1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: ExprRep.h
* Synopsis: Internal Representation of Expr.
*
* Written by
* Koji Ouchi <ouchi@simulation.nyu.edu>
* Chee Yap <yap@cs.nyu.edu>
* Igor Pechtchanski <pechtcha@cs.nyu.edu>
* Vijay Karamcheti <vijayk@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
* Sylvain Pion <pion@cs.nyu.edu>
* Vikram Sharma<sharma@cs.nyu.edu>
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/ExprRep.h $
* $Id: ExprRep.h 28567 2006-02-16 14:30:13Z lsaboret $
***************************************************************************/
#ifndef _CORE_EXPRREP_H_
#define _CORE_EXPRREP_H_
#include <CORE/Real.h>
#include <CORE/Filter.h>
#include <CORE/poly/Sturm.h>
CORE_BEGIN_NAMESPACE
#ifdef CORE_DEBUG_BOUND
// These counters are incremented each time each bound is recognized as equal
// to the best one in computeBound().
extern unsigned int BFMSS_counter;
extern unsigned int Measure_counter;
// extern unsigned int Cauchy_counter;
extern unsigned int LiYap_counter;
// These counters are incremented each time each bound is recognized as equal
// to the best one in computeBound(), and it's strictly the best.
extern unsigned int BFMSS_only_counter;
extern unsigned int Measure_only_counter;
// extern unsigned int Cauchy_only_counter;
extern unsigned int LiYap_only_counter;
// This counter is incremented each time the precision needed matches the
// root bound.
extern unsigned int rootBoundHitCounter;
#endif
const extLong EXTLONG_BIG = (1L << 30);
const extLong EXTLONG_SMALL = -(1L << 30);
const double log_5 = log(double(5))/log(double(2));
// Returns the ceil of log_2(5^a).
inline extLong ceilLg5(const extLong & a) {
#if defined (_MSC_VER) || defined (__sgi)
return (int) ::ceil(log_5 * a.toLong());
#else
return (int) std::ceil(log_5 * a.toLong());
#endif
}
/// \struct NodeInfo
/// \brief store information of a node
struct NodeInfo {
Real appValue; ///< current approximate value
bool appComputed; ///< true if the approx value been computed
bool flagsComputed; ///< true if rootBound parameters have been computed
extLong knownPrecision; ///< Precision achieved by current approx value
#ifdef CORE_DEBUG
extLong relPrecision;
extLong absPrecision;
unsigned long numNodes;
#endif
/// d_e bounds the degree of the minimal polynomial of a DAG expression
/** Basically, d_e is equal to 2^k where k is the number of square-root nodes
* in the DAG. If there are other kinds of non-linear nodes, this is
* generalized accordingly. */
extLong d_e;
bool visited; ///< flag in counting # of sqrts
int sign; ///< sign of the value being represented.
extLong uMSB; ///< upper bound of the position of Most Significant Bit
extLong lMSB; ///< lower bound of the position of Most Significant Bit
// For the degree-length method mentioned in Chee's book.
/* the degree of defining polynomial P(X) obtained from Resultant calculus
* (deprecated now) */
// extLong degree;
// extLong length; ///< length is really lg(|| P(X) ||)
extLong measure; ///< measure is really lg(Measure)
// For our new bound.
/// 2^{high(E)} is an UPPER bound for the moduli of ALL conjugates of E.
/** In our papers, high is equal to log_2(\overline{\mu(E)}). */
extLong high;
/// 2^{-low(E)} is LOWER bound on the moduli of ALL NON_ZERO conjugate of E.
/** BE CAREFUL! NOTE THAT UNLIKE "high", the sign of low is negated here!
In our papers, low is equal to -log_2(\underline{\nu(E)}) */
extLong low;
/// \brief upper bound of the leading coefficient of minimal defining
/// polynomial of $E$.
extLong lc;
/// \brief upper bound of the last non-zero coefficient of minimal defining
/// polynomial of $E$.
extLong tc;
// For the 2-ary BFMSS bound.
extLong v2p, v2m;
// For the 5-ary BFMSS bound.
extLong v5p, v5m;
/// 2^u25 is an upper bound for the moduli of all the conjugates of U(E)
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
extLong u25;
/// 2^l25 is an upper bound for the moduli of all the conjugates of L(E)
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
extLong l25;
int ratFlag; ///< rational flag
BigRat* ratValue; ///< rational value
/// default constructor
NodeInfo();
};//NodeInfo struct
// forward reference
// class Expr;
/// \class ExprRep
/// \brief The sharable, internal representation of expressions
// Members: private: int refCount,
// public: NodeInfo* nodeInfo,
// filteredFp ffVal.
