1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: BigRat.h
* Synopsis:
* a wrapper class for mpq from GMP
*
* Written by
* Chee Yap <yap@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/BigRat.h $
* $Id: BigRat.h 29485 2006-03-14 11:52:49Z efif $
***************************************************************************/
#ifndef _CORE_BIGRAT_H_
#define _CORE_BIGRAT_H_
#include <CORE/BigInt.h>
CORE_BEGIN_NAMESPACE
class BigRatRep : public RCRepImpl<BigRatRep> {
public:
BigRatRep() {
mpq_init(mp);
}
BigRatRep(const BigRatRep& z) {
mpq_init(mp);
mpq_set(mp, z.mp);
}
BigRatRep(signed char c) {
mpq_init(mp);
mpq_set_si(mp, c, 1);
}
BigRatRep(unsigned char c) {
mpq_init(mp);
mpq_set_ui(mp, c, 1);
}
BigRatRep(signed int i) {
mpq_init(mp);
mpq_set_si(mp, i, 1);
}
BigRatRep(unsigned int i) {
mpq_init(mp);
mpq_set_ui(mp, i, 1);
}
BigRatRep(signed short int s) {
mpq_init(mp);
mpq_set_si(mp, s, 1);
}
BigRatRep(unsigned short int s) {
mpq_init(mp);
mpq_set_ui(mp, s, 1);
}
BigRatRep(signed long int l) {
mpq_init(mp);
mpq_set_si(mp, l, 1);
}
BigRatRep(unsigned long int l) {
mpq_init(mp);
mpq_set_ui(mp, l, 1);
}
BigRatRep(float f) {
mpq_init(mp);
mpq_set_d(mp, f);
}
BigRatRep(double d) {
mpq_init(mp);
mpq_set_d(mp, d);
}
BigRatRep(const char* s) {
mpq_init(mp);
mpq_set_str(mp, s, 0);
}
BigRatRep(const std::string& s) {
mpq_init(mp);
mpq_set_str(mp, s.c_str(), 0);
}
explicit BigRatRep(mpq_srcptr q) {
mpq_init(mp);
mpq_set(mp, q);
}
BigRatRep(mpz_srcptr z) {
mpq_init(mp);
mpq_set_z(mp, z);
}
BigRatRep(mpz_srcptr n, mpz_srcptr d) {
mpq_init(mp);
mpz_set(mpq_numref(mp), n);
mpz_set(mpq_denref(mp), d);
mpq_canonicalize(mp);
}
~BigRatRep() {
mpq_clear(mp);
}
CORE_MEMORY(BigRatRep)
mpq_srcptr get_mp() const {
return mp;
}
mpq_ptr get_mp() {
return mp;
}
private:
mpq_t mp;
}; //BigRatRep
class BigFloat;
typedef RCImpl<BigRatRep> RCBigRat;
class BigRat : public RCBigRat {
public:
/// \name Constructors
//@{
/// default constructor
BigRat() : RCBigRat(new BigRatRep()) {}
/// constructor for <tt>signed char</tt>
BigRat(signed char x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>unsigned char</tt>
BigRat(unsigned char x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>signed short int</tt>
BigRat(signed short int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>unsigned short int</tt>
BigRat(unsigned short int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>signed int</tt>
BigRat(signed int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>unsigned int</tt>
BigRat(unsigned int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>signed long int</tt>
BigRat(signed long int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>unsigned long int</tt>
BigRat(unsigned long int x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>float</tt>
BigRat(float x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>double</tt>
BigRat(double x) : RCBigRat(new BigRatRep(x)) {}
/// constructor for <tt>const char*</tt> with base
BigRat(const char* s) : RCBigRat(new BigRatRep(s)) {}
/// constructor for <tt>std::string</tt> with base
BigRat(const std::string& s) : RCBigRat(new BigRatRep(s)) {}
/// constructor for <tt>mpq_srcptr</tt>
explicit BigRat(mpq_srcptr z) : RCBigRat(new BigRatRep(z)) {}
/// constructor for <tt>BigInt</tt>
BigRat(const BigInt& z) : RCBigRat(new BigRatRep(z.get_mp())) {}
/// constructor for two <tt>BigInts</tt>
BigRat(const BigInt& n, const BigInt& d)
: RCBigRat(new BigRatRep(n.get_mp(), d.get_mp())) {}
/// constructor for <tt>BigFloat</tt>
