1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
// Copyright (c) 2005 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Arrangement_2/include/CGAL/Sweep_line_2.h $
// $Id: Sweep_line_2.h 29531 2006-03-15 19:51:29Z efif $
//
//
// Author(s) : Baruch Zukerman <baruchzu@post.tau.ac.il>
// (based on old version by Tali Zvi)
#ifndef CGAL_SWEEP_LINE_2_H
#define CGAL_SWEEP_LINE_2_H
#include <list>
#include <CGAL/Object.h>
#include <CGAL/Basic_sweep_line_2.h>
#include <CGAL/Arrangement_2/Open_hash.h>
CGAL_BEGIN_NAMESPACE
/*!
Sweep_line_2 is a class that implements the sweep line algorithm
based on the algorithm of Bentley and Ottmann.
It extends the algorithm to support not only segments but general curves
as well and isolated points.
The curves are defined by the traits class that is one of the template
arguments.
The algorithm is also extended to support the following degenerate cases:
- non x-monotone curves
- vertical segments
- multiple (more then two) segments intersecting at one point
- curves beginning and ending on other curves.
- overlapping curves
General flow:
After the initialization stage, the events are handled from left to right.
For each event
First pass - handles special cases in which curves start or end
at the interior of another curve
Handle left curves - iterate over the curves that intersect
at the event point and defined to the left of the
event.
Handle right curves - iterate over the curves that intersect
the event point and defined to the right of the
event point. This is where new intersection points
are calculated.
End
Convensions through out the code:
In order to make the code as readable as possible, some convensions were
made in regards to variable naming:
xp - is the intersection point between two curves
slIter - an iterator to the status line, always points to a curve.
*/
template < class Traits_,
class SweepVisitor,
class CurveWrap = Sweep_line_subcurve<Traits_>,
class SweepEvent = Sweep_line_event<Traits_, CurveWrap>,
typename Allocator = CGAL_ALLOCATOR(int) >
class Sweep_line_2 : public Basic_sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>
{
public:
typedef Traits_ Traits;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::X_monotone_curve_2 X_monotone_curve_2;
typedef Basic_sweep_line_2<Traits,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator> Base;
typedef SweepEvent Event;
typedef typename Base::EventQueueIter EventQueueIter;
typedef typename Event::SubCurveIter EventCurveIter;
typedef typename Base::Base_event Base_event;
typedef typename Base_event::Attribute Attribute;
typedef typename Base::Base_subcurve Base_subcurve;
typedef CurveWrap Subcurve;
typedef std::list<Subcurve*> SubCurveList;
typedef typename SubCurveList::iterator SubCurveListIter;
typedef typename Base::StatusLineIter StatusLineIter;
typedef Curves_pair<Subcurve> CurvesPair;
typedef Curves_pair_hash_functor<Subcurve> CurvesPairHasher;
typedef Curves_pair_equal_functor<Subcurve> CurvesPairEqual;
typedef Open_hash<CurvesPair,
CurvesPairHasher,
CurvesPairEqual> CurvesPairSet;
typedef random_access_input_iterator<std::vector<Object> >
vector_inserter;
/*!
* Constructor.
* \param visitor A pointer to a sweep-line visitor object.
*/
Sweep_line_2 (SweepVisitor* visitor) : Base(visitor),
m_curves_pair_set(0)
{}
/*!
* Constructor.
* \param traits A pointer to a sweep-line traits object.
* \param visitor A pointer to a sweep-line visitor object.
*/
Sweep_line_2(Traits *traits, SweepVisitor* visitor) :
Base(traits, visitor),
m_curves_pair_set(0)
{}
/*! Destrcutor. */
virtual ~Sweep_line_2()
{}
protected:
/*! Init the data structures for the sweep algoeithm */
void _init_structures()
{
Base::_init_structures();
// Resize the hash to be O(2*n), where n is the number of input curves.
m_curves_pair_set.resize (2 * this->m_num_of_subCurves);
}
/*! Compete the sweep (compete data strcures) */
void _complete_sweep()
{
Base::_complete_sweep();
// We can clean the set of curve pairs.