class ExprRep {
public:
/// \name Constructor and Destructor
//@{
/// default constructor
ExprRep();
/// virtual destructor for this base class
virtual ~ExprRep() {
if (nodeInfo != NULL) // This check is only for optimization.
delete nodeInfo;
}
//@}
/// \name Reference Counting
//@{
/// increase reference counter
void incRef() {
++refCount;
}
/// decrease reference counter
void decRef() {
if (--refCount == 0)
delete this;
}
/// return reference counter
int getRefCount() const {
return refCount;
}
/// check whether reference counter == 1
int isUnique() const {
return refCount == 1;
}
//@}
/// \name Helper Functions
//@{
/// Get the approximate value
const Real & getAppValue(const extLong& relPrec = defRelPrec,
const extLong& absPrec = defAbsPrec);
/// Get the sign.
int getSign();
int getExactSign();
const Real& appValue() const {
return nodeInfo->appValue;
}
Real& appValue() {
return nodeInfo->appValue;
}
const bool& appComputed() const {
return nodeInfo->appComputed;
}
bool& appComputed() {
return nodeInfo->appComputed;
}
const bool& flagsComputed() const {
return nodeInfo->flagsComputed;
}
bool& flagsComputed() {
return nodeInfo->flagsComputed;
}
const extLong& knownPrecision() const {
return nodeInfo->knownPrecision;
}
extLong& knownPrecision() {
return nodeInfo->knownPrecision;
}
#ifdef CORE_DEBUG
const extLong& relPrecision() const {
return nodeInfo->relPrecision;
}
extLong& relPrecision() {
return nodeInfo->relPrecision;
}
const extLong& absPrecision() const {
return nodeInfo->absPrecision;
}
extLong& absPrecision() {
return nodeInfo->absPrecision;
}
const unsigned long& numNodes() const {
return nodeInfo->numNodes;
}
unsigned long& numNodes() {
return nodeInfo->numNodes;
}
#endif
const extLong& d_e() const {
return nodeInfo->d_e;
}
extLong& d_e() {
return nodeInfo->d_e;
}
const bool& visited() const {
return nodeInfo->visited;
}
bool& visited() {
return nodeInfo->visited;
}
const int& sign() const {
return nodeInfo->sign;
}
int& sign() {
return nodeInfo->sign;
}
const extLong& uMSB() const {
return nodeInfo->uMSB;
}
extLong& uMSB() {
return nodeInfo->uMSB;
}
const extLong& lMSB() const {
return nodeInfo->lMSB;
}
extLong& lMSB() {
return nodeInfo->lMSB;
}
// const extLong& length() const { return nodeInfo->length; }
// extLong& length() { return nodeInfo->length; }
const extLong& measure() const {
return nodeInfo->measure;
}
extLong& measure() {
return nodeInfo->measure;
}
const extLong& high() const {
return nodeInfo->high;
}
extLong& high() {
return nodeInfo->high;
}
const extLong& low() const {
return nodeInfo->low;
}
extLong& low() {
return nodeInfo->low;
}
const extLong& lc() const {
return nodeInfo->lc;
}
extLong& lc() {
return nodeInfo->lc;
}
const extLong& tc() const {
return nodeInfo->tc;
}
extLong& tc() {
return nodeInfo->tc;
}
const extLong& v2p() const {
return nodeInfo->v2p;
}
extLong& v2p() {
return nodeInfo->v2p;
}
const extLong& v2m() const {
return nodeInfo->v2m;
}
extLong& v2m() {
return nodeInfo->v2m;
}
extLong v2() const {
return v2p()-v2m();
}
const extLong& v5p() const {
return nodeInfo->v5p;
}
extLong& v5p() {
return nodeInfo->v5p;
}
const extLong& v5m() const {
return nodeInfo->v5m;
}
extLong& v5m() {
return nodeInfo->v5m;
}
extLong v5() const {
return v5p()-v5m();
}
const extLong& u25() const {
return nodeInfo->u25;
}
extLong& u25() {
return nodeInfo->u25;
}
const extLong& l25() const {
return nodeInfo->l25;
}
extLong& l25() {
return nodeInfo->l25;
}
const int& ratFlag() const {
return nodeInfo->ratFlag;
}
int& ratFlag() {
return nodeInfo->ratFlag;
}
const BigRat* ratValue() const {
return nodeInfo->ratValue;
}
BigRat*& ratValue() {
return nodeInfo->ratValue;
}
/// Get BigFloat
BigInt BigIntValue();
BigRat BigRatValue();
BigFloat BigFloatValue();
/// represent as a string in decimal value
// toString() Joaquin Grech 31/5/2003
std::string toString(long prec=defOutputDigits, bool sci=false) {
return (getAppValue(defRelPrec, defAbsPrec)).toString(prec,sci);
}
//@}
/// \name Debug functions
//@{
/// dump the contents in this DAG node
const std::string dump(int = OPERATOR_VALUE) const;
/// print debug information in list mode
virtual void debugList(int level, int depthLimit) const = 0;
/// print debug information in tree mode
virtual void debugTree(int level, int indent, int depthLimit) const = 0;
//@}
/// \name I/O Stream
//@{
friend std::ostream& operator<<(std::ostream&, ExprRep&);
//@}
private:
int refCount; // reference count
public:
enum {OPERATOR_ONLY, VALUE_ONLY, OPERATOR_VALUE, FULL_DUMP};
NodeInfo* nodeInfo; ///< node information
filteredFp ffVal; ///< filtered value
/// \name Approximation Functions
//@{
/// initialize nodeInfo
virtual void initNodeInfo() = 0;
/// compute the sign, uMSB, lMSB, etc.
