1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: BigFloat.h
* Synopsis:
* An implementation of BigFloat numbers with error bounds.
*
* Written by
* Chee Yap <yap@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/BigFloat.h $
* $Id: BigFloat.h 29485 2006-03-14 11:52:49Z efif $
***************************************************************************/
#ifndef _CORE_BIGFLOAT_H_
#define _CORE_BIGFLOAT_H_
#include <CORE/BigFloatRep.h>
CORE_BEGIN_NAMESPACE
class Expr;
/// \class BigFloat BigFloat.h
/// \brief BigFloat is a class of Float-Point number with error bounds.
typedef RCImpl<BigFloatRep> RCBigFloat;
class BigFloat : public RCBigFloat {
public:
/// \name Constructors and Destructor
//@{
/// default constructor
BigFloat() : RCBigFloat(new BigFloatRep()) {}
/// constructor for <tt>int</tt>
BigFloat(int i) : RCBigFloat(new BigFloatRep(i)) {}
/// constructor for <tt>long</tt>
BigFloat(long l) : RCBigFloat(new BigFloatRep(l)) {}
/// constructor for <tt>double</tt>
BigFloat(double d) : RCBigFloat(new BigFloatRep(d)) {}
/// constructor for <tt>const char* </tt>(default base = 10)
BigFloat(const char* s) : RCBigFloat(new BigFloatRep(s)) {}
/// constructor for <tt>std::string</tt>(default base = 10)
BigFloat(const std::string& s) : RCBigFloat(new BigFloatRep(s)) {}
/// constructor for <tt>int</tt> and <tt>long</tt>
// This is a hack because in Sturm, we need to approximate any
// coefficient type NT to a BigFloat, and it would complain if we
// do not have this method explicitly:
BigFloat(int& i, const extLong& r, const extLong& a)
: RCBigFloat(new BigFloatRep(i)) {}
BigFloat(long& x, const extLong& r, const extLong& a)
: RCBigFloat(new BigFloatRep(x)) {}
/// constructor from <tt>BigInt</tt>, error and exponent values
BigFloat(const BigInt& I, unsigned long er, long ex)
: RCBigFloat(new BigFloatRep(I, er, ex)) {}
/// constructor from <tt>BigInt</tt>, exponent values
BigFloat(const BigInt& I, long ex)
: RCBigFloat(new BigFloatRep(I, ex)) {}
BigFloat(const BigInt& I)
: RCBigFloat(new BigFloatRep(I)) {}
/// constructor for <tt>BigRat</tt>
BigFloat(const BigRat& R, const extLong& r = defRelPrec,
const extLong& a = defAbsPrec)
: RCBigFloat(new BigFloatRep()) {
rep->approx(R, r, a);
}
// REMARK: it is somewhat against our principles to have BigFloat
// know about Expr, but BigFloat has a special role in our system!
// ===============================
/// constructor for <tt>Expr</tt>
explicit BigFloat(const Expr& E, const extLong& r = defRelPrec,
const extLong& a = defAbsPrec);
//Dummy
explicit BigFloat(const BigFloat& E, const extLong& ,
const extLong&): RCBigFloat(E) {
rep->incRef();
}
/// constructor for <tt>BigFloatRep</tt>
explicit BigFloat(BigFloatRep* r) : RCBigFloat(new BigFloatRep()) {
rep = r;
}
//@}
/// \name Copy-Assignment-Destructor
//@{
/// copy constructor
BigFloat(const BigFloat& rhs) : RCBigFloat(rhs) {
rep->incRef();
}
/// assignment operator
BigFloat& operator=(const BigFloat& rhs) {
if (this != &rhs) {
rep->decRef();
rep = rhs.rep;
rep->incRef();
}
return *this;
}
/// destructor
~BigFloat() {
rep->decRef();
}
//@}
/// \name Compound Assignment Operators
//@{
/// operator+=
BigFloat& operator+= (const BigFloat& x) {
BigFloat z;
z.rep->add(*rep, *x.rep);
*this = z;
return *this;
}
/// operator-=
BigFloat& operator-= (const BigFloat& x) {
BigFloat z;
z.rep->sub(*rep, *x.rep);
*this = z;
return *this;
}
/// operator*=
BigFloat& operator*= (const BigFloat& x) {
BigFloat z;
z.rep->mul(*rep, *x.rep);
*this = z;
return *this;
}
/// operator/=
BigFloat& operator/= (const BigFloat& x) {
BigFloat z;
z.rep->div(*rep, *x.rep, defBFdivRelPrec);
*this = z;
return *this;
}
//@}
/// \name Unary Minus Operator
//@{
/// unary plus
BigFloat operator+() const {
return BigFloat(*this);
}
/// unary minus
BigFloat operator-() const {
return BigFloat(-rep->m, rep->err, rep->exp);
}
//@}
/// \name String Conversion Functions
//@{
/// set value from <tt>const char*</tt> (base = 10)
void fromString(const char* s, const extLong& p=defBigFloatInputDigits) {
rep->fromString(s, p);
}
/// convert to <tt>std::string</tt> (base = 10)
std::string toString(long prec=defBigFloatOutputDigits, bool sci=false) const {
return rep->toString(prec, sci);
}
std::string str() const {
return toString();
}
//@}
/// \name Conversion Functions
//@{
/// return int value
int intValue() const {
return static_cast<int>(rep->toLong());
}
/// return long value
long longValue() const {
long l = rep->toLong();
if ((l == LONG_MAX) || (l == LONG_MIN))
return l; // return the overflown value.