m_curves_pair_set.clear();
for(SubCurveListIter itr = m_overlap_subCurves.begin();
itr != m_overlap_subCurves.end();
++itr)
{
this->m_subCurveAlloc.destroy(*itr);
this->m_subCurveAlloc.deallocate(*itr, 1);
}
m_overlap_subCurves.clear();
}
/*! Handle the subcurve to the left of the current event point. */
void _handle_left_curves()
{
CGAL_PRINT("Handling left curve" << std::endl;);
this->m_is_event_on_above = false;
if(! this->m_currentEvent->has_left_curves())
{
/* this block takes care of
//
// /
// /
// --------
// \
// \
*/
CGAL_PRINT(" - handling special case " << std::endl;);
const std::pair<StatusLineIter, bool>& pair_res =
this->m_statusLine.find_lower (this->m_currentEvent->get_point(),
this->m_statusLineCurveLess);
this->m_status_line_insert_hint = pair_res.first;
this->m_is_event_on_above = pair_res.second;
StatusLineIter temp = this->m_status_line_insert_hint;
if(this->m_is_event_on_above)
{
// The current event point starts at the interior of a curve at the
// y-structure (can also indicates overlap).
if(! this->m_currentEvent->has_right_curves())
{
// event of isolated point
if (this->m_currentEvent->is_query())
{
this->m_is_event_on_above = true;
this->m_visitor->before_handle_event(this->m_currentEvent);
return;
}
CGAL_assertion(this->m_currentEvent->is_action());
this->m_currentEvent->set_weak_intersection();
}
Subcurve *sc = static_cast<Subcurve*>(*(this->
m_status_line_insert_hint));
const X_monotone_curve_2& last_curve = sc->get_last_curve();
this->m_currentEvent->set_weak_intersection();
this->m_visitor->update_event(this->m_currentEvent, sc);
this->m_currentEvent->add_curve_to_left(sc);
bool is_overlap = _add_curve_to_right(this->m_currentEvent, sc);
this->m_traits->split_2_object() (last_curve,
this->m_currentEvent->get_point(),
sub_cv1, sub_cv2);
++(this->m_status_line_insert_hint);
if(is_overlap)
{
this->m_visitor->before_handle_event (this->m_currentEvent);
this->m_visitor->add_subcurve (sub_cv1, sc);
this->m_statusLine.erase (temp);
return;
}
}
else // no left curves for sure
{
this->m_visitor->before_handle_event(this->m_currentEvent);
return;
}
}
CGAL_PRINT("left curves before sorting: "<<"\n";);
CGAL_SL_DEBUG(if (this->m_currentEvent->left_curves_begin() !=
this->m_currentEvent->left_curves_end() )
{
this->m_currentEvent->Print();
});
_fix_overlap_subcurves();
this->_sort_left_curves();
this->m_visitor->before_handle_event(this->m_currentEvent);
CGAL_PRINT("left curves after sorting: "<<"\n";);
CGAL_SL_DEBUG(if (this->m_currentEvent->left_curves_begin() !=
this->m_currentEvent->left_curves_end() )
{
this->m_currentEvent->Print();
});
// Check if the curve should be removed for good.
bool remove_for_good = false;
EventCurveIter left_iter = this->m_currentEvent->left_curves_begin();
while(left_iter != this->m_currentEvent->left_curves_end())
{
Subcurve *leftCurve = *left_iter;
if((Event*)leftCurve->get_right_event() == this->m_currentEvent)
{
remove_for_good = true;
this->m_visitor->add_subcurve(leftCurve->get_last_curve(), leftCurve);
}
else
{
const X_monotone_curve_2 &lastCurve = leftCurve->get_last_curve();
this->m_traits->split_2_object()(lastCurve,
this->m_currentEvent->get_point(),
sub_cv1,
sub_cv2);
this->m_visitor->add_subcurve(sub_cv1, leftCurve);
leftCurve->set_last_curve(sub_cv2);
}
++left_iter;
//remove curve from the status line (also checks intersection
//between the neighbouring curves,only if the curve is removed for good)
_remove_curve_from_status_line(leftCurve, remove_for_good);
}
CGAL_PRINT( "Handling left curve END" << std::endl;);
return;
}
/*! Handle the subcurve to the left of the current event point. */
void _handle_right_curves()
{
CGAL_PRINT("Handling right curves (" ;)
CGAL_PRINT(this->m_currentEvent->get_point() << ")\n";)
if(! this->m_currentEvent->has_right_curves())
return;
// Loop over the curves to the right of the status line and handle them:
// - If we are at the beginning of the curve, we insert it to the status
// line, then we look if it intersects any of its neighbors.
