1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: Real.h
*
* Synopsis: The Real class is a superclass for all the number
* systems in the Core Library (int, long, float, double,
* BigInt, BigRat, BigFloat, etc)
*
* Written by
* Koji Ouchi <ouchi@simulation.nyu.edu>
* Chee Yap <yap@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
* Sylvain Pion <pion@cs.nyu.edu>
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/Real.h $
* $Id: Real.h 28567 2006-02-16 14:30:13Z lsaboret $
***************************************************************************/
#ifndef _CORE_REAL_H_
#define _CORE_REAL_H_
#include "RealRep.h"
CORE_BEGIN_NAMESPACE
// class Real
typedef RCImpl<RealRep> RCReal;
class Real : public RCReal {
public:
Real(int i=0) : RCReal(new RealLong(i)) {}
Real(unsigned int ui) : RCReal(NULL) {
(ui<=INT_MAX) ? (rep=new RealLong(static_cast<int>(ui))) : (rep=new RealBigInt(ui));
}
Real(long l) : RCReal(new RealLong(l)) {}
Real(unsigned long ul) : RCReal(NULL) {
(ul<=LONG_MAX) ? (rep=new RealLong(static_cast<long>(ul))) : (rep=new RealBigInt(ul));
}
Real(float f) : RCReal(new RealDouble(f)) {}
Real(double d) : RCReal(new RealDouble(d)) {}
Real(const BigInt& I) : RCReal(new RealBigInt(I)) {}
Real(const BigRat& R) : RCReal(new RealBigRat(R)) {}
Real(const BigFloat& F) : RCReal(new RealBigFloat(F)) {}
Real(const char* s, const extLong& prec=defInputDigits) : RCReal(NULL) {
constructFromString(s, prec);
}
Real(const std::string& s, const extLong& prec=defInputDigits) : RCReal(NULL){
constructFromString(s.c_str(), prec);
}
/// \name Copy-Assignment-Destructor
//@{
/// copy constructor
Real(const Real& rhs) : RCReal(rhs) {
rep->incRef();
}
/// assignment operator
Real& operator=(const Real& rhs) {
if (this != &rhs) {
rep->decRef();
rep = rhs.rep;
rep->incRef();
}
return *this;
}
/// destructor
~Real() {
rep->decRef();
}
//@}
/// \name Compound Assignment Operators
//@{
/// operator+=
Real& operator+=(const Real& x);
/// operator-=
Real& operator-=(const Real& x);
/// operator*=
Real& operator*=(const Real& x);
/// operator/=
Real& operator/=(const Real& x);
//@}
/// \name Unary Minus, Increment and Decrement Operators
//@{
/// unary plus
Real operator+() const {
return Real(*this);
}
/// unary minus
Real operator-() const {
return -(*rep);
}
/// left increment operator (++i)
Real& operator++() {
*this += 1;
return *this;
}
/// left decrement operator (--i)
Real& operator--() {
*this -= 1;
return *this;
}
/// right increment operator (i++)
Real operator++(int) {
Real t(*this);
*this += 1;
return t;
}
/// right deccrement operator (i--)
Real operator--(int) {
Real t(*this);
*this -= 1;
return t;
}
//@}
/// \name String Conversion Functions
//@{
/// set value from <tt>const char*</tt>
void fromString(const char* s, const extLong& prec = defInputDigits) {
*this = Real(s, prec);
}
/// convert to <tt>std::string</tt>
/** give decimal string representation */
std::string toString(long prec=defOutputDigits, bool sci=false) const {
return rep->toString(prec, sci);
}
//@}
/// \name Conversion Functions
//@{
/// convert to \c int
int intValue() const {
return static_cast<int>(longValue());
}
/// convert to \c long
long longValue() const {
return rep->longValue();
}
/// convert to \c float
float floatValue() const {
return static_cast<float>(doubleValue());
}
/// convert to \c double
double doubleValue() const {
return rep->doubleValue();
}
/// convert to \c BigInt
BigInt BigIntValue() const {
return rep->BigIntValue();
}
/// convert to \c BigRat
BigRat BigRatValue() const {
return rep->BigRatValue();
}
/// convert to \c BigFloat (approximate it first!)
