,j); }
};
bool has_on_left_side(const Point_2& p,
const Point_2& q,
const Point_2& r ) const
// returns true if point p is left of the point w, where w is the leftmost
// intersection point of the horizontal line through p and the line
// segment qr
// N.B. if p lies on the segment qr, the result is indeterminate.
{
Comparison_result qr = d_traits.compare_y(q,r);
if (qr == EQUAL)
return (d_traits.compare_x(p,q) == SMALLER);
else
return ( d_traits.is_negative(d_traits.cross_product_2(p-q,r-q)) ==
(qr == SMALLER) );
}
bool has_y_overlap(const Point_2& p,
const Point_2& q,
const Point_2& r ) const
// returns true if the horizontal line through p intersects the segments qr
{
Comparison_result pq = d_traits.compare_y(p,q);
Comparison_result pr = d_traits.compare_y(p,r);
return (pq != pr) || (pq == EQUAL);
}
bool EdgeCompare(int e1, int e2) const;
// computes the order of two edges e1 and e2 on the current sweepline
bool edge_compare_consecutive(int e1, int e2) const;
// computes the order of two edges e1 and e2 that share a vertex
bool edge_compare_non_consecutive(int e1, int e2) const;
// computes the order of two edges e1 and e2 that do not share a vertex
bool consecutive_edges(int e1, int e2) const;
// true if the edges e1 and e2 are not equal but share a vertex
class EdgeComp {
protected:
const Simplicity_test_2<ForwardIterator, Traits>* s;
public:
EdgeComp() {}
EdgeComp(
const Simplicity_test_2<ForwardIterator, Traits>* s0): s(s0)
{}
bool operator() (int i, int j) const { return s->EdgeCompare(i,j); }
};
class EventQueue {
//-----------------------------------------------------------------//
// g++ 2.7.2 seems to have problems with the following typedef
//
// typedef set<int,VertexComp>::const_iterator const_iterator;
//-----------------------------------------------------------------//
protected:
std::set<int,VertexComp> queue;
public:
EventQueue(Simplicity_test_2<ForwardIterator, Traits>* s)
: queue(VertexComp(s)) {}
bool insert(int i) { return queue.insert(i).second; }
bool empty() const { return queue.empty(); }
int pop() {
int Result = *(queue.begin());
queue.erase(queue.begin());
return Result;
}
#ifdef CGAL_POLYGON_DEBUG
void Show() const {
cout << " event queue: ";
typename std::set<int,VertexComp>::const_iterator i;
for (i = queue.begin(); i != queue.end(); ++i)
cout << *i << " ";
cout << endl;
}
#endif
};
class SweepStatus {
//-----------------------------------------------------------------//
// g++ 2.7.2 seems to have problems with the following typedef
//
// typedef std::set<int,EdgeComp>::const_iterator const_iterator;
//-----------------------------------------------------------------//
protected:
std::set<int,EdgeComp> status;
// if i is an element of status, it means that
std::vector<typename std::set<int,EdgeComp>::iterator> index;
// the iterators of the edges are stored to enable fast deletion
const Simplicity_test_2<ForwardIterator, Traits>* s;
// store a pointer to the Simplicity_test_2 class, to enable
// access to the vertices
public:
SweepStatus(
const Simplicity_test_2<ForwardIterator, Traits>* s0, int n)
: status(EdgeComp(s0)), s(s0)
{
index.insert(index.end(),n,status.end());
}
bool is_valid()
// A necessary condition for the sweep status to be valid is that
//
// 1) every edge in the status intersects the current sweepline
// 2) the edges are ordered along the current sweepline
{
int n = s->NumberOfVertices();
typename std::set<int,EdgeComp>::const_iterator i;
for (i = status.begin(); i != status.end(); ++i) {
int v1 = *i;
int v2 = (v1<n-1) ? v1+1 : v1+1-n;
// edge(v1) = (vertex(v1), vertex(v2))
Comparison_result c1 =
s->traits().compare_y(s->Vertex(v1), s->EventPoint());