// - If we are at an intersection point between two curves, we add them
// to the status line and attempt to intersect them with their neighbors
// - We also check to see if the two intersect again to the right of the
// point.
EventCurveIter currentOne = this->m_currentEvent->right_curves_begin();
EventCurveIter rightCurveEnd = this->m_currentEvent->right_curves_end();
CGAL_PRINT_INSERT(*currentOne);
StatusLineIter slIter =
this->m_statusLine.insert_before (this->m_status_line_insert_hint,
*currentOne);
((Subcurve*)(*currentOne))->set_hint(slIter);
CGAL_SL_DEBUG(PrintStatusLine(););
if ( slIter != this->m_statusLine.begin() )
{
// get the previous curve in the y-str
StatusLineIter prev = slIter; --prev;
_intersect(static_cast<Subcurve*>(*prev),
static_cast<Subcurve*>(*slIter));
}
EventCurveIter prevOne = currentOne;
++currentOne;
while ( currentOne != rightCurveEnd )
{
CGAL_PRINT_INSERT(*currentOne);
slIter = this->m_statusLine.insert_before
(this->m_status_line_insert_hint, *currentOne);
((Subcurve*)(*currentOne))->set_hint(slIter);
CGAL_SL_DEBUG(PrintStatusLine(););
//BZBZ
if(reinterpret_cast<Event*>((*currentOne)->get_left_event()) ==
this->m_currentEvent ||
reinterpret_cast<Event*>((*prevOne)->get_left_event()) ==
this->m_currentEvent )
_intersect(*prevOne, *currentOne);
prevOne = currentOne;
++currentOne;
}
CGAL_SL_DEBUG(PrintStatusLine(););
//the next Subcurve at the Y-str
++slIter;
if ( slIter != this->m_statusLine.end() )
_intersect( static_cast<Subcurve*>(*prevOne),
static_cast<Subcurve*>(*slIter));
}
/*!
* Add a subcurve to the right of an event point.
* \param event The event point.
* \param curve The subcurve to add.
* \return (true) if an overlap occured; (false) otherwise.
*/
bool _add_curve_to_right (Event* event, Subcurve* curve,
bool overlap_exist = false)
{
for(EventCurveIter iter = event->right_curves_begin();
iter != event->right_curves_end();
++iter)
{
if ((curve == *iter) || (*iter)->is_inner_node(curve))
{
return false;
}
if((curve)->is_inner_node(*iter))
{
*iter = curve;
return false;
}
if((curve)->has_common_leaf(*iter))
{
std::list<Base_subcurve*> list_of_sc;
curve->get_distinct_nodes(*iter, std::back_inserter(list_of_sc));
for(typename std::list<Base_subcurve*>::iterator sc_iter = list_of_sc.begin();
sc_iter != list_of_sc.end();
++sc_iter)
{
_add_curve_to_right(event, static_cast<Subcurve*>(*sc_iter));
}
return true;
}
}
std::pair<bool, EventCurveIter> pair_res =
event->add_curve_to_right(curve, this->m_traits);
if (! pair_res.first)
// No overlap occurs:
return (false);
_handle_overlap(event, curve, pair_res.second, overlap_exist);
// Inidicate that an overlap has occured:
return (true);
}
/*! Fix overlap Subcurves before handling current event */
void _fix_overlap_subcurves();
/* Handle overlap at right insertion to event */
void _handle_overlap(Event* event, Subcurve* curve, EventCurveIter iter, bool overlap_exist);
/*! Compute intersections between the two given curves. */
void _intersect(Subcurve *c1, Subcurve *c2, bool after_remove = false);
/*! Remove a curve from the status line. */
void _remove_curve_from_status_line (Subcurve *leftCurve,
bool remove_for_good);
void _create_intersection_point(const Point_2& xp,
unsigned int multiplicity,
Subcurve* &c1,
Subcurve* &c2,
bool is_overlap = false);
void _fix_finished_overlap_subcurve(Subcurve* sc);
protected:
/*! contains all of the new sub-curve creaed by overlap */
SubCurveList m_overlap_subCurves;
/*! a lookup table of pairs of Subcurves that have been intersected */
CurvesPairSet m_curves_pair_set;
/*! Auxiliary vector to hold the intersection objects */
std::vector<Object> m_x_objects;
/*! Auxiliary varibales (for splitting curves). */
X_monotone_curve_2 sub_cv1;
X_monotone_curve_2 sub_cv2;
template<class SweepCurve>
Point_2 get_left_end(SweepCurve* sc) const
{
return (this->m_traits->construct_min_vertex_2_object()
(sc->get_last_curve()));
}
};
/*!
