1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Copyright (c) 2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Partition_2/include/CGAL/partition_is_valid_2.h $
// $Id: partition_is_valid_2.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>
#ifndef CGAL_PARTITION_IS_VALID_2_H
#define CGAL_PARTITION_IS_VALID_2_H
#include <list>
#include <utility>
#include <iterator>
#include <CGAL/partition_assertions.h>
#include <CGAL/Partitioned_polygon_2.h>
#include <CGAL/Partition_vertex_map.h>
#include <CGAL/ch_selected_extreme_points_2.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/Partition_is_valid_traits_2.h>
#include <CGAL/Polygon_2.h>
// NOTE: this could possibly be checked using a planar map overlay, but
// then the traits class would have to require lots of other things
// and you have to do many overlaps, not just one so it is
// less efficient.
namespace CGAL {
template <class Circulator1, class Circulator2>
bool
polygons_w_steiner_are_equal(Circulator1 orig_first, Circulator2 new_first)
{
typedef typename Circulator1::value_type Point_2;
Circulator1 orig_circ;
Circulator2 new_circ;
// find the first (original) vertex in the list of vertices
for (new_circ = new_first;
*new_circ != *orig_first && ++new_circ != new_first;)
{}
if (new_circ == new_first)
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "first vertex " << *orig_first << " not found "
<< std::endl;
#endif // CGAL_PARTITION_CHECK_DEBUG
return false;
}
// first becomes the first one you found; now look for the others
new_first = new_circ;
orig_circ = orig_first;
Point_2 prev_pt = *new_first;
// keep going until you find all the original vertices, or come back
// to the first new vertex
do
{
if (*new_circ == *orig_circ) // points correspond, so move both
{
prev_pt = *new_circ;
new_circ++;
orig_circ++;
}
else // points don't correspond
{
typedef typename Kernel_traits<Point_2>::Kernel K;
typename K::Collinear_2 collinear;
typename K::Collinear_are_ordered_along_line_2 collinear_are_ordered_along_line;
if (!collinear(prev_pt, *new_circ, *orig_circ))
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << *new_circ << " is not collinear with " << prev_pt
<< " and " << *orig_circ << std::endl;
#endif
return false;
}
if (!collinear_are_ordered_along_line(prev_pt, *new_circ, *orig_circ))
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << *new_circ << " doesn't belong betweene " << prev_pt
<< " and " << *orig_circ << std::endl;
#endif
return false;
}
prev_pt = *new_circ;
new_circ++;
}
}
while (orig_circ != orig_first && new_circ != new_first);
// if they didn't both come back to the beginning, then something is wrong
return (orig_circ == orig_first && new_circ == new_first);
}
template <class Circulator1, class Circulator2>
bool
polygons_are_equal(Circulator1 orig_first, Circulator2 new_first)
{
Circulator1 orig_circ = orig_first;
Circulator2 new_circ;
// find the first (original) vertex in the list of vertices
for (new_circ = new_first;
*new_circ != *orig_first && ++new_circ != new_first;)
{}
new_first = new_circ;
// now look through both lists until you find a vertex that is not
// the same or you reach the end of the vertices
do
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << *new_first << " is in the right place " << std::endl;
#endif
orig_circ++; new_circ++;
}
while (*orig_circ == *new_circ &&
orig_circ != orig_first && new_circ != new_first);
return (orig_circ == orig_first && new_circ == new_first);
}
template<class InputIterator, class ForwardIterator, class Traits>
bool
partition_is_valid_2 (InputIterator point_first, InputIterator point_last,
ForwardIterator poly_first, ForwardIterator poly_last,
const Traits& traits)
{
if (poly_first == poly_last) return (point_first == point_last);
typedef typename Traits::Polygon_2::Vertex_iterator
Poly_vtx_iterator;
typedef typename Traits::Point_2 Point_2;
typedef Partition_vertex_map<Traits> P_Vertex_map;
typedef typename Traits::Is_valid Is_valid;
Poly_vtx_iterator vtx_begin, vtx_end;
Is_valid is_valid = traits.is_valid_object(traits);
