File: Expr.h

package info (click to toggle)
cgal 3.2.1-2
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 47,752 kB
  • ctags: 72,510
  • sloc: cpp: 397,707; ansic: 10,393; sh: 4,232; makefile: 3,713; perl: 394; sed: 9
file content (546 lines) | stat: -rw-r--r-- 15,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/****************************************************************************
 * Core Library Version 1.7, August 2004
 * Copyright (c) 1995-2004 Exact Computation Project
 * All rights reserved.
 *
 * This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
 * redistribute it under the terms of the Q Public License version 1.0.
 * See the file LICENSE.QPL distributed with CORE.
 *
 * Licensees holding a valid commercial license may use this file in
 * accordance with the commercial license agreement provided with the
 * software.
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * File: Expr.h
 * Synopsis: a class of Expression in Level 3
 * 
 * Written by 
 *       Koji Ouchi <ouchi@simulation.nyu.edu>
 *       Chee Yap <yap@cs.nyu.edu>
 *       Igor Pechtchanski <pechtcha@cs.nyu.edu>
 *       Vijay Karamcheti <vijayk@cs.nyu.edu>
 *       Chen Li <chenli@cs.nyu.edu>
 *       Zilin Du <zilin@cs.nyu.edu>
 *       Sylvain Pion <pion@cs.nyu.edu> 
 *       Vikram Sharma<sharma@cs.nyu.edu>
 *
 * WWW URL: http://cs.nyu.edu/exact/
 * Email: exact@cs.nyu.edu
 *
 * $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/Expr.h $
 * $Id: Expr.h 28567 2006-02-16 14:30:13Z lsaboret $
 ***************************************************************************/

#ifndef _CORE_EXPR_H_
#define _CORE_EXPR_H_

#include <CORE/ExprRep.h>

CORE_BEGIN_NAMESPACE

/// \class Expr Expr.h
/// \brief Expr is a class of Expression in Level 3
typedef RCImpl<ExprRep> RCExpr;
class Expr : public RCExpr {
public:
  /// \name Constructors and Destructor
  //@{
  /// default constructor
  Expr() : RCExpr(new ConstDoubleRep()) {}
  /// constructor for <tt>int</tt>
  Expr(int i) : RCExpr(new ConstDoubleRep(i)) {}
  /// constructor for <tt>unsigned int</tt>
  Expr(unsigned int ui) : RCExpr(new ConstDoubleRep(ui)) {}

  /// constructor for <tt>long</tt>
  Expr(long l) : RCExpr(new ConstRealRep(Real(l))) {}
  /// constructor for <tt>unsigned long</tt>
  Expr(unsigned long ul) : RCExpr(new ConstRealRep(Real(ul))) {}

  /// constructor for <tt>float</tt>
  /** \note the results of this constructor may appear unpredictable to the 
   *  user.  E.g.,  one may assume that new Expr(.1) is exactly equal to .1,
   *  but it will be print as
   *      .1000000000000000055511151231257827021181583404541015625.
   *  This is so because .1 cannot be represented exactly as a double
   *  (or, for that matter, as a binary fraction of any finite length). 
   *  The value is the closest double value determined by the compiler.
   */
  Expr(float f) : RCExpr(NULL) { // check for valid numbers
    // (i.e., not infinite and not NaN)
    if (!finite(f)) {
      std::cerr << " ERROR : constructed an invalid float! " << std::endl;
      if (AbortFlag)
        abort();
      InvalidFlag = -1;
    }
    rep = new ConstDoubleRep(f);
  }
  /// constructor for <tt>double</tt>
  Expr(double d) : RCExpr(NULL) { // check for valid numbers
    // (i.e., not infinite and not NaN)
    if (!finite(d)) {
      std::cerr << " ERROR : constructed an invalid double! " << std::endl;
      if (AbortFlag)
        abort();
      InvalidFlag = -2;
    }
    rep = new ConstDoubleRep(d);
  }

  /// constructor for <tt>BigInt</tt>
  Expr(const BigInt& I) : RCExpr(new ConstRealRep(Real(I))) {}
  /// constructor for <tt>BigRat</tt>
  Expr(const BigRat& R) : RCExpr(new ConstRealRep(Real(R))) {}

  /// constructor for <tt>BigFloat</tt>
  Expr(const BigFloat& F) : RCExpr(new ConstRealRep(Real(F))) {}

