1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
// Copyright (c) 1998-2003 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Matrix_search/include/CGAL/sorted_matrix_search.h $
// $Id: sorted_matrix_search.h 28567 2006-02-16 14:30:13Z lsaboret $
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
#if ! (CGAL_SORTED_MATRIX_SEARCH_H)
#define CGAL_SORTED_MATRIX_SEARCH_H 1
#include <CGAL/basic.h>
#include <CGAL/Optimisation/assertions.h>
#include <CGAL/functional.h>
#include <algorithm>
#include <vector>
#include <CGAL/Sorted_matrix_search_traits_adaptor.h>
CGAL_BEGIN_NAMESPACE
template < class Matrix >
class Padded_matrix {
public:
typedef typename Matrix::Value Value;
Padded_matrix( const Matrix& m) : matrix( &m) {}
Value
operator()( int x, int y) const
// padded access operator
{
return matrix->operator()(
x < matrix->number_of_columns() ?
x : matrix->number_of_columns() - 1,
y < matrix->number_of_rows() ?
y : matrix->number_of_rows() - 1);
}
bool
is_sorted()
// tests iff this matrix is sorted, i.e. in each column/row
// the elements appear in increasing order
// time complexity is proportional to the number of elements
{
for ( int i = 0; i < matrix->number_of_columns(); ++i)
for ( int j = 0; j < matrix->number_of_rows(); ++j) {
if ( i > 0 && (*matrix)( i - 1, j) > (*matrix)( i, j))
return false;
if ( j > 0 && (*matrix)( i, j - 1) > (*matrix)( i, j))
return false;
}
return true;
}
private:
const Matrix* matrix;
};
template < class PaddedMatrix >
class Matrix_cell {
public:
typedef typename PaddedMatrix::Value Value;
Matrix_cell(PaddedMatrix m, int xpos = 0, int ypos = 0)
: base_matrix(m), x(xpos), y(ypos)
{}
Value
min() const
{ return base_matrix(x, y); }
Value
max(int offset) const
// offset denotes the cell's dimension
{ return base_matrix(x + offset - 1, y + offset - 1); }
int x_min() const { return x; }
int y_min() const { return y; }
PaddedMatrix matrix() const { return base_matrix; }
void
output(std::ostream& o, int dim) const
{
for (int i = 0; i < dim; ++i) {
for (int j = 0; j < dim; ++j)
o << base_matrix(x + i, y + j) << " ";
o << std::endl;
}
}
bool
check_for(Value v, int dim) const {
for (int i = 0; i < dim; ++i)
for (int j = 0; j < dim; ++j) {
if (CGAL_NTS abs(base_matrix(x + i, y + j) - v) < Value(1E-10))
std::cerr << "***" << base_matrix(x + i, y + j) << std::endl;
if (base_matrix(x + i, y + j) == v)
return true;
}
return false;
}
private:
PaddedMatrix base_matrix;
int x;
int y;
};
template < class Cell >
struct Cell_min
: public std::unary_function< Cell, typename Cell::Value >
{
typedef Arity_tag< 1 > Arity;
typename Cell::Value
operator()( const Cell& c) const
{ return c.min(); }
};
template < class Cell >
struct Cell_max
: public std::unary_function< Cell, typename Cell::Value > {
typedef Arity_tag< 1 > Arity;
Cell_max( int offset) : ofs( offset) {}
typename Cell::Value
operator()( const Cell& c) const
{ return c.max( ofs); }
private:
int ofs;
};
template < class InputIterator, class Traits >
typename Traits::Value
sorted_matrix_search(InputIterator f, InputIterator l, Traits t)
{
using std::max;
using std::nth_element;
using std::iter_swap;
using std::find_if;
using std::remove_if;
using std::logical_or;
using std::equal_to;
typedef typename Traits::Matrix Matrix;
typedef typename Traits::Value Value;
typedef Padded_matrix< Matrix > PaddedMatrix;
typedef Matrix_cell< PaddedMatrix > Cell;
typedef std::vector< Cell > Cell_container;
typedef typename Cell_container::iterator Cell_iterator;
typedef typename Cell_container::reverse_iterator Cell_reverse_iterator;
Cell_container active_cells;
// set of input matrices must not be empty:
CGAL_optimisation_precondition( f != l);
// for each input matrix insert a cell into active_cells:
InputIterator i( f);
int maxdim( -1);
while ( i != l) {
CGAL_optimisation_expensive_precondition(
PaddedMatrix( *i).is_sorted());
active_cells.push_back( Cell( PaddedMatrix( *i)));
maxdim = max( max( (*i).number_of_columns(),
(*i).number_of_rows()),
maxdim);
++i;
}
CGAL_optimisation_precondition( maxdim > 0);
// current cell dimension:
int ccd( 1);
// set ccd to a power of two >= maxdim:
while ( ccd < maxdim)
ccd <<= 1;
// now start the search:
for (;;) {
if ( ccd > 1) {
// ------------------------------------------------------
// divide cells:
ccd >>= 1;
// reserve is required here!