BigRat(const BigFloat&);
//@}
/// \name Copy-Assignment-Destructor
//@{
/// copy constructor
BigRat(const BigRat& rhs) : RCBigRat(rhs) {
rep->incRef();
}
/// assignment operator
BigRat& operator=(const BigRat& rhs) {
if (this != &rhs) {
rep->decRef();
rep = rhs.rep;
rep->incRef();
}
return *this;
}
/// destructor
~BigRat() {
rep->decRef();
}
//@}
/// \name Overloaded operators
//@{
BigRat& operator +=(const BigRat& rhs) {
makeCopy();
mpq_add(get_mp(), get_mp(), rhs.get_mp());
return *this;
}
BigRat& operator -=(const BigRat& rhs) {
makeCopy();
mpq_sub(get_mp(), get_mp(), rhs.get_mp());
return *this;
}
BigRat& operator *=(const BigRat& rhs) {
makeCopy();
mpq_mul(get_mp(), get_mp(), rhs.get_mp());
return *this;
}
BigRat& operator /=(const BigRat& rhs) {
makeCopy();
mpq_div(get_mp(), get_mp(), rhs.get_mp());
return *this;
}
BigRat& operator <<=(unsigned long ul) {
makeCopy();
mpq_mul_2exp(get_mp(), get_mp(), ul);
return *this;
}
BigRat& operator >>=(unsigned long ul) {
makeCopy();
mpq_div_2exp(get_mp(), get_mp(), ul);
return *this;
}
//@}
/// \name div2, unary, increment, decrement operators
//@{
/// exact division by 2 (this method is provided for compatibility)
BigRat div2() const {
BigRat r; BigRat t(2); // probably not most efficient way
mpq_div(r.get_mp(), get_mp(), t.get_mp());
return r;
}
BigRat operator+() const {
return BigRat(*this);
}
BigRat operator-() const {
BigRat r;
mpq_neg(r.get_mp(), get_mp());
return r;
}
BigRat& operator++() {
makeCopy();
mpz_add(get_num_mp(),get_num_mp(),get_den_mp());
return *this;
}
BigRat& operator--() {
makeCopy();
mpz_sub(get_num_mp(),get_num_mp(),get_den_mp());
return *this;
}
BigRat operator++(int) {
BigRat r(*this);
++(*this);
return r;
}
BigRat operator--(int) {
BigRat r(*this);
--(*this);
return r;
}
//@}
/// \name Helper Functions
//@{
/// Canonicalize
void canonicalize() {
makeCopy();
mpq_canonicalize(get_mp());
}
/// Has Exact Division
static bool hasExactDivision() {
return true;
}
/// return mpz pointer of numerator (const)
mpz_srcptr get_num_mp() const {
return mpq_numref(get_mp());
}
/// return mpz pointer of numerator
mpz_ptr get_num_mp() {
return mpq_numref(get_mp());
}
/// return mpz pointer of denominator
mpz_srcptr get_den_mp() const {
return mpq_denref(get_mp());
}
/// return mpz pointer of denominator
mpz_ptr get_den_mp() {
return mpq_denref(get_mp());
}
/// get mpq pointer (const)
mpq_srcptr get_mp() const {
return rep->get_mp();
}
/// get mpq pointer
mpq_ptr get_mp() {
return rep->get_mp();
}
//@}
/// \name String Conversion Functions
//@{
/// set value from <tt>const char*</tt>
int set_str(const char* s, int base = 0) {
makeCopy();
return mpq_set_str(get_mp(), s, base);
}
/// convert to <tt>std::string</tt>
std::string get_str(int base = 10) const {
int n = mpz_sizeinbase(mpq_numref(get_mp()), base) + mpz_sizeinbase(mpq_denref(get_mp()), base)+ 3;
char *buffer = new char[n];
mpq_get_str(buffer, base, get_mp());
std::string result(buffer);
delete [] buffer;
return result;
}
//@}
/// \name Conversion Functions
//@{
/// intValue
int intValue() const {
return static_cast<int>(doubleValue());
}
/// longValue
long longValue() const {
return static_cast<long>(doubleValue());
}
/// doubleValue
double doubleValue() const {
return mpq_get_d(get_mp());
}
/// BigIntValue
BigInt BigIntValue() const {
BigInt r;
mpz_tdiv_q(r.get_mp(), get_num_mp(), get_den_mp());
return r;
}
//@}
}; //BigRat class
inline BigRat operator+(const BigRat& a, const BigRat& b) {
BigRat r;
mpq_add(r.get_mp(), a.get_mp(), b.get_mp());