Comparison_result c2 =
s->traits().compare_y(s->Vertex(v2), s->EventPoint());
if (c1 == SMALLER && c2 == SMALLER) return false;
if (c1 == LARGER && c2 == LARGER) return false;
}
return true;
}
#ifdef CGAL_POLYGON_DEBUG
void Show() {
cout << " sweep status: ";
typename std::set<int,EdgeComp>::const_iterator i;
for (i = status.begin(); i != status.end(); ++i)
cout << *i << " ";
cout << endl;
}
#endif // CGAL_POLYGON_DEBUG
void insert(int e)
{
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl << " inserting edge " << e << " into sweep status" << endl;
}
#endif // CGAL_POLYGON_DEBUG
index[e] = status.insert(e).first;
}
void erase(int e)
{
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl << " removing edge " << e << " from sweep status" << endl;
}
#endif // CGAL_POLYGON_DEBUG
status.erase(index[e]);
}
int replace(int e1, int e2)
{
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl << " replacing edge " << e1 << " by edge "<< e2
<< " in sweep status" << endl;
}
#endif // CGAL_POLYGON_DEBUG
typename std::set<int,EdgeComp>::iterator cur = index[e1];
status.erase(cur++);
index[e2] = status.insert(cur, e2);
return e2;
}
int left(int e) const
{ typename std::set<int,EdgeComp>::const_iterator i = index[e];
return (i == status.begin()) ? -1 : *(--i);
}
int right(int e) const
{ typename std::set<int,EdgeComp>::const_iterator i = index[e]; ++i;
return (i == status.end()) ? -1 : *i;
}
};
};
template <class ForwardIterator, class Traits>
inline
bool Simplicity_test_2<ForwardIterator, Traits>::VertexCompare(
int i, int j) const
{
return !d_traits.lexicographically_yx_smaller_or_equal(Vertex(i), Vertex(j));
}
template <class ForwardIterator, class Traits>
inline
bool Simplicity_test_2<ForwardIterator, Traits>::EdgeCompare(
int e1, int e2) const
{
// Edges must always be compared in the same order! This is to avoid problems
// with overlapping edges:
//
// + v0
// /
// -----------------+-v2----------------- sweepline
// /
// /
// /
// /
// + v1
//
// In this case the order of the edges e0 = (v0,v1) and e1 = (v1,v2) on the
// sweepline is indeterminate. However, it will only be detected that these
// edges overlap after they have been inserted in the sweep state. To make
// sure that this insertion is done correctly, the choice for the order
// between e0 and e1 needs to be made consistently.
bool Result;
if (consecutive_edges(e1,e2)) {
if (e1 < e2)
Result = edge_compare_consecutive(e1,e2);
else
Result = !edge_compare_consecutive(e2,e1);
}
else {
if (e1 < e2)
Result = edge_compare_non_consecutive(e1,e2);
else
Result = !edge_compare_non_consecutive(e2,e1);
}
return Result;
}
template <class ForwardIterator, class Traits>
bool Simplicity_test_2<ForwardIterator, Traits>::edge_compare_consecutive(
int e1, int e2) const
// This function is used to compare two edges that share a vertex:
//
// + |
// / \ |
// e1 / \ e2 |
// / \ |
// / \ |
// -------------+---------+------------- sweepline |
// / \ |
// + + |
//
// Preconditions: 1) the shared vertex is lexicographically smaller or
// lexicographically bigger than both endpoints of the two
// edges (this condition is always satisfied in the
// sweepline algorithm)
//
// 2) both edges intersect the current sweepline
{
int n = NumberOfVertices();
int f1 = (e1<n-1) ? e1+1 : e1+1-n; // edge(e1) = (vertex(e1), vertex(f1))
int f2 = (e2<n-1) ? e2+1 : e2+1-n; // edge(e2) = (vertex(e2), vertex(f2))
if (f1 == e2)
if (d_traits.compare_y(Vertex(e2), Vertex(f2)) != EQUAL)
return has_on_left_side(Vertex(e1), Vertex(e2), Vertex(f2));
else if (d_traits.compare_x(Vertex(e2), Vertex(f2)) == SMALLER)
// Precondition 1) implies that e1 is on or above line (e2, f2).