// otherwise one of the insert operations might cause
// a reallocation invalidating j
// (should typically result in a segfault)
active_cells.reserve( 4 * active_cells.size());
for ( Cell_reverse_iterator j( active_cells.rbegin());
j != active_cells.rend();
++j) {
// upper-left quarter:
// Cell( (*j).matrix(),
// (*j).x_min(),
// (*j).y_min()) remains in active_cells,
// since it is implicitly shortened by decreasing ccd
// lower-left quarter:
active_cells.push_back(
Cell( (*j).matrix(),
(*j).x_min(),
(*j).y_min() + ccd));
// upper-right quarter:
active_cells.push_back(
Cell( (*j).matrix(),
(*j).x_min() + ccd,
(*j).y_min()));
// lower-right quarter:
active_cells.push_back(
Cell( (*j).matrix(),
(*j).x_min() + ccd,
(*j).y_min() + ccd));
} // for all active cells
} // if ( ccd > 1)
else if ( active_cells.size() <= 1) //!!! maybe handle <= 3
break;
// there has to be at least one cell left:
CGAL_optimisation_assertion( active_cells.size() > 0);
// ------------------------------------------------------
// compute medians of smallest and largest elements:
int lower_median_rank = (active_cells.size() - 1) >> 1;
int upper_median_rank = (active_cells.size() >> 1);
// compute upper median of cell's minima:
nth_element(active_cells.begin(),
active_cells.begin() + upper_median_rank,
active_cells.end(),
compose(
t.compare_strictly(),
Cell_min< Cell >(),
Cell_min< Cell >()));
Cell_iterator lower_median_cell =
active_cells.begin() + upper_median_rank;
Value lower_median = lower_median_cell->min();
// compute lower median of cell's maxima:
nth_element(active_cells.begin(),
active_cells.begin() + lower_median_rank,
active_cells.end(),
compose(
t.compare_strictly(),
Cell_max< Cell >(ccd),
Cell_max< Cell >(ccd)));
Cell_iterator upper_median_cell =
active_cells.begin() + lower_median_rank;
Value upper_median = upper_median_cell->max(ccd);
// restore lower_median_cell, if it has been displaced
// by the second search
if (lower_median_cell->min() != lower_median)
lower_median_cell =
find_if(active_cells.begin(),
active_cells.end(),
compose(
bind_1(equal_to< Value >(), lower_median),
Cell_min< Cell >()));
CGAL_optimisation_assertion(lower_median_cell != active_cells.end());
// ------------------------------------------------------
// test feasibility of medians and remove cells accordingly:
Cell_iterator new_end;
if ( t.is_feasible( lower_median))
if ( t.is_feasible( upper_median)) {
// lower_median and upper_median are feasible
// discard cells with all entries greater than
// min( lower_median, upper_median) except for
// one cell defining this minimum
Cell_iterator min_median_cell;
Value min_median;
if ( lower_median < upper_median) {
min_median_cell = lower_median_cell;
min_median = lower_median;
}
else {
min_median_cell = upper_median_cell;
min_median = upper_median;
}
// save min_median_cell:
iter_swap( min_median_cell, active_cells.begin());
new_end =
remove_if(
active_cells.begin() + 1,
active_cells.end(),
compose(
bind_1( t.compare_non_strictly(), min_median),
Cell_min< Cell >()));
} // lower_median and upper_median are feasible
else { // lower_median is feasible, but upper_median is not
// discard cells with all entries greater than
// lower_median or all entries smaller than
// upper_median except for the lower median cell
// save lower_median_cell:
iter_swap( lower_median_cell, active_cells.begin());
new_end =
remove_if(
active_cells.begin() + 1,
active_cells.end(),
compose_shared(
logical_or< bool >(),
compose(
bind_1(
t.compare_non_strictly(),
lower_median),
Cell_min< Cell >()),
compose(
bind_2(
t.compare_non_strictly(),
upper_median),
Cell_max< Cell >( ccd))));
} // lower_median is feasible, but upper_median is not
else
if ( t.is_feasible( upper_median)) {
// upper_median is feasible, but lower_median is not
// discard cells with all entries greater than
// upper_median or all entries smaller than
// lower_median except for the upper median cell
// save upper_median_cell:
iter_swap( upper_median_cell, active_cells.begin());
new_end =
remove_if(
active_cells.begin() + 1,
active_cells.end(),
compose_shared(
logical_or< bool >(),
compose(
bind_1(
t.compare_non_strictly(),
upper_median),
Cell_min< Cell >()),
compose(
bind_2(
t.compare_non_strictly(),
lower_median),
Cell_max< Cell >( ccd))));
} // upper_median is feasible, but lower_median is not
else { // both upper_median and lower_median are infeasible
// discard cells with all entries smaller than
// max( lower_median, upper_median)
new_end =
remove_if(
active_cells.begin(),
active_cells.end(),
compose(
bind_2(
t.compare_non_strictly(),
max( lower_median, upper_median)),
Cell_max< Cell >( ccd)));
} // both upper_median and lower_median are infeasible
active_cells.erase( new_end, active_cells.end());
} // for (;;)
// there must be only one cell left:
CGAL_optimisation_assertion( active_cells.size() == 1);
CGAL_optimisation_assertion( ccd == 1);
return (*active_cells.begin()).min();
}
CGAL_END_NAMESPACE
#endif // ! (CGAL_SORTED_MATRIX_SEARCH_H)
// ----------------------------------------------------------------------------
// ** EOF
// ----------------------------------------------------------------------------
|