return r;
}
inline BigRat operator-(const BigRat& a, const BigRat& b) {
BigRat r;
mpq_sub(r.get_mp(), a.get_mp(), b.get_mp());
return r;
}
inline BigRat operator*(const BigRat& a, const BigRat& b) {
BigRat r;
mpq_mul(r.get_mp(), a.get_mp(), b.get_mp());
return r;
}
inline BigRat operator/(const BigRat& a, const BigRat& b) {
BigRat r;
mpq_div(r.get_mp(), a.get_mp(), b.get_mp());
return r;
}
// Chee (3/19/2004):
// The following definitions of div_exact(x,y) and gcd(x,y)
// ensures that in Polynomial<NT>
/// divisible(x,y) = "x | y"
inline BigRat div_exact(const BigRat& x, const BigRat& y) {
BigRat z;
mpq_div(z.get_mp(), x.get_mp(), y.get_mp());
return z;
}
/// numerator
inline BigInt numerator(const BigRat& a) {
return BigInt(a.get_num_mp());
}
/// denominator
inline BigInt denominator(const BigRat& a) {
return BigInt(a.get_den_mp());
}
inline BigRat gcd(const BigRat& x, const BigRat& y) {
// return BigRat(1); // Remark: we may want replace this by
// the definition of gcd of a quotient field
// of a UFD [Yap's book, Chap.3]
//Here is one possible definition: gcd of x and y is just the
//gcd of the numerators of x and y divided by the gcd of the
//denominators of x and y.
BigInt n = gcd(numerator(x), numerator(y));
BigInt d = gcd(denominator(x), denominator(y));
return BigRat(n,d);
}
// Chee: 8/8/2004: need isDivisible to compile Polynomial<BigRat>
// A trivial implementation is to return true always. But this
// caused tPolyRat to fail.
// So we follow the definition of
// Expr::isDivisible(e1, e2) which checks if e1/e2 is an integer.
inline bool isInteger(const BigRat& x) {
return BigInt(x.get_den_mp()) == 1;
}
inline bool isDivisible(const BigRat& x, const BigRat& y) {
BigRat r;
mpq_div(r.get_mp(), x.get_mp(), y.get_mp());
return isInteger(r);
}
inline BigRat operator<<(const BigRat& a, unsigned long ul) {
BigRat r;
mpq_mul_2exp(r.get_mp(), a.get_mp(), ul);
return r;
}
inline BigRat operator>>(const BigRat& a, unsigned long ul) {
BigRat r;
mpq_div_2exp(r.get_mp(), a.get_mp(), ul);
return r;
}
inline int cmp(const BigRat& x, const BigRat& y) {
return mpq_cmp(x.get_mp(), y.get_mp());
}
inline bool operator==(const BigRat& a, const BigRat& b) {
return cmp(a, b) == 0;
}
inline bool operator!=(const BigRat& a, const BigRat& b) {
return cmp(a, b) != 0;
}
inline bool operator>=(const BigRat& a, const BigRat& b) {
return cmp(a, b) >= 0;
}
inline bool operator>(const BigRat& a, const BigRat& b) {
return cmp(a, b) > 0;
}
inline bool operator<=(const BigRat& a, const BigRat& b) {
return cmp(a, b) <= 0;
}
inline bool operator<(const BigRat& a, const BigRat& b) {
return cmp(a, b) < 0;
}
inline std::ostream& operator<<(std::ostream& o, const BigRat& x) {
return CORE::operator<<(o, x.get_mp());
}
inline std::istream& operator>>(std::istream& i, BigRat& x) {
x.makeCopy();
return CORE::operator>>(i, x.get_mp());
}
/// sign
inline int sign(const BigRat& a) {
return mpq_sgn(a.get_mp());
}
/// abs
inline BigRat abs(const BigRat& a) {
BigRat r;
mpq_abs(r.get_mp(), a.get_mp());
return r;
}
/// neg
inline BigRat neg(const BigRat& a) {
BigRat r;
mpq_neg(r.get_mp(), a.get_mp());
return r;
}
/// div2
inline BigRat div2(const BigRat& a) {
BigRat r(a);
return r.div2();
}
/// longValue
inline long longValue(const BigRat& a) {
return a.longValue();
}
/// doubleValue
inline double doubleValue(const BigRat& a) {
return a.doubleValue();
}
/// return BigInt value
inline BigInt BigIntValue(const BigRat& a) {
return a.BigIntValue();
}
CORE_END_NAMESPACE
#endif // _CORE_BIGRAT_H_
|