// If above the line, then say segment e1 is smaller. If on the line,
// vertex e1 is to the right of e2; by convention make the edge
// with the smaller other endpoint the smaller one.
return (d_traits.compare_y(Vertex(e1), Vertex(f2)) != EQUAL) ||
(d_traits.compare_x(Vertex(e1), Vertex(f2)) == SMALLER);
else // vertex e1 is on or below line (e2, f2); edge e1 is smaller only
// if vertex e1 is on the line and to the left of f2
return (d_traits.compare_y(Vertex(e1), Vertex(f2)) == EQUAL) &&
(d_traits.compare_x(Vertex(e1), Vertex(f2)) == SMALLER);
else // f2 and e1 are the same
if (d_traits.compare_y(Vertex(e2), Vertex(f2)) != EQUAL)
return has_on_left_side(Vertex(f1), Vertex(f2), Vertex(e2));
else if (d_traits.compare_x(Vertex(e2), Vertex(f2)) == LARGER)
return (d_traits.compare_y(Vertex(f1), Vertex(e2)) != EQUAL) ||
(d_traits.compare_x(Vertex(f1), Vertex(e2)) == SMALLER);
else
return (d_traits.compare_y(Vertex(f1), Vertex(e2)) == EQUAL) &&
(d_traits.compare_x(Vertex(f1), Vertex(e2)) == SMALLER);
}
template <class ForwardIterator, class Traits>
bool
Simplicity_test_2<ForwardIterator, Traits>::edge_compare_non_consecutive(
int e1, int e2) const
{
int n = NumberOfVertices();
int f1 = (e1<n-1) ? e1+1 : e1+1-n; // edge(e1) = (vertex(e1), vertex(f1))
int f2 = (e2<n-1) ? e2+1 : e2+1-n; // edge(e2) = (vertex(e2), vertex(f2))
if (has_y_overlap(Vertex(e1), Vertex(e2), Vertex(f2)))
return has_on_left_side(Vertex(e1), Vertex(e2), Vertex(f2));
if (has_y_overlap(Vertex(f1), Vertex(e2), Vertex(f2)))
return has_on_left_side(Vertex(f1), Vertex(e2), Vertex(f2));
// if the vertices from edge e1 do not have y-overlap with edge e2, then
// the vertices from edge e2 must have y_overlap with edge e1
return !has_on_left_side(Vertex(e2), Vertex(e1), Vertex(f1));
}
template <class ForwardIterator, class Traits>
bool
Simplicity_test_2<ForwardIterator, Traits>::Test(ForwardIterator first,
ForwardIterator last)
{
int n = 0;
EventQueue events(this);
while (first != last) {
d_index.push_back(first);
if (!events.insert(n++)) // if two vertices coincide...