* When a curve is removed from the status line for good, its top and
* bottom neighbors become neighbors. This method finds these cases and
* looks for the intersection point, if one exists.
*
* @param leftCurve a pointer to the curve that is about to be deleted
* @return an iterator to the position where the curve will be removed from.
*/
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
inline void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::
_remove_curve_from_status_line(Subcurve *leftCurve, bool remove_for_good)
{
CGAL_PRINT("remove_curve_from_status_line\n";);
CGAL_SL_DEBUG(PrintStatusLine(););
CGAL_SL_DEBUG(leftCurve->Print(););
StatusLineIter sliter = leftCurve->get_hint();
this->m_status_line_insert_hint = sliter;
++(this->m_status_line_insert_hint);
if(! remove_for_good)
{
this->m_statusLine.erase(sliter);
CGAL_PRINT("remove_curve_from_status_line Done\n";)
return;
}
CGAL_assertion(sliter != this->m_statusLine.end());
StatusLineIter lastOne = this->m_statusLine.end();
--lastOne;
if (sliter != this->m_statusLine.begin() && sliter != lastOne)
{
StatusLineIter prev = sliter; --prev;
StatusLineIter next = sliter; ++next;
// intersect *next with *prev
_intersect(static_cast<Subcurve*>(*prev),
static_cast<Subcurve*>(*next),
true);
}
this->m_statusLine.erase(sliter);
CGAL_PRINT("remove_curve_from_status_line Done\n";)
}
/*!
* Finds intersection between two curves.
* If the two curves intersect, create a new event (or use the event that
* already exits in the intersection point) and insert the curves to the
* event.
* @param curve1 a pointer to the first curve
* @param curve2 a pointer to the second curve
* @param after_remove a boolean indicates if the intersection inovoked
* by removing some curve from the Y-str
* @return true if the two curves overlap.
*/
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::
_intersect(Subcurve *c1, Subcurve *c2, bool after_remove)
{
CGAL_PRINT("Looking for intersection between:\n\t";)
CGAL_SL_DEBUG(c1->Print();)
CGAL_PRINT("\t";)
CGAL_SL_DEBUG(c2->Print();)
CGAL_PRINT("\n";)
CGAL_assertion(c1 != c2);
// look up for (c1,c2) in the table and insert if doesnt exist
CurvesPair curves_pair(c1,c2);
if(! (m_curves_pair_set.insert(curves_pair)).second )
return; //the curves have already been checked for intersection
float load_factor = static_cast<float>(m_curves_pair_set.size()) /
m_curves_pair_set.bucket_count();
// after lot of benchemarks, keeping load_factor<=6 is optimal
if(load_factor > 6.0f)
m_curves_pair_set.resize(m_curves_pair_set.size() * 6);
vector_inserter vi (m_x_objects) ;
vector_inserter vi_end (m_x_objects);
vi_end = this->m_traits->intersect_2_object()(c1->get_last_curve(),
c2->get_last_curve(),
vi);
if(vi == vi_end)
{
CGAL_PRINT("no intersection...\n";);
return; // no intersection at all
}
// BZBZ
// the two subCurves may start at the same point,in that case we will
// ignore the first intersection point (if we got to that stage, they cannot
// be overlap )
if((SweepEvent*)c1->get_left_event() == this->m_currentEvent &&
(SweepEvent*)c2->get_left_event() == this->m_currentEvent)
{
++vi;
}
//BZBZ
// if the two subcurves have a common right-event,
// we can ignore last intersection (re-computing the intersection point
// can crash the sweep later with inexact number types
if (reinterpret_cast<SweepEvent*>(c1->get_right_event()) ==
reinterpret_cast<SweepEvent*>(c2->get_right_event()))
{
--vi_end;
}
const std::pair<Point_2,unsigned int> *xp_point;
if (after_remove)
{
for( ; vi != vi_end ; ++vi)
{
xp_point = object_cast<std::pair<Point_2,unsigned int> > (&(*vi));
CGAL_assertion (xp_point != NULL);
if (this->m_traits->compare_xy_2_object()
(this->m_currentEvent->get_point(),
xp_point->first) == SMALLER)
{
break;
}
}
}
for( ; vi != vi_end ; ++vi)
{
const X_monotone_curve_2 *icv;
Point_2 xp;
unsigned int multiplicity = 0;
xp_point = object_cast<std::pair<Point_2,unsigned int> > (&(*vi));
if (xp_point != NULL)
{
xp = xp_point->first;
multiplicity = xp_point->second;
CGAL_PRINT("found an intersection point: " << xp << "\n";);
_create_intersection_point(xp, multiplicity, c1, c2);
}
else
{
icv = object_cast<X_monotone_curve_2> (&(*vi));
CGAL_assertion (icv != NULL);
Point_2 left_xp = this->m_traits->construct_min_vertex_2_object()(*icv);
xp = this->m_traits->construct_max_vertex_2_object()(*icv);
sub_cv1 = *icv;
_create_intersection_point(xp, 0 , c1 , c2);
_create_intersection_point(left_xp, 0 , c1 ,c2, true);
}
}
}
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::
_create_intersection_point(const Point_2& xp,
unsigned int multiplicity,
Subcurve* &c1,
Subcurve* &c2,
bool is_overlap)
{
// insert the event and check if an event at this point already exists.