virtual void computeExactFlags() = 0;
/// compute the minimal root bound
extLong computeBound();
/// driver function to approximate
void approx(const extLong& relPrec, const extLong& absPrec);
/// compute an approximate value satifying the specified precisions
virtual void computeApproxValue(const extLong&, const extLong&) = 0;
/// Test whether the current approx. value satisfies [relPrec, absPrec]
bool withinKnownPrecision(const extLong&, const extLong&);
//@}
/// \name Misc Functions
//@{
/// reduce current node
void reduceToBigRat(const BigRat&);
/// reduce current node
void reduceTo(const ExprRep*);
/// reduce current node to zero
void reduceToZero();
/// return operator string
virtual const std::string op() const {
return "UNKNOWN";
}
//@}
/// \name Degree Bound Functions
//@{
/// compute "d_e" based on # of sqrts
extLong degreeBound();
/// count actually computes the degree bound of current node.
virtual extLong count() = 0;
/// reset the flag "visited"
virtual void clearFlag() = 0;
//@}
#ifdef CORE_DEBUG
virtual unsigned long dagSize() = 0;
virtual void fullClearFlag() = 0;
#endif
};//ExprRep
/// \class ConstRep
/// \brief constant node
class ConstRep : public ExprRep {
public:
/// \name Constructors and Destructor
//@{
/// default constructor
ConstRep() {}
/// destructor
virtual ~ConstRep() {}
//@}
/// \name Debug Functions
//@{
/// print debug information in list mode
void debugList(int level, int depthLimit) const;
/// print debug information in tree mode
void debugTree(int level, int indent, int depthLimit) const;
//@}
protected:
/// initialize nodeInfo
virtual void initNodeInfo();
/// return operator in string
const std::string op() const {
return "C";
}
/// count returns the degree of current node
//extLong count() { return d_e(); }
extLong count();
/// clear visited flag
void clearFlag() {
visited() = false;
}
#ifdef CORE_DEBUG
unsigned long dagSize();
void fullClearFlag();
#endif
};
/// \class ConstDoubleRep
/// \brief constant node
class ConstDoubleRep : public ConstRep {
public:
/// \name Constructors and Destructor
//@{
/// default constructor
ConstDoubleRep() {}
/// constructor for all \c double type
ConstDoubleRep(double d) {
ffVal = d;
}
/// destructor
~ConstDoubleRep() {}
//@}
CORE_MEMORY(ConstDoubleRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
};
/// \class ConstRealRep
/// \brief constant node
class ConstRealRep : public ConstRep {
public:
/// \name Constructors and Destructor
//@{
/// default constructor
ConstRealRep() : value(CORE_REAL_ZERO) { }
/// constructor for all \c Real type
ConstRealRep(const Real &);
/// destructor
~ConstRealRep() {}
//@}
CORE_MEMORY(ConstRealRep)
private:
Real value; ///< internal representation of node
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
};
/// \class Constant Polynomial Node
/// \brief template class where NT is supposed to be some number type
template <class NT>
class ConstPolyRep : public ConstRep {
public:
/// \name Constructors and Destructor
//@{
/// default constructor
ConstPolyRep() { }
/// constructor for Polynomial
ConstPolyRep(const Polynomial<NT>& p, int n) : ss(p) {
// isolate roots using Sturm Sequences
I = ss.isolateRoot(n);
// check whether n-th root exists
if (I.first == 1 && I.second == 0) {
core_error("CORE ERROR! root index out of bound",
__FILE__, __LINE__, true);
abort();
}
// test if the root isolated in I is 0:
if ((I.first == 0)&&(I.second == 0))
ffVal = 0;
else
ffVal = computeFilteredValue(); // silly to use a filter here!
