1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
// Copyright (c) 2003 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Intersections_3/include/CGAL/Triangle_3_Segment_3_do_intersect.h $
// $Id: Triangle_3_Segment_3_do_intersect.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Philippe Guigue
#ifndef CGAL_TRIANGLE_3_SEGMENT_3_DO_INTERSECT_H
#define CGAL_TRIANGLE_3_SEGMENT_3_DO_INTERSECT_H
CGAL_BEGIN_NAMESPACE
namespace CGALi {
template <class K>
bool do_intersect_coplanar(const typename CGAL_WRAP(K)::Triangle_3 &t,
const typename CGAL_WRAP(K)::Segment_3 &s,
const K & k )
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
const Point_3 & p = point_on(s,0);
const Point_3 & q = point_on(s,1);
const Point_3 & A = vertex_on(t,0);
const Point_3 & B = vertex_on(t,1);
const Point_3 & C = vertex_on(t,2);
const Point_3 * a = &A;
const Point_3 * b = &B;
const Point_3 * c = &C;
// Determine the orientation of the triangle in the common plane
if (coplanar_orientation(A,B,C) != POSITIVE)
{
// The triangle is not counterclockwise oriented
// swap two vertices.
b = &C;
c = &B;
}
// Test whether the segment's supporting line intersects the
// triangle in the common plane
const Orientation pqa = coplanar_orientation(p,q,*a);
const Orientation pqb = coplanar_orientation(p,q,*b);
const Orientation pqc = coplanar_orientation(p,q,*c);
switch ( pqa ) {
case POSITIVE:
switch ( pqb ) {
case POSITIVE:
if (pqc == POSITIVE) return false;
// the triangle lies in the positive halfspace
// defined by the segment's supporting line.
// c is isolated on the negative side
return coplanar_orientation(*b,*c,q) != NEGATIVE
&& coplanar_orientation(*c,*a,p) != NEGATIVE ;
case NEGATIVE:
if (pqc == POSITIVE) // b is isolated on the negative side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*b,*c,p) != NEGATIVE ;
// a is isolated on the positive side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*c,*a,p) != NEGATIVE ;
case COLLINEAR:
if (pqc == POSITIVE) // b is isolated on the negative side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*b,*c,p) != NEGATIVE ;
// a is isolated on the positive side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*c,*a,p) != NEGATIVE ;
default:// should not happen.
CGAL_kernel_assertion(false);
return false;
}
case NEGATIVE:
switch ( pqb ) {
case POSITIVE:
if (pqc == POSITIVE) // a is isolated on the negative side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*c,*a,q) != NEGATIVE ;
// b is isolated on the positive side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*b,*c,q) != NEGATIVE ;
case NEGATIVE:
if (pqc == NEGATIVE) return false;
// the triangle lies in the negative halfspace
// defined by the segment's supporting line.
// c is isolated on the positive side
return coplanar_orientation(*b,*c,p) != NEGATIVE
&& coplanar_orientation(*c,*a,q) != NEGATIVE ;
case COLLINEAR:
if (pqc == NEGATIVE) // b is isolated on the positive side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*b,*c,q) != NEGATIVE ;
// a is isolated on the negative side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*c,*a,q) != NEGATIVE ;
default:// should not happen.
CGAL_kernel_assertion(false);
return false;
}
case COLLINEAR:
switch ( pqb ) {
case POSITIVE:
if (pqc == POSITIVE) // a is isolated on the negative side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*c,*a,q) != NEGATIVE ;
// b is isolated on the positive side
return coplanar_orientation(*a,*b,p) != NEGATIVE
&& coplanar_orientation(*b,*c,q) != NEGATIVE ;
case NEGATIVE:
if (pqc == NEGATIVE) // a is isolated on the positive side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*c,*a,p) != NEGATIVE ;
// b is isolated on the negative side
return coplanar_orientation(*a,*b,q) != NEGATIVE
&& coplanar_orientation(*b,*c,p) != NEGATIVE ;
case COLLINEAR:
if (pqc == POSITIVE) // c is isolated on the positive side
return coplanar_orientation(*b,*c,p) != NEGATIVE
&& coplanar_orientation(*c,*a,q) != NEGATIVE ;
// c is isolated on the negative side
return coplanar_orientation(*b,*c,q) != NEGATIVE
&& coplanar_orientation(*c,*a,p) != NEGATIVE ;
// case pqc == COLLINEAR is impossible since the triangle is
// assumed to be non flat
default:// should not happen.
CGAL_kernel_assertion(false);
return false;
}
default:// should not happen.
CGAL_kernel_assertion(false);
return false;
}
}
template <class K>
bool do_intersect(const typename CGAL_WRAP(K)::Triangle_3 &t,
const typename CGAL_WRAP(K)::Segment_3 &s,
const K & k)
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Orientation_3 orientation =
k.orientation_3_object();
const Point_3 & a = vertex_on(t,0);
const Point_3 & b = vertex_on(t,1);
const Point_3 & c = vertex_on(t,2);
const Point_3 & p = point_on(s,0);
const Point_3 & q = point_on(s,1);
const Orientation abcp = orientation(a,b,c,p);
const Orientation abcq = orientation(a,b,c,q);
switch ( abcp ) {
case POSITIVE:
switch ( abcq ) {
case POSITIVE:
// the segment lies in the positive open halfspaces defined by the
// triangle's supporting plane
return false;
case NEGATIVE:
// p sees the triangle in counterclockwise order
return orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE;
case COPLANAR:
// q belongs to the triangle's supporting plane
// p sees the triangle in counterclockwise order
return orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE;
default: // should not happen.
CGAL_kernel_assertion(false);
return false;
}
case NEGATIVE:
switch ( abcq ) {
case POSITIVE:
// q sees the triangle in counterclockwise order
return orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE;
case NEGATIVE:
// the segment lies in the negative open halfspaces defined by the
// triangle's supporting plane
return false;
case COPLANAR:
// q belongs to the triangle's supporting plane
// p sees the triangle in clockwise order
return orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE;
default: // should not happen.
CGAL_kernel_assertion(false);
return false;
}
case COPLANAR: // p belongs to the triangle's supporting plane
switch ( abcq ) {
case POSITIVE:
// q sees the triangle in counterclockwise order
return orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE;
case NEGATIVE:
// q sees the triangle in clockwise order
return orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE;
case COPLANAR:
// the segment is coplanar with the triangle's supporting plane
// we test whether the segment intersects the triangle in the common
// supporting plane
return do_intersect_coplanar(t,s,k);
default: // should not happen.
CGAL_kernel_assertion(false);
return false;
}
default: // should not happen.
CGAL_kernel_assertion(false);
return false;
}
}
template <class K>
inline
bool do_intersect(const typename CGAL_WRAP(K)::Segment_3 &s,
const typename CGAL_WRAP(K)::Triangle_3 &t,
const K & k)
{
return do_intersect(t, s, k);
}
} // namespace CGALi
template <class K>
inline bool do_intersect(const Segment_3<K> &s,
const Triangle_3<K> &t)
{
return typename K::Do_intersect_3()(t,s);
}
template <class K>
inline bool do_intersect(const Triangle_3<K> &t,
const Segment_3<K> &s)
{
return typename K::Do_intersect_3()(t,s);
}
/*
template <class K>
inline bool do_intersect(const Segment_3<K> &s,
const Triangle_3<K> &t,
const K & k)
{
return CGALi::do_intersect(t,s,k);
}
*/
CGAL_END_NAMESPACE
#endif //CGAL_TRIANGLE_3_SEGMENT_3_DO_INTERSECT_H
|