const std::pair<Event*, bool>& pair_res =
push_event(xp, Base_event::DEFAULT);
Event *e = pair_res.first;
if(pair_res.second)
{
// a new event is creatd , which inidicates
// that the intersection point cannot be one
//of the end-points of two curves
e->set_intersection();
this->m_visitor ->update_event(e, c1, c2, true);
e->push_back_curve_to_left(c1);
e->push_back_curve_to_left(c2);
// Act according to the multiplicity:
if (multiplicity == 0)
{
// The multiplicity of the intersection point is unkown or undefined:
_add_curve_to_right(e, c1, is_overlap);
_add_curve_to_right(e, c2, is_overlap);
if(! is_overlap)
{
if(e->is_right_curve_bigger(c1, c2))
std::swap(c1, c2);
}
}
else
{
if((multiplicity % 2) == 1)
{
// The mutiplicity of the intersection point is odd: Swap their
// order to the right of this point.
std::swap(c1,c2);
e->add_pair_curves_to_right(c1,c2);
}
else
{
// The mutiplicity of the intersection point is even, so they
// maintain their order to the right of this point.
CGAL_assertion((multiplicity % 2) == 0);
e->add_pair_curves_to_right(c1,c2);
}
}
}
else // the event already exists
{
CGAL_PRINT("event already exists,updating.. (" << xp <<")\n";);
if( e == this->m_currentEvent) //BZBZ
{
//it can happen when c1 starts at the interior of c2 (or the opposite)
return;
}
e->add_curve_to_left(c1);
e->add_curve_to_left(c2);
if ( !c1->is_end_point(e) && !c2->is_end_point(e))
{
_add_curve_to_right(e, c1, is_overlap);
_add_curve_to_right(e, c2, is_overlap);
e->set_intersection();
this->m_visitor ->update_event(e, c1, c2);
}
else
{
if(!c1->is_end_point(e) && c2->is_end_point(e))
{
_add_curve_to_right(e, c1, is_overlap);
e->set_weak_intersection();
this->m_visitor ->update_event(e, c1);
}
else
if(c1->is_end_point(e) && !c2->is_end_point(e))
{
_add_curve_to_right(e, c2, is_overlap);
e->set_weak_intersection();
this->m_visitor ->update_event(e, c2);
}
}
if(! is_overlap)
{
if(e->is_right_curve_bigger(c1, c2))
std::swap(c1, c2);
}
CGAL_SL_DEBUG(e->Print();)
}
}
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::
_fix_overlap_subcurves()
{
CGAL_assertion(this->m_currentEvent->has_left_curves());
EventCurveIter leftCurveIter = this->m_currentEvent->left_curves_begin();
//special treatment for Subcuves that store overlaps
while ( leftCurveIter != this->m_currentEvent->left_curves_end() )
{
Subcurve *leftCurve = *leftCurveIter;
if((Event*)leftCurve->get_right_event() == this->m_currentEvent)
{
if(leftCurve->get_orig_subcurve1() != NULL)
{
Subcurve* orig_sc_1 = (Subcurve*)leftCurve->get_orig_subcurve1();
Subcurve* orig_sc_2 = (Subcurve*)leftCurve->get_orig_subcurve2();
_fix_finished_overlap_subcurve(orig_sc_1);
_fix_finished_overlap_subcurve(orig_sc_2);
}
}
++leftCurveIter;
}
}
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::
_handle_overlap(Event* event,
Subcurve* curve,
EventCurveIter iter,
bool overlap_exist)
{
// An overlap occurs:
// TODO: take care of polylines in which overlap can happen anywhere
CGAL_PRINT("Overlap detected at right insertion...\n";);
//EventCurveIter iter = pair_res.second;