// since sign is known.
}
/// constructor for Polynomial
ConstPolyRep(const Polynomial<NT>& p, const BFInterval& II)
: ss(p), I(II) {
BFVecInterval v;
ss.isolateRoots(I.first, I.second, v);
I = v.front();
if (v.size() != 1) {
core_error("CORE ERROR! non-isolating interval",
__FILE__, __LINE__, true);
abort();
}
ffVal = computeFilteredValue(); // Chee: this line seems unnecessary
}
/// destructor
~ConstPolyRep() {}
//@}
CORE_MEMORY(ConstPolyRep)
private:
Sturm<NT> ss; ///< internal Sturm sequences
BFInterval I; ///< current interval contains the real value
// IMPORTANT: I.first and I.second are exact BigFloats
filteredFp computeFilteredValue() {
// refine initial interval to absolute error of 2^(lMSB(k)-54) where
// k is a lower bound on the root (use Cauchy Lower Bound).
// Hence, the precision we pass to refine should be 54-lMSB(k).
// refine with newton (new method)
// ss.seq[0] could be zero!!
// I=ss.newtonRefine(I,
// 54-(ss.seq[0].CauchyLowerBound()).lMSB().asLong());
extLong lbd = ss.seq[0].CauchyLowerBound().lMSB();
if (lbd.isTiny())
I = ss.newtonRefine(I, 54);
else
I = ss.newtonRefine(I, 54-lbd.asLong()); // is this necessary?
//return I.first.doubleValue(); // NOTE: This is not quite right!
// It should be "centralized" to set
// the error bit correctly.
// E.g., otherwise, radical(4,2) will print wrongly.
if ((I.first == 0) && (I.second == 0)) // Checkfor zero value
return filteredFp(0);
BigFloat x = centerize(I.first, I.second);
double val = x.doubleValue();
double max = core_max(core_abs(I.first), core_abs(I.second)).doubleValue();
int ind = 1;
/*
long ee = x.exp()*CHUNK_BIT;
unsigned long err = ee > 0 ? (x.err() << ee) : (x.err() >> (-ee));
double max = core_abs(val) + err;
int ind = longValue((BigInt(x.err()) << 53) / (x.m() + x.err()));
*/
return filteredFp(val, max, ind); // Aug 8, 2004, Comment from Chee:
// I think we should get rid of filters here! Given the interval I,
// we either know the sign (I.first >=0) or (I.second <=0)
// or we don't. We don't need to compute all the index stuff.
// In fact, you have lost the sign in the above computation...
// ALSO, why bother to use filter?
}//computeFilteredValue
protected:
void initNodeInfo() {
nodeInfo = new NodeInfo();
d_e() = ss.seq[0].getTrueDegree(); // return degree of the polynomial
}
/// compute sign and MSB
void computeExactFlags() {
if ((I.first == 0) && (I.second == 0)) {
reduceToZero();
return;
} else if (I.second > 0) {
uMSB() = I.second.uMSB();
lMSB() = I.first.lMSB();
sign() = 1;
} else { // we know that I.first < 0
lMSB() = I.second.lMSB();
uMSB() = I.first.uMSB();
sign() = -1;
}
// length() = 1+ ss.seq[0].length().uMSB();
measure() = 1+ ss.seq[0].length().uMSB(); // since measure<= length
// compute u25, l25, v2p, v2m, v5p, v5m
v2p() = v2m() = v5p() = v5m() = 0;
u25() = 1+ss.seq[0].CauchyUpperBound().uMSB();
l25() = ceilLg(ss.seq[0].getLeadCoeff()); // assumed coeff is integer!!