if ((sign() < 0) && (cmp(BigFloat(l)) != 0)) {
// a negative value not exactly rounded.
l--; // rounded to floor.
}
return l;
}
/// return float value
float floatValue() const {
return static_cast<float>(rep->toDouble());
}
/// return double value
double doubleValue() const {
return rep->toDouble();
}
/// return BigInt value
BigInt BigIntValue() const {
return rep->toBigInt();
}
/// return BigRat value
BigRat BigRatValue() const {
return rep->BigRatize();
}
//@}
/// \name Helper Functions
//@{
/// Has Exact Division
static bool hasExactDivision() {
return false;
}
//CONSTANTS
/// return BigFloat(0)
static const BigFloat& getZero();
/// return BigFloat(1)
static const BigFloat& getOne();
/// sign function
/** \note This is only the sign of the mantissa, it can be taken to be
the sign of the BigFloat only if !(isZeroIn()). */
int sign() const {
assert((err() == 0 && m() == 0) || !(isZeroIn()));
return rep->signM();
}
/// check whether contains zero
/** \return true if contains zero, otherwise false */
bool isZeroIn() const {
return rep->isZeroIn();
}
/// absolute value function
BigFloat abs() const {
return (sign()>0) ? +(*this) : -(*this);
}
/// comparison function
int cmp(const BigFloat& x) const {
return rep->compareMExp(*x.rep);
}
/// get mantissa
const BigInt& m() const {
return rep->m;
}
/// get error bits
unsigned long err() const {
return rep->err;
}
/// get exponent
long exp() const {
return rep->exp;
}
/// check whether err == 0
/** \return true if err == 0, otherwise false */
bool isExact() const {
return rep->err == 0;
}
/// set err to 0
/** \return an exact BigFloat, see Tutorial for why this is useful! */
BigFloat& makeExact() {
makeCopy();
rep->err =0;
return *this;
}
/// set err to 0, but first add err to the mantissa (m)
/** \return the ceiling exact BigFloat, variant of makeExact */
BigFloat& makeCeilExact() {
makeCopy();
rep->m += rep->err;
rep->err =0;
return *this;
}
/// set err to 0, but subtract err from the mantissa (m)
/** \return the floor exact BigFloat, variant of makeExact */
BigFloat& makeFloorExact() {
makeCopy();
rep->m -= rep->err;
rep->err =0;
return *this;
}
/// set err to 1
/** \return an inexact BigFloat, see Tutorial for why this is useful! */
BigFloat& makeInexact() {
makeCopy();
rep->err =1;
return *this;
}
/// return lower bound of Most Significant Bit
extLong lMSB() const {
return rep->lMSB();
}
/// return upper bound of Most Significant Bit
extLong uMSB() const {
return rep->uMSB();
}
/// return Most Significant Bit
extLong MSB() const {
return rep->MSB();
}
/// floor of Lg(err)
extLong flrLgErr() const {
return rep->flrLgErr();
}
/// ceil of Lg(err)
extLong clLgErr() const {
return rep->clLgErr();
}
/// division with relative precsion <tt>r</tt>
BigFloat div(const BigFloat& x, const extLong& r) const {
BigFloat y;
y.rep->div(*rep, *x.rep, r);
return y;
}
/// exact division by 2
BigFloat div2() const {
BigFloat y;
y.rep->div2(*rep);
return y;
}
/// squareroot
BigFloat sqrt(const extLong& a) const {
BigFloat x;
x.rep->sqrt(*rep, a);
return x;
}
/// squareroot with initial approximation <tt>init</tt>
BigFloat sqrt(const extLong& a, const BigFloat& init) const {
BigFloat x;
x.rep->sqrt(*rep, a, init);
return x;
}
//@}
/// \name Utility Functions
//@{
/// approximate BigInt number
void approx(const BigInt& I, const extLong& r, const extLong& a) {
makeCopy();
rep->trunc(I, r, a);
}
/// approximate BigFloat number
void approx(const BigFloat& B, const extLong& r, const extLong& a) {
makeCopy();
rep->approx(*B.rep, r, a);
}
/// approximate BigRat number