X_monotone_curve_2 overlap_cv;
if(overlap_exist)
overlap_cv = sub_cv1;
else
{
std::vector<Object> obj_vec;
vector_inserter vit(obj_vec);
this->m_traits->intersect_2_object()(curve->get_last_curve(),
(*iter)->get_last_curve(),
vit);
//BZBZ 06/07/05
if(obj_vec.empty())
return;
overlap_cv = object_cast<X_monotone_curve_2> (obj_vec.front());
}
// Get the left end of overlap_cv
Point_2 begin_overlap =
this->m_traits->construct_min_vertex_2_object()(overlap_cv);
// Get the right end of overlap_cv
Point_2 end_overlap =
this->m_traits->construct_max_vertex_2_object()(overlap_cv);
const std::pair<Event*, bool>& pair_res =
push_event(end_overlap, Base_event::OVERLAP);
//find the event assiciated with end_overlap point (right end point)
//EventQueueIter q_iter = this->m_queue->find( end_overlap );
//TODO: in polylines, the event point of the right-end of the overlap
// is not have to be exist yet,
//CGAL_assertion(q_iter != this->m_queue->end());
//Event* right_end = (*q_iter).second;
Event* right_end = pair_res.first;
if (this->m_traits->compare_xy_2_object() (event->get_point(),
begin_overlap) != EQUAL)
{
this->m_traits->split_2_object() (overlap_cv,
event->get_point(),
sub_cv1, sub_cv2);
overlap_cv = sub_cv2;
}
// Alocate a new Subcure for the overlap
Subcurve *overlap_sc = this->m_subCurveAlloc.allocate(1);
this->m_subCurveAlloc.construct(overlap_sc, this->m_masterSubcurve);
overlap_sc->init(overlap_cv, event, right_end );
m_overlap_subCurves.push_back(overlap_sc);
CGAL_PRINT(curve<<" + " <<*iter<<" => " <<overlap_sc<<"\n");
// Set the two events' attribute to intersection
event -> set_overlap();
//right_end -> set_overlap();
// Remove curve, *iter from the left curves of end_overlap event
right_end->remove_curve_from_left(curve);
right_end->remove_curve_from_left(*iter);
// Add overlap_sc to the left curves
right_end->add_curve_to_left(overlap_sc);
overlap_sc -> set_orig_subcurve1(*iter);
overlap_sc -> set_orig_subcurve2(curve);
//BZBZ 07.09.05
if((Event*)curve->get_right_event() != right_end)
_add_curve_to_right(right_end, curve);
if((Event*)(*iter)->get_right_event() != right_end)
_add_curve_to_right(right_end, (*iter));
// Replace current sub-curve (*iter) with the new sub-curve
(*iter) = overlap_sc;
}
template <class Traits_,
class SweepVisitor,
class CurveWrap,
class SweepEvent,
typename Allocator>
void Sweep_line_2<Traits_,
SweepVisitor,
CurveWrap,
SweepEvent,
Allocator>::_fix_finished_overlap_subcurve(Subcurve* sc)
{
CGAL_assertion(sc != NULL);
if((Event*)sc->get_right_event() != this->m_currentEvent)
{
this->m_traits->split_2_object() (sc->get_last_curve(),
this->m_currentEvent->get_point(),
sub_cv1, sub_cv2);
sc->set_last_curve(sub_cv2);
this->m_currentEvent->set_weak_intersection();
this->m_visitor ->update_event(this->m_currentEvent,(Subcurve*)sc);
return;
}
if(!sc->get_orig_subcurve1())
return;
Subcurve* orig_sc_1 = (Subcurve*)sc->get_orig_subcurve1();
Subcurve* orig_sc_2 = (Subcurve*)sc->get_orig_subcurve2();
_fix_finished_overlap_subcurve(orig_sc_1);
_fix_finished_overlap_subcurve(orig_sc_2);
}
CGAL_END_NAMESPACE
#endif
|