// ceilLg(BigInt) and ceilLg(Expr) are defined. But if
// NT=int, ceilLg(int) is ambiguous! Added ceilLg(int)
// under BigInt.h
// compute high, low, lc, tc
high() = u25();
low() = - (ss.seq[0].CauchyLowerBound().lMSB()); // note the use of negative
lc() = l25();
tc() = ceilLg(ss.seq[0].getTailCoeff());
// no rational reduction
if (rationalReduceFlag)
ratFlag() = -1;
flagsComputed() = true;
appValue()=centerize(I.first, I.second);// set an initial value for appValue
}
/// compute approximation value
void computeApproxValue(const extLong& relPrec, const extLong& absPrec) {
extLong pr = -lMSB() + relPrec;
extLong p = pr < absPrec ? pr : absPrec;
// bisection sturm (old method)
//I = ss.refine(I, p.asLong()+1);
// refine with newton (new method)
I = ss.newtonRefine(I, p.asLong()+1);
appValue() = centerize(I.first, I.second);
}
};
/// \class UnaryOpRep
/// \brief unary operator node
class UnaryOpRep : public ExprRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
UnaryOpRep(ExprRep* c) : child(c) {
child->incRef();
}
/// destructor
virtual ~UnaryOpRep() {
child->decRef();
}
//@}
/// \name Debug Functions
//@{
/// print debug information in list mode
void debugList(int level, int depthLimit) const;
/// print debug information in tree mode
void debugTree(int level, int indent, int depthLimit) const;
//@}
protected:
ExprRep* child; ///< pointer to its child node
/// initialize nodeInfo
virtual void initNodeInfo();
/// clear visited flag
void clearFlag();
#ifdef CORE_DEBUG
unsigned long dagSize();
void fullClearFlag();
#endif
};
/// \class NegRep
/// \brief unary minus operator node
class NegRep : public UnaryOpRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
NegRep(ExprRep* c) : UnaryOpRep(c) {
ffVal = - child->ffVal;
}
/// destructor
~NegRep() {}
//@}
CORE_MEMORY(NegRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
/// return operator in string
const std::string op() const {
return "Neg";
}
/// count computes the degree of current node, i.e., d_e().
/** This is now a misnomer, but historically accurate.
*/
extLong count();
};
/// \class SqrtRep
/// \brief squartroot operator node
class SqrtRep : public UnaryOpRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
SqrtRep(ExprRep* c) : UnaryOpRep(c) {
ffVal = (child->ffVal).sqrt();
}
/// destructor
~SqrtRep() {}
//@}
CORE_MEMORY(SqrtRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
/// return operator in string
const std::string op() const {
return "Sqrt";
}
/// count computes the degree of current node, i.e., d_e().
/** This is now a misnomer, but historically accurate.
*/
extLong count();
};
/// \class BinOpRep
/// \brief binary operator node
class BinOpRep : public ExprRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
BinOpRep(ExprRep* f, ExprRep* s) : first(f), second(s) {
first->incRef();
second->incRef();
}
/// destructor
virtual ~BinOpRep() {
first->decRef();
second->decRef();
}
//@}
/// \name Debug Functions
//@{
/// print debug information in list mode
void debugList(int level, int depthLimit) const;
/// print debug information in tree mode
void debugTree(int level, int indent, int depthLimit) const;
//@}
protected:
ExprRep* first; ///< first operand
ExprRep* second; ///< second operand
/// initialize nodeInfo
virtual void initNodeInfo();
/// clear visited flags
void clearFlag();
/// count computes the degree of current node, i.e., d_e().
/** This is now a misnomer, but historically accurate.
*/
extLong count();
#ifdef CORE_DEBUG
unsigned long dagSize();
void fullClearFlag();
#endif
};
/// \struct Add
/// \brief "functor" class used as parameter to AddSubRep<>
struct Add {
/// name
static const char* name;
/// unary operator
template <class T>
const T& operator()(const T& t) const {
return t;
}
/// binary operator
template <class T>
T operator()(const T& a, const T& b) const {
return a+b;
}
};
/// \struct Sub
/// \brief "functor" class used as parameter to AddSubRep<>
struct Sub {
/// name
static const char* name;
/// unary operator
template <class T>
T operator()(const T& t) const {
return -t;
}
/// binary operator
template <class T>
T operator()(const T& a, const T& b) const {
return a-b;
}
};
/// \class AddSubRep
/// \brief template class where operator is supposed to be Add or Sub
template <class Operator>
class AddSubRep : public BinOpRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
AddSubRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
ffVal = Op(first->ffVal, second->ffVal);
}
/// destructor
~AddSubRep() {}
//@}
CORE_MEMORY(AddSubRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
/// return operator in string
const std::string op() const {
return Operator::name;
}
private:
static Operator Op;
};//AddSubRep class
template <class Operator>
Operator AddSubRep<Operator>::Op;
/// AddSubRep<Op>::computeExactFlags()
/// This function is the heart of Expr class,
/// and hence the heart of Core Library!