BigFloat BigFloatValue() const {
return rep->BigFloatValue();
}
//@}
/// \name Aprroximation Function
//@{
/// approximation
Real approx(const extLong& r=defRelPrec, const extLong& a=defAbsPrec) const {
return rep->approx(r, a);
}
//@}
/// \name Helper Functions
//@{
/// sign function
int sign() const {
return rep->sgn();
}
/// isZero function
bool isZero() const {
return sign() == 0;
}
/// return true if interval contains zero
bool isZeroIn() const {
return rep->isZeroIn();
}
/// absolute value function
Real abs() const {
return (sign() >= 0) ? +(*this) : -(*this);
}
/// get mantissa of current approximate value
BigInt getMantissa() const {
return BigFloatValue().m();
}
/// get exponent of current approximate value
long getExponent() const {
return BigFloatValue().exp();
}
/// return true if error free otherwise return false;
bool isExact() const {
return rep->isExact();
}
/// low bound of MSB
extLong lMSB() const {
return isExact() ? MSB():(rep->BigFloatValue()).lMSB();
}
/// upper bound of MSB
extLong uMSB() const {
return isExact() ? MSB():(rep->BigFloatValue()).uMSB();
}
/// MSB - Most Significant Bit
extLong MSB() const {
return rep->mostSignificantBit;
}
/// floor of log_2 of Error
extLong flrLgErr() const {
return rep->flrLgErr();
}
/// ceil of log_2 of Error
extLong clLgErr() const {
return rep->clLgErr();
}
/// division with desired precision
Real div(const Real& x, const extLong& r) const;
/// squareroot
Real sqrt(const extLong& x) const {
return rep->sqrt(x);
}
/// squareroot with initial approximation
Real sqrt(const extLong& x, const BigFloat& A) const {
return rep->sqrt(x, A);
}
/// correspond to the variables "u25, l25, v2p, v2m, v5p, v5m" in Expr
void ULV_E(extLong &up, extLong &lp, extLong &v2p, extLong &v2m,
extLong &v5p, extLong &v5m) const {
rep->ULV_E(up, lp, v2p, v2m, v5p, v5m);
}
/// degree of polynomial P(x)
unsigned long degree() const {
return rep->degree();
}
/// \f$ lg(|| P(X) ||_2) \f$
unsigned long length() const {
return rep->length();
}
/// \f$ lg(|| P(X) ||_\infty) \f$
unsigned long height() const {
return rep->height();
}
//@}
/// return Real(0)
static const Real& getZero();
private:
void constructFromString(const char *str, const extLong& prec);
};
#define CORE_REAL_ZERO Real::getZero()
const long halfLongMax = LONG_MAX /2;
const long halfLongMin = LONG_MIN /2;
struct _real_add {
template <class T>
static Real eval(const T& a, const T& b) {
return a+b;
}
// specialized for two long values
static Real eval(long a, long b) {
if ((a > halfLongMax && b > halfLongMax) || (a < halfLongMin && b < halfLongMin))
return BigInt(a)+BigInt(b);
else
return a+b;
}
};
struct _real_sub {
template <class T>
static Real eval(const T& a, const T& b) {
return a-b;
}
// specialized for two long values
static Real eval(long a, long b) {
if ((a > halfLongMax && b < halfLongMin) || (a < halfLongMin && b > halfLongMax))
return BigInt(a)-BigInt(b);
else
return a-b;
}
};
struct _real_mul {
template <class T>
static Real eval(const T& a, const T& b) {
return a*b;
}
// specialized for two long values
static Real eval(long a, long b) {
if (flrLg(a) + flrLg(b) >= static_cast<int>(LONG_BIT-2))
return BigInt(a)*BigInt(b);
else
return a*b;
}
};
template <class Op>
struct _real_binary_op {
static Real eval(const RealRep& a, const RealRep& b) {
if (a.ID() == REAL_BIGRAT || b.ID() == REAL_BIGRAT) {
if (!a.isExact()) { // a must be a BigFloat and b must be a BigRat
BigFloat bf_a = a.BigFloatValue(), bf_b;
bf_b.approx(b.BigRatValue(), CORE_posInfty, -bf_a.flrLgErr());
return Op::eval(bf_a, bf_b);
} else if (!b.isExact()) { // a must be a BigRat and b must be a BigFloat
BigFloat bf_a, bf_b = b.BigFloatValue();
bf_a.approx(a.BigRatValue(), CORE_posInfty, -bf_b.flrLgErr());
return Op::eval(bf_a, bf_b);
} else // both are BigRat
return Op::eval(a.BigRatValue(), b.BigRatValue());
} else if (a.ID() == REAL_BIGFLOAT || b.ID() == REAL_BIGFLOAT
|| a.ID() == REAL_DOUBLE || b.ID() == REAL_DOUBLE) {
return Op::eval(a.BigFloatValue(), b.BigFloatValue());
} else if (a.ID() == REAL_BIGINT || b.ID() == REAL_BIGINT) {