  /// constructor for <tt>const char*</tt>
  /** construct Expr from a string representation \a s
   * with precision \a prec. It is perfectly predictable:
   * new Expr(".1") is exactly equal to .1, as one would expect. Therefore,
   * it is generally recommended that the (String) constructor be used in
   * preference to the (double) constructor.
   */
  Expr(const char *s, const extLong& p = defInputDigits)
      : RCExpr(new ConstRealRep(Real(s, p))) {}

  /// constructor for <tt>std::string</tt>
  Expr(const std::string& s, const extLong& p = defInputDigits)
      : RCExpr(new ConstRealRep(Real(s, p))) {}

  /// constructor for <tt>Real</tt>
  Expr(const Real &r) : RCExpr(new ConstRealRep(r)) {}

  /// constructor for Polynomial node (n-th root)
  /** default value n=0 means the first positive root */
  template <class NT>
  Expr(const Polynomial<NT>& p, int n = 0)
      : RCExpr(new ConstPolyRep<NT>(p, n)) {}

  /// constructor for Polynomial node (root in Interval <tt>I</tt>)
  template <class NT>
  Expr(const Polynomial<NT>& p, const BFInterval& I)
      : RCExpr(new ConstPolyRep<NT>(p, I)) {}

  /// constructor for ExprRep
  Expr(ExprRep* p) : RCExpr(p) {}
  //@}

  /// \name Copy-Assignment-Destructors
  //@{
  /// copy constructor
  Expr(const Expr& rhs) : RCExpr(rhs) {
    rep->incRef();
  }

  /// = operator
  Expr& operator=(const Expr& rhs) {
    if (this != &rhs) {
      rep->decRef();
      rep = rhs.rep;
      rep->incRef();
    }
    return *this;
  }
  /// destructor
  ~Expr() {
    rep->decRef();
  }
  //@}

  /// \name Compound Assignment Operators
  //@{
  /// += operator
  Expr& operator+=(const Expr& e) {
    *this = new AddRep(rep, e.rep);
    return *this;
  }
  /// -= operator
  Expr& operator-=(const Expr& e) {
    *this = new SubRep(rep, e.rep);
    return *this;
  }
  /// *= operator
  Expr& operator*=(const Expr& e) {
    *this = new MultRep(rep, e.rep);
    return *this;
  }
  /// /= operator
  Expr& operator/=(const Expr& e) {
    if ((e.rep)->getSign() == 0) {
      std::cerr << " ERROR : division by zero ! " << std::endl;
      if (AbortFlag)
        abort();
      InvalidFlag = -3;
    }
    *this = new DivRep(rep, e.rep);
    return *this;
  }
  //@}

  /// \name Unary Minus, Increment and Decrement Operators
  //@{
  /// unary plus
  Expr operator+() const {
    return Expr(*this);
  }
  /// unary minus
  Expr operator-() const {
    return Expr(new NegRep(rep));
  }
  /// left increment operator (++i)
  Expr& operator++() {
    *this += 1;
    return *this;
  }
  /// right increment operator (i++)
  Expr operator++(int) {
    Expr t(*this);
    *this += 1;
    return t;
  }
  /// left decrement operator (--i)
  Expr& operator--() {
    *this -= 1;
    return *this;
  }
  /// right deccrement operator (i--)
  Expr operator--(int) {
    Expr t(*this);
    *this -= 1;
    return t;
  }
  //@}

  /// \name String Conversion Functions
  //@{
  /// set value from <tt>const char*</tt>
  void fromString(const char* s, const extLong& prec = defInputDigits) {
    *this = Expr(s, prec);
  }
  /// convert to <tt>std::string</tt>
  /** give decimal string representation */
  std::string toString(long prec=defOutputDigits, bool sci=false) const {
    return rep->toString(prec, sci);
  }
  //@}
  //