/// Here is where we use the root bounds.
template <class Operator>
void AddSubRep<Operator>::computeExactFlags() {
if (!first->flagsComputed())
first->computeExactFlags();
if (!second->flagsComputed())
second->computeExactFlags();
int sf = first->sign();
int ss = second->sign();
if ((sf == 0) && (ss == 0)) { // the node is zero
reduceToZero();
return;
} else if (sf == 0) { // first operand is zero
reduceTo(second);
sign() = Op(ss);
appValue() = Op(appValue());
if (rationalReduceFlag && ratFlag() > 0)
*(ratValue()) = Op(*(ratValue()));
return;
} else if (ss == 0) { // second operand is zero
reduceTo(first);
return;
}
// rational node
if (rationalReduceFlag) {
if (first->ratFlag() > 0 && second->ratFlag() > 0) {
BigRat val=Op(*(first->ratValue()), *(second->ratValue()));
reduceToBigRat(val);
ratFlag() = first->ratFlag() + second->ratFlag();
return;
} else
ratFlag() = -1;
}
// neither operand is zero
extLong df = first->d_e();
extLong ds = second->d_e();
// extLong md = df < ds ? df : ds;
// extLong l1 = first->length();
// extLong l2 = second->length();
extLong m1 = first->measure();
extLong m2 = second->measure();
// length() = df * l2 + ds * l1 + d_e() + md;
measure() = m1 * ds + m2 * df + d_e();
// BFMSS[2,5] bound.
v2p() = core_min(first->v2p() + second->v2m(),
first->v2m() + second->v2p());
v2m() = first->v2m() + second->v2m();
v5p() = core_min(first->v5p() + second->v5m(),
first->v5m() + second->v5p());
v5m() = first->v5m() + second->v5m();
if (v2p().isInfty() || v5p().isInfty())
u25() = CORE_INFTY;
else
u25() = EXTLONG_ONE + core_max(first->v2p() + second->v2m()
- v2p() + ceilLg5(first->v5p() + second->v5m() - v5p())
+ first->u25() + second->l25(),
first->v2m() + second->v2p() - v2p()
+ ceilLg5(first->v5m() + second->v5p() - v5p())
+ first->l25() + second->u25());
l25() = first->l25() + second->l25();
lc() = ds * first->lc() + df * second->lc();
tc() = measure();
high() = core_max(first->high(),second->high())+EXTLONG_ONE;
// The following is a subset of the minimization in computeBound().
low() = core_min(measure(), (d_e()-EXTLONG_ONE)*high() + lc());
extLong lf = first->lMSB();
extLong ls = second->lMSB();
extLong uf = first->uMSB();
extLong us = second->uMSB();
extLong l = core_max(lf, ls);
extLong u = core_max(uf, us);
#ifdef CORE_TRACE
std::cout << "INSIDE Add/sub Rep: " << std::endl;
#endif
if (Op(sf, ss) != 0) { // can't possibly cancel out
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: Op(sf, ss) non-zero" << std::endl;
#endif
uMSB() = u + EXTLONG_ONE;
lMSB() = l; // lMSB = core_min(lf, ls)+1 better
sign() = sf;
} else { // might cancel out
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: Op(sf, ss) zero" << std::endl;
#endif
uMSB() = u + EXTLONG_ONE;
uMSB() = u;
if (lf >= us + EXTLONG_TWO) {// one is at least 1 order of magnitude larger
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: Can't cancel" << std::endl;
#endif
lMSB() = lf - EXTLONG_ONE; // can't possibly cancel out
sign() = sf;
} else if (ls >= uf + EXTLONG_TWO) {
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: Can't cancel" << std::endl;
#endif
lMSB() = ls - EXTLONG_ONE;
sign() = Op(ss);
} else if (ffVal.isOK()) {// begin filter computation
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: filter used" << std::endl;
#endif
#ifdef CORE_DEBUG_FILTER
std::cout << "call filter in " << op() << "Rep" << std::endl;
#endif
sign() = ffVal.sign();
lMSB() = ffVal.lMSB();
uMSB() = ffVal.uMSB();
} else { // about the same size, might cancel out
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: iteration start" << std::endl;
#endif
extLong lowBound = computeBound();
/* Zilin 06/11/2003
* as BFMSS[2] might be a negative number, lowBound can be negative.
* In this case, we just set it to 1 since we need at least one bit
* to get the sign. In the future, we may need to improve this.
*/
if (lowBound <= EXTLONG_ZERO)
lowBound = EXTLONG_ONE;
if (!progressiveEvalFlag) {
// convert the absolute error requirement "lowBound" to
// a relative error requirement "ur", s.t.