return Op::eval(a.BigIntValue(), b.BigIntValue());
} else { // a.ID() == REAL_LONG && b.ID() == REAL_LONG
return Op::eval(a.longValue(), b.longValue());
}
}
};
typedef _real_binary_op<_real_add> real_add;
typedef _real_binary_op<_real_sub> real_sub;
typedef _real_binary_op<_real_mul> real_mul;
struct real_div {
static Real eval(const RealRep& a, const RealRep& b, const extLong& r) {
if (a.ID() == REAL_BIGRAT || b.ID() == REAL_BIGRAT) {
if (!a.isExact()) { // a must be a BigFloat and b must be a BigRat
BigFloat bf_a = a.BigFloatValue(), bf_b;
bf_b.approx(b.BigRatValue(), bf_a.MSB() - bf_a.flrLgErr() + 1, CORE_posInfty);
return bf_a.div(bf_b, r);
} else if (!b.isExact()) { // a must be a BigRat and b must be a BigFloat
BigFloat bf_a, bf_b = b.BigFloatValue();
bf_a.approx(a.BigRatValue(), bf_b.MSB() - bf_b.flrLgErr() + 1, CORE_posInfty);
return bf_a.div(bf_b, r);
} else // both are BigRat
return a.BigRatValue()/b.BigRatValue();
} else if (a.ID() == REAL_BIGFLOAT || b.ID() == REAL_BIGFLOAT
|| a.ID() == REAL_DOUBLE || b.ID() == REAL_DOUBLE) {
return a.BigFloatValue().div(b.BigFloatValue(), r);
} else if (a.ID() == REAL_BIGINT || b.ID() == REAL_BIGINT) {
return BigRat(a.BigIntValue(), b.BigIntValue());
} else { // a.ID() == REAL_LONG && b.ID() == REAL_LONG
return BigRat(a.longValue(), b.longValue());
}
}
};
std::istream& operator>>(std::istream& i, Real& r);
inline std::ostream& operator<<(std::ostream& o, const Real& r) {
return r.getRep().operator<<(o);
}
inline Real& Real::operator+=(const Real& rhs) {
*this = real_add::eval(getRep(), rhs.getRep());
return *this;
}
inline Real& Real::operator-=(const Real& rhs) {
*this = real_sub::eval(getRep(), rhs.getRep());
return *this;
}
inline Real& Real::operator*=(const Real& rhs) {
*this = real_mul::eval(getRep(), rhs.getRep());
return *this;
}
inline Real& Real::operator/=(const Real& rhs) {
*this = real_div::eval(getRep(), rhs.getRep(), defRelPrec);
return *this;
}
// operator+
inline Real operator+(const Real& x, const Real& y) {
return real_add::eval(x.getRep(), y.getRep());
}
// operator-
inline Real operator-(const Real& x, const Real& y) {
return real_sub::eval(x.getRep(), y.getRep());
}
// operator*
inline Real operator*(const Real& x, const Real& y) {
return real_mul::eval(x.getRep(), y.getRep());
}
// operator/
inline Real operator/(const Real& x, const Real& y) {
return real_div::eval(x.getRep(), y.getRep(), defRelPrec);
}
// div w/ precision
inline Real Real::div(const Real& x, const extLong& r) const {
return real_div::eval(getRep(), x.getRep(), r);
}
inline int cmp(const Real& x, const Real& y) {
return (x-y).sign();
}
inline bool operator==(const Real& x, const Real& y) {
return cmp(x, y) == 0;
}
inline bool operator!=(const Real& x, const Real& y) {
return cmp(x, y) != 0;
}
inline bool operator>=(const Real& x, const Real& y) {
return cmp(x, y) >= 0;
}
inline bool operator>(const Real& x, const Real& y) {
return cmp(x, y) > 0;
}
inline bool operator<=(const Real& x, const Real& y) {
return cmp(x, y) <= 0;
}
inline bool operator<(const Real& x, const Real& y) {
return cmp(x, y) < 0;
}
/// floor function
BigInt floor(const Real&, Real&);
/// power function
Real pow(const Real&, unsigned long);
/// return sign
inline int sign(const Real& r) {
return r.sign();
}
/// is zero?
inline bool isZero(const Real& r) {
return r.sign() == 0;
}
/// absolute value
inline Real abs(const Real& x) {
return x.abs();
}
/// absolute value (same as abs)
inline Real fabs(const Real& x) {
return abs(x);
}
/// floor
inline BigInt floor(const Real& r) {
Real tmp;
return floor(r, tmp);
}
/// ceiling
inline BigInt ceil(const Real& r) {
return -floor(-r);
}
/// power
inline Real power(const Real& r, unsigned long p) {
return pow(r, p);
}
/// square root
inline Real sqrt(const Real& x) {
return x.sqrt(defAbsPrec);
}
// class Realbase_for (need defined after Real)
// unary minus operator
template <class T>
inline Real Realbase_for<T>::operator-() const {
return -ker;
}
template <>
inline Real RealLong::operator-() const {
return ker < -LONG_MAX ? -BigInt(ker) : -ker;
}
CORE_END_NAMESPACE
#endif // _CORE_REAL_H_
|