return false;
++first;
}
if (d_index.size() < 3)
return true;
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
cout << "--- Simplicity test ----------------------------" << endl;
cout << endl;
cout << "Vertices:" << endl;
typedef typename std::vector<ForwardIterator>::size_type Size_type;
Size_type i;
for (i=0; i<d_index.size(); i++)
cout << i << " " << Vertex(i) << endl;
cout << endl;
events.Show();
}
#endif // CGAL_POLYGON_DEBUG
SweepStatus status(this,n);
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
status.Show();
}
#endif // CGAL_POLYGON_DEBUG
while (!events.empty()) {
#ifdef CGAL_POLYGON_DEBUG
CGAL_polygon_assertion(status.is_valid());
#endif // CGAL_POLYGON_DEBUG
int i = events.pop();
d_eventpoint = i;
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
cout << "--- Event point: " << d_eventpoint << " on sweep line {y = "
<< Vertex(d_eventpoint).y() << "}" << endl;
cout << endl;
status.Show();
}
#endif // CGAL_POLYGON_DEBUG
int prev = (i>0) ? i-1 : i-1+n;
int next = (i<n-1) ? i+1 : i+1-n;
bool prev_less_than_i = VertexCompare(i,prev);
bool next_less_than_i = VertexCompare(i,next);
if (prev_less_than_i != next_less_than_i) {
int e = prev_less_than_i ? status.replace(i,prev) :
status.replace(prev,i);
CGAL_polygon_assertion(status.is_valid());
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
status.Show();
}
#endif // CGAL_POLYGON_DEBUG
// check for intersections of newly inserted edge e with neighbors
int left = status.left(e);
if ((left >= 0) && (EdgesDoIntersect(left,e))) return false;
int right = status.right(e);
if ((right >= 0) && (EdgesDoIntersect(e,right))) return false;
}
else if (prev_less_than_i) {
int e1 = prev;
int e2 = i;
status.insert(e1);
status.insert(e2);
CGAL_polygon_assertion(status.is_valid());
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
status.Show();
}
#endif // CGAL_POLYGON_DEBUG
// check for intersections of newly inserted edges e1 and e2 with
// neighbors
int left, right;
left = status.left(e1);
if ((left >= 0) && (EdgesDoIntersect(left,e1))) return false;
right = status.right(e1);
if ((right >= 0) && (EdgesDoIntersect(e1,right))) return false;
left = status.left(e2);
if ((left >= 0) && (left != e1) && (EdgesDoIntersect(left,e2)))
return false;
right = status.right(e2);
if ((right >= 0) && (right != e1) &&(EdgesDoIntersect(e2,right)))
return false;
}
else {
// check for intersections between edges that become new neighbors
// in the sweep status due to the deletion
int left, right;
if (status.left(prev) == i)
{
left = status.left(i);
right = status.right(prev);
}
else
{
left = status.left(prev);
right = status.right(i);
}
status.erase(prev);
status.erase(i);
if (left >=0 && right >=0 && EdgesDoIntersect(left, right))
return false;
CGAL_polygon_assertion(status.is_valid());
#ifdef CGAL_POLYGON_DEBUG
{
cout << endl;
status.Show();
}
#endif // CGAL_POLYGON_DEBUG
}
}
return true;
}
template <class ForwardIterator, class Traits>
bool Simplicity_test_2<ForwardIterator, Traits>::EdgesDoIntersect(
int e1, int e2) const
{
#ifdef CGAL_POLYGON_DEBUG
{
cout << " intersecting edges " << e1 << " and " << e2 << endl;
}
#endif
int n = NumberOfVertices();
int f1 = (e1<n-1) ? e1+1 : e1+1-n; // edge(e1) = (vertex(e1), vertex(f1))
int f2 = (e2<n-1) ? e2+1 : e2+1-n; // edge(e2) = (vertex(e2), vertex(f2))
bool Result;
if (consecutive_edges(e1,e2))
Result = d_traits.have_equal_direction(Vertex(f1) - Vertex(e1),
Vertex(e2) - Vertex(f2) );
else
Result = d_traits.do_intersect(Vertex(e1),
Vertex(f1),
Vertex(e2),
Vertex(f2));
// N.B. traits() instead of d_traits gives an error with g++ 2.7.2
return Result;
}
template <class ForwardIterator, class Traits>
inline
bool Simplicity_test_2<ForwardIterator, Traits>::consecutive_edges(
int e1, int e2) const
{
int n = NumberOfVertices();
return ( CGAL_NTS abs(e2-e1) == 1 || CGAL_NTS abs(e2-e1) == n-1 );
}
CGAL_END_NAMESPACE
#endif // CGAL_SIMPLICITY_TEST_H
|