  /// \name Conversion Functions
  //@{
  /// convert to \c int
  int intValue() const {
    return approx(64, 1024).intValue();
  }
  /// convert to \c long
  long longValue() const {
    return approx(64, 1024).longValue();
  }
  /// convert to \c float
  float floatValue() const {
    return approx(53, 1024).floatValue();
  }
  /// convert to \c double
  /** chen: - use equivalent precision (rel:53, abs: 1024)
    as in IEEE double. enforce an evaluation in case
    before this has been done before casting. */
  double doubleValue() const {
    return approx(53, 1024).doubleValue();
  }
  /// convert to an interval defined by a pair of \c double
  /** If value is exact, the two \c double will coincide
   */
  void doubleInterval(double & lb, double & ub) const;
  /// convert to \c BigInt (approximate it first!)
  BigInt BigIntValue() const {
    return rep->BigIntValue();
  }
  /// convert to \c BigRat (approximate it first!)
  BigRat BigRatValue() const {
    return rep->BigRatValue();
  }
  /// convert to \c BigFloat (approximate it first!)
  /** Ought to allow BigFloatValue() take an optional precision argument */
  BigFloat BigFloatValue() const {
    return rep->BigFloatValue();
  }
  //@}

  /// \name Approximation Function
  //@{
  /// Compute approximation to combined precision [\a r, \a a].
  /** Here is the definition of what this means:
       If e is the exact value and ee is the approximate value,
       then  |e - ee| <= 2^{-a} or  |e - ee| <= 2^{-r} |e|. */
  const Real & approx(const extLong& relPrec = defRelPrec,
                      const extLong& absPrec = defAbsPrec) const {
    return rep->getAppValue(relPrec, absPrec);
  }
  //@}

  /// \name Helper Functions
  //@{
  //CONSTANTS:
  /// return Expr(0)
  static const Expr& getZero();
  /// return Expr(1)
  static const Expr& getOne();

  /// Has Exact Division
  static bool hasExactDivision() {
    return true;
  }

  /// get the sign
  int sign() const {
    return rep->getSign();
  }
  /// is zero?
  bool isZero() const {
    return sign() == 0;
  }
  /// absolute value
  Expr abs() const {
    return (sign() >= 0) ? +(*this) : -(*this);
  }

  /// compare function
  int cmp(const Expr& e) const {
    return rep == e.rep ? 0 : SubRep(rep, e.rep).getSign();
  }

  /// return the internal representation
  ExprRep* Rep() const {
    return rep;
  }
  /// get exponent of current approximate value
  long getExponent() const {
    return BigFloatValue().exp();
  }
  /// get mantissa of current approximate value
  BigInt getMantissa() const {
    return BigFloatValue().m();
  }
  //@}

public:
  /// \name Debug Helper Function
  //@{
  /// debug function
  void  debug(int mode = TREE_MODE, int level = DETAIL_LEVEL,
              int depthLimit = INT_MAX) const;
  //@}
  /// debug information levels
  enum {LIST_MODE, TREE_MODE, SIMPLE_LEVEL, DETAIL_LEVEL};
};// class Expr

#define CORE_EXPR_ZERO Expr::getZero()

/// I/O Stream operator<<
inline std::ostream& operator<<(std::ostream& o, const Expr& e) {
  o << *(const_cast<ExprRep*>(&e.getRep()));
  return o;
}
/// I/O Stream operator>>
inline std::istream& operator>>(std::istream& i, Expr& e) {
  Real rVal;
  i >> rVal; // precision is = defInputDigits
  if (i)
    e = rVal;		// only assign when reading is successful.
  return i;
}

/// floor function
BigInt floor(const Expr&, Expr&);
/// power function
Expr pow(const Expr&, unsigned long);

/// addition
inline Expr operator+(const Expr& e1, const Expr& e2) {
  return Expr(new AddRep(e1.Rep(), e2.Rep()));
}
/// substraction
inline Expr operator-(const Expr& e1, const Expr& e2) {
  return Expr(new SubRep(e1.Rep(), e2.Rep()));
}
/// multiplication
inline Expr operator*(const Expr& e1, const Expr& e2) {
  return Expr(new MultRep(e1.Rep(), e2.Rep()));
}
/// division
inline Expr operator/(const Expr& e1, const Expr& e2) {
  if (e2.sign() == 0) {
    std::cerr << " ERROR : division by zero ! " << std::endl;
    if (AbortFlag)
      abort();
    InvalidFlag = -4;
  }
  return Expr(new DivRep(e1.Rep(), e2.Rep()));
}
/// modulo operator
inline Expr operator%(const Expr& e1, const Expr& e2) {
  Expr result;
  floor(e1/e2, result);
  return result;
}