void approx(const BigRat& R, const extLong& r, const extLong& a) {
makeCopy();
rep->approx(R, r, a);
}
/// dump internal data
void dump() const {
rep->dump();
}
//@}
/// returns a BigFloat of value \f$ 2^e \f$
static BigFloat exp2(int e) {
return BigFloat(BigFloatRep::exp2(e));
}
}; // class BigFloat
//@} // For compatibility with BigInt
/// \name File I/O Functions
//@{
/// read from file
void readFromFile(BigFloat& bf, std::istream& in, long maxLength = 0);
/// write to file
void writeToFile(const BigFloat& bf, std::ostream& in,
int base=10, int charsPerLine=80);
/// IO stream operator<<
inline std::ostream& operator<< (std::ostream& o, const BigFloat& x) {
x.getRep().operator<<(o);
return o;
}
/// IO stream operator>>
inline std::istream& operator>> (std::istream& i, BigFloat& x) {
x.makeCopy();
x.getRep().operator>>(i);
return i;
}
//@}
/// operator+
inline BigFloat operator+ (const BigFloat& x, const BigFloat& y) {
BigFloat z;
z.getRep().add(x.getRep(), y.getRep());
return z;
}
/// operator-
inline BigFloat operator- (const BigFloat& x, const BigFloat& y) {
BigFloat z;
z.getRep().sub(x.getRep(), y.getRep());
return z;
}
/// operator*
inline BigFloat operator* (const BigFloat& x, const BigFloat& y) {
BigFloat z;
z.getRep().mul(x.getRep(), y.getRep());
return z;
}
/// operator/
inline BigFloat operator/ (const BigFloat& x, const BigFloat& y) {
BigFloat z;
z.getRep().div(x.getRep(),y.getRep(),defBFdivRelPrec);
return z;
}
/// operator==
inline bool operator== (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) == 0;
}
/// operator!=
inline bool operator!= (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) != 0;
}
/// operator>=
inline bool operator>= (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) >= 0;
}
/// operator>
inline bool operator> (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) > 0;
}
/// operator<=
inline bool operator<= (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) <= 0;
}
/// operator<
inline bool operator< (const BigFloat& x, const BigFloat& y) {
return x.cmp(y) < 0;
}
/// sign
inline int sign(const BigFloat& x) {
return x.sign();
}
/// div2
inline BigFloat div2(const BigFloat& x){
return x.div2();
}
/// abs
inline BigFloat abs(const BigFloat& x) {
return x.abs();
}
/// cmp
inline int cmp(const BigFloat& x, const BigFloat& y) {
return x.cmp(y);
}
/// pow
BigFloat pow(const BigFloat&, unsigned long);
/// power
inline BigFloat power(const BigFloat& x, unsigned long p) {
return pow(x, p);
}
/// root(x,k,prec,xx) returns the k-th root of x to precision prec.
/// The argument x is an initial approximation.
BigFloat root(const BigFloat&, unsigned long k, const extLong&, const BigFloat&);
inline BigFloat root(const BigFloat& x, unsigned long k) {
return root(x, k, defBFsqrtAbsPrec, x);
}
/// sqrt to defAbsPrec:
inline BigFloat sqrt(const BigFloat& x) {
return x.sqrt(defBFsqrtAbsPrec);
}
/// convert an BigFloat Interval to a BigFloat with error bits
inline BigFloat centerize(const BigFloat& a, const BigFloat& b) {
BigFloat z;
z.getRep().centerize(a.getRep(), b.getRep());
return z;
}
/// minStar(m,n) returns the min-star of m and n
inline long minStar(long m, long n) {
if (m*n <= 0) return 0;
if (m>0)
return core_min(m, n);
else
return core_max(m, n);
}
/// \name Functions for Compatibility with BigInt (needed by Poly, Curves)
//@{
/// isDivisible(a,b) = "is a divisible by b"
/** Assuming that a and b are in coanonized forms.
Defined to be true if mantissa(b) | mantissa(a) &&
exp(b) = min*(exp(b), exp(a)).
* This concepts assume a and b are exact BigFloats.