// |x|*2^(-ur) <= 2^(-lowBound).
// ==> r >= a + lg(x) >= a + (uMSB + 1);
// extLong rf = lowBound + (uf + 1);
// extLong rs = lowBound + (us + 1);
// first->approx(rf, CORE_INFTY);
// second->approx(rs, CORE_INFTY);
// Chen: considering the uMSB is also an approximate bound.
// we choose to use absolute precision up-front.
Real newValue = Op(first->getAppValue(CORE_INFTY,
lowBound + EXTLONG_ONE),
second->getAppValue(CORE_INFTY,
lowBound + EXTLONG_ONE));
if (!newValue.isZeroIn()) { // Op(first, second) != 0
lMSB() = newValue.lMSB();
uMSB() = newValue.uMSB(); // chen: to get tighers value.
sign() = newValue.sign();
} else if (lowBound.isInfty()) {//check if rootbound is too big
core_error("AddSubRep:root bound has exceeded the maximum size\n \
but we still cannot decide zero.\n", __FILE__, __LINE__, false);
} else { // Op(first, second) == 0
lMSB() = CORE_negInfty;
sign() = 0;
}
} else { // else do progressive evaluation
#ifdef CORE_TRACE
std::cout << "Add/sub Rep: progressive eval" << std::endl;
#endif
// Oct 30, 2002: fixed a bug here! Old versions used relative
// precision bounds, but one should absolute precision for addition!
// Moreover, this is much more efficient.
// ua is the upper bound on the absolute precision in our iteration
// Chee, Aug 8, 2004: it is important that ua be strictly
// larger than lowBound AND the defaultInitialProgressivePrec,
// so that we do at least one iteration of the for-loop. So:
// i is the variable for iteration.
extLong i = core_min(defInitialProgressivePrec, lowBound.asLong());
extLong ua = lowBound.asLong() + EXTLONG_ONE;
// NOTE: ua is allowed to be CORE_INFTY
#ifdef CORE_DEBUG_BOUND
std::cout << "DebugBound:" << "ua = " << ua << std::endl;
#endif
// We initially set the lMSB and sign as if the value is zero:
lMSB() = CORE_negInfty;
sign() = 0;
EscapePrecFlag = 0; // reset the Escape Flag
// Now we try to determine the real lMSB and sign,
// in case it is not really zero:
#ifdef CORE_TRACE
std::cout << "Upper bound (ua) for iteration is " << ua << std::endl;
std::cout << "Starting iteration at i = " << i << std::endl;
#endif
for ( ; i<ua; i*=EXTLONG_TWO) {
// relative bits = i
//
// PROBLEM WITH NEXT LINE: you must ensure that
// first and second are represented by BigFloats...
//
Real newValue = Op(first->getAppValue(CORE_INFTY, i),
second->getAppValue(CORE_INFTY, i));
#ifdef CORE_TRACE
if (newValue.getRep().ID() == REAL_BIGFLOAT)
std::cout << "BigFloat! newValue->rep->ID() = "
<< newValue.getRep().ID() << std::endl;
else
std::cout << "ERROR, Not BigFloat! newValue->rep->ID() ="
<< newValue.getRep().ID() << std::endl;
std::cout << "newValue = Op(first,second) = "
<< newValue << std::endl;
std::cout << "first:appVal, appComputed, knownPrec, sign ="
<< first->appValue() << ","
<< first->appComputed() << ","
<< first->knownPrecision() << ","
<< first->sign() << std::endl;
std::cout << "second:appVal, appComputed, knownPrec, sign ="
<< second->appValue() << ","
<< second->appComputed() << ","
<< second->knownPrecision() << ","
<< second->sign() << std::endl;
#endif
if (!newValue.isZeroIn()) { // Op(first, second) != 0
lMSB() = newValue.lMSB();
uMSB() = newValue.uMSB();
sign() = newValue.sign();
#ifdef CORE_DEBUG_BOUND
std::cout << "DebugBound(Exit Loop): " << "i=" << i << std::endl;
#endif
#ifdef CORE_TRACE
std::cout << "Zero is not in, lMSB() = " << lMSB()
<< ", uMSB() = " << uMSB()
<< ", sign() = " << sign() << std::endl;
std::cout << "newValue = " << newValue << std::endl;
#endif
break; // assert -- this must happen in the loop if nonzero!