/// operator ==
/** this is inefficient if you compare to zero:
 *  e.g., if (e != 0) {...} use e.isZero() instead */
inline bool operator==(const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) == 0;
}
/// operator !=
inline bool operator!=(const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) != 0;
}
/// operator <
inline bool operator< (const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) < 0;
}
/// operator <=
inline bool operator<=(const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) <= 0;
}
/// operator <
inline bool operator> (const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) > 0;
}
/// operator >=
inline bool operator>=(const Expr& e1, const Expr& e2) {
  return e1.cmp(e2) >= 0;
}

/// return sign
inline int sign(const Expr& e) {
  return e.sign();
}
/// is zero?
inline bool isZero(const Expr& e) {
  return e.isZero();
}
/// compare
/** compare two Expr \a e1 and \a e2, return
 * \retval -1 if e1 < e2,
 * \retval 0 if e1 = e2,
 * \retval 1 if e1 > e2. */
inline int cmp(const Expr& e1, const Expr& e2) {
  return e1.cmp(e2);
}
/// absolute value
inline Expr abs(const Expr& x) {
  return x.abs();
}
/// absolute value (same as abs)
inline Expr fabs(const Expr& x) {
  return abs(x);
}
/// floor
inline BigInt floor(const Expr& e) {
  Expr tmp;
  return floor(e, tmp);
}
/// ceiling
inline BigInt ceil(const Expr& e) {
  return -floor(-e);
}
/// floorLg
inline long floorLg(const Expr& e) {
  Expr tmp;
  return floorLg(floor(e));
}
/// ceilLg
inline long ceilLg(const Expr& e) {
  Expr tmp;
  return ceilLg(ceil(e));
}
/// power
inline Expr power(const Expr& e, unsigned long p) {
  return pow(e, p);
}

/// divisibility predicate
/** We do not check if e2 is 0.
 * */
// NOTE:  The name "isDivisible" is not consistent
// 		with the analogous "divisible" predicate in BigInt!
inline bool isDivisible(const Expr& e1, const Expr& e2) {
  Expr result;
  floor(e1/e2, result);
  return (result.sign() == 0);
}

/// square root
inline Expr sqrt(const Expr& e) {
  if (e.sign() < 0) {
    std::cerr << " ERROR : sqrt of negative value ! " << std::endl;
    if (AbortFlag)
      abort();
    InvalidFlag = -5;
  }
  return Expr(new SqrtRep(e.Rep()));
}

//Following two have been added to make NT=Expr work for Polynomial<NT>
/// gcd
inline Expr gcd(const Expr& a, const Expr& b) {
  return Expr(1);
}
inline Expr div_exact(const Expr& x, const  Expr& y) {
  return x/y - x%y;
}

/// helper function for constructing Polynomial node (n-th node)
template <class NT>
inline Expr rootOf(const Polynomial<NT>& p, int n = 0) {
  return Expr(p, n);
}

/// helper function for constructing Polynomial node witb BFInterval
template <class NT>
inline Expr rootOf(const Polynomial<NT>& p, const BFInterval& I) {
  return Expr(p, I);
}
/// helper function for constructing Polynomial node with pair of BigFloats
template <class NT>
inline Expr rootOf(const Polynomial<NT>& p, const BigFloat& x,
		const BigFloat& y) {
  return Expr(p, BFInterval(x, y) );
}
/// helper function for constructing Polynomial node with pair of doubles
template <class NT>
inline Expr rootOf(const Polynomial<NT>& p, double x, double y) {
  return Expr(p, BFInterval(BigFloat(x), BigFloat(y)) );
}
/// helper function for constructing Polynomial node with pair of ints
template <class NT>
inline Expr rootOf(const Polynomial<NT>& p, int x, int y) {
  return Expr(p, BFInterval(BigFloat(x), BigFloat(y)) );
}

/// constructor for Polynomial node of the form x^m - n (i.e., radicals)
/** We assume that n >= 0 and m >= 1
 * */
template <class NT>
inline Expr radical(const NT& n, int m) {
  assert(n>=0 && m>=1);
  if (n == 0 || n == 1 || m == 1)
    return Expr(n);
  Polynomial<NT> Q(m);
  Q.setCoeff(0, -n);
  Q.setCoeff(m, 1);
  return Expr(Q, 0);
}

// We include this file here and not from inside Poly.h,
// because otherwise VC++.net2003 can't compile Expr.cpp
#include <CORE/poly/Poly.tcc>

CORE_END_NAMESPACE
#endif // _CORE_EXPR_H_