*/
inline bool isDivisible(const BigFloat& a, const BigFloat& b) {
// assert: a and b are exact BigFloats.
if (sign(a.m()) == 0) return true;
if (sign(b.m()) == 0) return false;
unsigned long bin_a = getBinExpo(a.m());
unsigned long bin_b = getBinExpo(b.m());
BigInt m_a = a.m() >> bin_a;
BigInt m_b = b.m() >> bin_b;
long e_a = bin_a + BigFloatRep::bits(a.exp());
long e_b = bin_b + BigFloatRep::bits(b.exp());
long dx = minStar(e_a, e_b);
return isDivisible(m_a, m_b) && (dx == e_b);
}
inline bool isDivisible(double x, double y) {
//Are these exact?
return isDivisible(BigFloat(x), BigFloat(y));
}
/// div_exact(x,y) returns the BigFloat quotient of x divided by y
/** This is defined only if isDivisible(x,y).
*/
// Chee (8/1/2004) The definition of div_exact(x,y)
// ensure that Polynomials<NT> works with NT=BigFloat and NT=double.
//Bug: We should first normalize the mantissas of the Bigfloats and
//then do the BigInt division. For e.g. 1 can be written as 2^{14}*2{-14}.
//Now if we divide 2 by one using this representation of one and without
// normalizing it then we get zero.
inline BigFloat div_exact(const BigFloat& x, const BigFloat& y) {
BigInt z;
assert (isDivisible(x,y));
unsigned long bin_x = getBinExpo(x.m());
unsigned long bin_y = getBinExpo(y.m());
BigInt m_x = x.m() >> bin_x;
BigInt m_y = y.m() >> bin_y;
long e_x = bin_x + BigFloatRep::bits(x.exp());
long e_y = bin_y + BigFloatRep::bits(y.exp());
//Since y divides x, e_y = minstar(e_x, e_y)
z = div_exact(m_x, m_y);
// mpz_divexact(z.get_mp(), x.m().get_mp(), y.m().get_mp()); THIS WAS THE BUG
// assert: x.exp() - y.exp() does not under- or over-flow.
return BigFloat(z, e_x - e_y);
}
inline BigFloat div_exact(double x, double y) {
return div_exact(BigFloat(x), BigFloat(y));
}
// Remark: there is another notion of "exact division" for BigFloats,
// and that is to make the division return an "exact" BigFloat
// i.e., err()=0.
/// gcd(a,b) = BigFloat(gcd(a.mantissa,b.matissa), min(a.exp(), b.exp()) )
inline BigFloat gcd(const BigFloat& a, const BigFloat& b) {
if (sign(a.m()) == 0) return core_abs(b);
if (sign(b.m()) == 0) return core_abs(a);
BigInt r;
long dx;
unsigned long bin_a = getBinExpo(a.m());
unsigned long bin_b = getBinExpo(b.m());
/* THE FOLLOWING IS ALTERNATIVE CODE, for GCD using base B=2^{14}:
*std::cout << "bin_a=" << bin_a << ",bin_b=" << bin_b << std::endl;
std::cout << "a.exp()=" << a.exp() << ",b.exp()=" << b.exp() << std::endl;
long chunk_a = BigFloatRep::chunkFloor(bin_a);
long chunk_b = BigFloatRep::chunkFloor(bin_b);
BigInt m_a = BigFloatRep::chunkShift(a.m(), chunk_a);
BigInt m_b = BigFloatRep::chunkShift(b.m(), chunk_b);
r = gcd(m_a, m_b);
dx = minStar(chunk_a + a.exp(), chunk_b + b.exp());
*/
BigInt m_a = a.m() >> bin_a;
BigInt m_b = b.m() >> bin_b;
r = gcd(m_a, m_b);
dx = minStar(bin_a + BigFloatRep::bits(a.exp()),
bin_b + BigFloatRep::bits(b.exp()));
long chunks = BigFloatRep::chunkFloor(dx);
r <<= (dx - BigFloatRep::bits(chunks));
dx = chunks;
return BigFloat(r, 0, dx);
}
// Not needed for now:
/// div_rem
// inline void div_rem(BigFloat& q, BigFloat& r,
// const BigFloat& a, const BigFloat& b) {
//q.makeCopy();
//r.makeCopy();
//mpz_tdiv_qr(q.get_mp(), r.get_mp(), a.get_mp(), b.get_mp());
//}//
// constructor BigRat from BigFloat
inline BigRat::BigRat(const BigFloat& f) : RCBigRat(new BigRatRep()){
*this = f.BigRatValue();
}
CORE_END_NAMESPACE
#endif // _CORE_BIGFLOAT_H_
|