}
//8/9/01, Chee: implement escape precision here:
if (i> EscapePrec) {
EscapePrecFlag = -i.asLong();//negative means EscapePrec is used
core_error("Escape precision triggered at",
__FILE__, __LINE__, false);
if (EscapePrecWarning)
std::cout<< "Escape Precision triggered at "
<< EscapePrec << " bits" << std::endl;
#ifdef CORE_DEBUG
std::cout << "EscapePrecFlags=" << EscapePrecFlag << std::endl;
std::cout << "ua =" << ua << ",lowBound=" << lowBound << std::endl;
#endif
break;
}// if
}// for (long i=1...)
#ifdef CORE_DEBUG_BOUND
rootBoundHitCounter++;
#endif
if (sign() == 0 && ua .isInfty()) {
core_error("AddSubRep: root bound has exceeded the maximum size\n \
but we still cannot decide zero.\n", __FILE__, __LINE__, true);
} // if (sign == 0 && ua .isInfty())
}// else do progressive
}
}
flagsComputed() = true;
}// AddSubRep::computeExactFlags
template <class Operator>
void AddSubRep<Operator>::computeApproxValue(const extLong& relPrec,
const extLong& absPrec) {
// Nov 13, 2002: added the analog of "reduceTo(first)" and "reduceTo(second)"
// that is found in computeExactFlags. This is more efficient, but
// it also removes a NaN warning in subsequent logic!
// E.g., if first=0, then first->uMSB and first->lMSB are -infty, and
// subtracting them creates NaN. Chee and Zilin.
if (first->sign() == 0) {
appValue() = Op(second->getAppValue(relPrec, absPrec));
return;
}
if (second->sign() == 0) {
appValue() = first->getAppValue(relPrec, absPrec);
return;
}
if (lMSB() < EXTLONG_BIG && lMSB() > EXTLONG_SMALL) {
extLong rf = first->uMSB()-lMSB()+relPrec+EXTLONG_FOUR; // 2 better
if (rf < EXTLONG_ZERO)
rf = EXTLONG_ZERO; // from Koji's thesis P63: Proposition 26
extLong rs = second->uMSB()-lMSB()+relPrec+EXTLONG_FOUR; // 2 better
if (rs < EXTLONG_ZERO)
rs = EXTLONG_ZERO; // from Koji's thesis P63: Proposition 26
extLong a = absPrec + EXTLONG_THREE; // 1 better
appValue() = Op(first->getAppValue(rf, a), second->getAppValue(rs, a));
} else {
std::cerr << "lMSB = " << lMSB() << std::endl; // should be in core_error
core_error("CORE WARNING: a huge lMSB in AddSubRep",
__FILE__, __LINE__, false);
}
}
/// \typedef AddRep
/// \brief AddRep for easy of use
typedef AddSubRep<Add> AddRep;
/// \typedef SubRep
/// \brief SuRep for easy of use
typedef AddSubRep<Sub> SubRep;
/// \class MultRep
/// \brief multiplication operator node
class MultRep : public BinOpRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
MultRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
ffVal = first->ffVal * second->ffVal;
}
/// destructor
~MultRep() {}
//@}
CORE_MEMORY(MultRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
/// return operator in string
const std::string op() const {
return "*";
}
};
/// \class DivRep
/// \brief division operator node
class DivRep : public BinOpRep {
public:
/// \name Constructors and Destructor
//@{
/// constructor
DivRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
ffVal = first->ffVal / second->ffVal;
}
/// destructor
~DivRep() {}
//@}
CORE_MEMORY(DivRep)
protected:
/// compute sign and MSB
void computeExactFlags();
/// compute approximation value
void computeApproxValue(const extLong&, const extLong&);
/// return operator in string
const std::string op() const {
return "/";
}
};
// inline functions
inline int ExprRep::getExactSign() {
if (!nodeInfo)
initNodeInfo();
if (!flagsComputed()) {
degreeBound();
#ifdef CORE_DEBUG
dagSize();
fullClearFlag();
#endif
computeExactFlags();
}
return sign();
}
// Chee, 7/17/02: degreeBound() function is now
// taken out of "computeExactFlags()
inline int ExprRep::getSign() {
if (ffVal.isOK())
return ffVal.sign();
else
return getExactSign();
}
// you need force to approximate before call these functions!!
inline BigInt ExprRep::BigIntValue() {
return getAppValue().BigIntValue();
}
inline BigRat ExprRep::BigRatValue() {
return getAppValue().BigRatValue();
}
inline BigFloat ExprRep::BigFloatValue() {
return getAppValue().BigFloatValue();
}
CORE_END_NAMESPACE
#endif // _CORE_EXPRREP_H_
|