std::list<Point_2> orig_poly;
for (;point_first != point_last; point_first++)
orig_poly.push_back(*point_first);
CGAL_partition_precondition(orientation_2(orig_poly.begin(),orig_poly.end(),
traits) == COUNTERCLOCKWISE);
P_Vertex_map output_vertex_set(poly_first, poly_last);
if (output_vertex_set.polygons_overlap()) return false;
int poly_num = 0;
for (; poly_first != poly_last; poly_first++, poly_num++)
{
vtx_begin = (*poly_first).vertices_begin();
vtx_end = (*poly_first).vertices_end();
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "Polygon " << poly_num << " is " << std::endl;
std::cout << *poly_first << std::endl;
#endif
CGAL_partition_assertion (
orientation_2(vtx_begin, vtx_end, traits) == COUNTERCLOCKWISE);
if (!is_valid(vtx_begin, vtx_end))
{
#ifdef CGAL_PARTITION_CHECK_DEBUG
std::cout << "It does NOT have the tested property." << std::endl;
#endif
return false;
}
}
std::list<Point_2> union_polygon;
output_vertex_set.union_vertices(std::back_inserter(union_polygon));
#ifdef CGAL_PARTITION_CHECK_DEBUG
typename std::list<Point_2>::iterator poly_iterator;
std::cout << "union polygon is " << std::endl;
for (poly_iterator = union_polygon.begin();
poly_iterator != union_polygon.end(); poly_iterator++)
{
std::cout << *poly_iterator << " ";
}
std::cout << std::endl;
#endif // CGAL_PARTITION_CHECK_DEBUG
typedef typename std::list<Point_2>::iterator I;
typedef Circulator_from_iterator<I> Circulator;
Circulator orig_poly_circ(orig_poly.begin(), orig_poly.end());
Circulator union_poly_circ(union_polygon.begin(), union_polygon.end());
if (orig_poly.size() == union_polygon.size())
return polygons_are_equal(orig_poly_circ, union_poly_circ);
else
return polygons_w_steiner_are_equal(orig_poly_circ, union_poly_circ);
}
template<class InputIterator, class FowardIterator>
bool
partition_is_valid_2 (InputIterator point_first, InputIterator point_last,
FowardIterator poly_first, FowardIterator poly_last)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point_2;
typedef typename Kernel_traits<Point_2>::Kernel K;
typedef Partition_traits_2<K> Traits;
typedef Is_vacuously_valid<Traits> Is_valid;
Partition_is_valid_traits_2<Traits, Is_valid> validity_traits;
return partition_is_valid_2(point_first, point_last,
poly_first, poly_last, validity_traits);
}
template<class InputIterator, class ForwardIterator, class Traits>
bool
convex_partition_is_valid_2(InputIterator point_first,
InputIterator point_last,
ForwardIterator poly_first,
ForwardIterator poly_last,
const Traits& )
{
typedef typename Traits::Is_convex_2 Is_convex_2;
Partition_is_valid_traits_2<Traits, Is_convex_2> validity_traits;
return partition_is_valid_2(point_first, point_last, poly_first, poly_last,
validity_traits);
}
template<class InputIterator, class ForwardIterator>
bool
convex_partition_is_valid_2(InputIterator point_first,
InputIterator point_last,
ForwardIterator poly_first,
ForwardIterator poly_last)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point_2;
typedef typename Kernel_traits<Point_2>::Kernel K;
return convex_partition_is_valid_2(point_first, point_last,
poly_first, poly_last,
Partition_traits_2<K>());
}
template<class InputIterator, class ForwardIterator, class Traits>
bool
y_monotone_partition_is_valid_2(InputIterator point_first,
InputIterator point_last,
ForwardIterator poly_first,
ForwardIterator poly_last,
const Traits& )
{
typedef typename Traits::Is_y_monotone_2 Is_y_monotone_2;
Partition_is_valid_traits_2<Traits, Is_y_monotone_2> validity_traits;
return partition_is_valid_2(point_first, point_last, poly_first, poly_last,
validity_traits);
}
template<class InputIterator, class ForwardIterator>
bool
y_monotone_partition_is_valid_2(InputIterator point_first,
InputIterator point_last,
ForwardIterator poly_first,
ForwardIterator poly_last)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point_2;
typedef typename Kernel_traits<Point_2>::Kernel K;
return y_monotone_partition_is_valid_2(point_first, point_last,
poly_first, poly_last,
Partition_traits_2<K>());
}
}
#endif // CGAL_PARTITION_IS_VALID_2_H
|