1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: RealRep.h
* Synopsis:
* Internal Representation for Real
*
* Written by
* Koji Ouchi <ouchi@simulation.nyu.edu>
* Chee Yap <yap@cs.nyu.edu>
* Chen Li <chenli@cs.nyu.edu>
* Zilin Du <zilin@cs.nyu.edu>
* Sylvain Pion <pion@cs.nyu.edu>
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/RealRep.h $
* $Id: RealRep.h 28567 2006-02-16 14:30:13Z lsaboret $
***************************************************************************/
#ifndef _CORE_REALREP_H_
#define _CORE_REALREP_H_
#include "BigFloat.h"
CORE_BEGIN_NAMESPACE
class Real;
class RealRep {
public:
extLong mostSignificantBit;
public:
RealRep() : refCount(1) {}
virtual ~RealRep() {}
virtual int ID() const = 0;
virtual long longValue() const = 0;
virtual double doubleValue() const = 0;
virtual BigInt BigIntValue() const = 0;
virtual BigRat BigRatValue() const = 0;
virtual BigFloat BigFloatValue() const = 0;
virtual BigFloat approx(const extLong&, const extLong&) const = 0;
virtual Real operator-() const = 0;
virtual bool isExact() const = 0;
virtual int sgn() const = 0;
virtual bool isZeroIn() const = 0;
virtual BigFloat sqrt(const extLong&) const = 0;
virtual BigFloat sqrt(const extLong&, const BigFloat&) const = 0;
virtual void ULV_E(extLong &, extLong&, extLong&,
extLong&, extLong&, extLong&) const = 0;
virtual extLong flrLgErr() const = 0;
virtual extLong clLgErr() const = 0;
virtual unsigned long degree() const = 0;
virtual unsigned long length() const = 0;
virtual unsigned long height() const = 0;
virtual std::string toString(long prec, bool sci) const = 0;
virtual std::ostream& operator<<(std::ostream& o) const = 0;
public:
void incRef() {
++refCount;
}
void decRef() {
if (--refCount == 0)
delete this;
}
int getRefCount() const {
return refCount;
}
private:
int refCount;
};//realRep class
template <class T>
class Realbase_for : public RealRep {
public:
CORE_MEMORY(Realbase_for)
Realbase_for(const T& k);
~Realbase_for() {}
int ID() const;
long longValue() const {
return ker.longValue();
}
double doubleValue() const {
return ker.doubleValue();
}
BigInt BigIntValue() const {
return BigInt(ker);
}
BigRat BigRatValue() const {
return BigRat(ker);
}
BigFloat BigFloatValue() const {
return BigFloat(ker);
}
BigFloat approx(const extLong&, const extLong&) const;
Real operator-() const;
bool isExact() const {
return true;
}
int sgn() const {
return ker > 0.0 ? 1 : ( ker == 0.0 ? 0 : -1);
}
bool isZeroIn() const {
return ker == 0.0;
}
BigFloat sqrt(const extLong&) const;
BigFloat sqrt(const extLong&, const BigFloat&) const;
void ULV_E(extLong &, extLong&, extLong&, extLong&, extLong&, extLong&) const;
extLong flrLgErr() const {
return CORE_negInfty;
}
extLong clLgErr() const {
return CORE_negInfty;
}
unsigned long degree() const {
return 1;
}
unsigned long length() const;
unsigned long height() const;
std::string toString(long, bool) const {
std::stringstream st;
st << ker;
return st.str();
}
std::ostream& operator<<(std::ostream& o) const {
return o << ker;
}
private:
T ker;
};//Realbase_for class
typedef Realbase_for<long> RealLong;
typedef Realbase_for<double> RealDouble;
typedef Realbase_for<BigInt> RealBigInt;
typedef Realbase_for<BigRat> RealBigRat;
typedef Realbase_for<BigFloat> RealBigFloat;
enum { REAL_LONG, REAL_DOUBLE, REAL_BIGINT, REAL_BIGRAT, REAL_BIGFLOAT };
// constructors
template<>
inline RealLong::Realbase_for(const long& l) : ker(l) {
mostSignificantBit = (ker != 0 ) ? extLong(flrLg(ker)) : CORE_negInfty;
}
template<>
inline RealDouble::Realbase_for(const double& d) : ker(d) {
mostSignificantBit = BigFloat(ker).MSB();
}
template<>
inline RealBigInt::Realbase_for(const BigInt& l) : ker(l) {
mostSignificantBit = (sign(ker)) ? extLong(floorLg(ker)) : CORE_negInfty;
}
template<>
inline RealBigRat::Realbase_for(const BigRat& l) : ker(l) {
mostSignificantBit = BigFloat(ker).MSB();
}
template<>
inline RealBigFloat::Realbase_for(const BigFloat& l) : ker(l) {
mostSignificantBit = ker.MSB();
}
// ID()
template<>
inline int RealLong::ID() const {
return REAL_LONG;
}
template<>
inline int RealDouble::ID() const {
return REAL_DOUBLE;
}
template<>
inline int RealBigInt::ID() const {
return REAL_BIGINT;
}
template<>
inline int RealBigRat::ID() const {
return REAL_BIGRAT;
}
template<>
inline int RealBigFloat::ID() const {
return REAL_BIGFLOAT;
}
// cast functions
template<>
inline long RealLong::longValue() const {
return ker;
}
template<>
inline long RealDouble::longValue() const {
return static_cast<long>(ker);
}
template<>
inline double RealLong::doubleValue() const {
return static_cast<double>(ker);
}
template<>
inline double RealDouble::doubleValue() const {
return ker;
}
template<>
inline BigInt RealBigInt::BigIntValue() const {
return ker;
}
template<>
inline BigInt RealBigRat::BigIntValue() const {
return ker.BigIntValue();
}
template<>
inline BigInt RealBigFloat::BigIntValue() const {
return ker.BigIntValue();
}
template<>
inline BigRat RealBigRat::BigRatValue() const {
return ker;
}
template<>
inline BigRat RealBigFloat::BigRatValue() const {
return ker.BigRatValue();
}
template<>
inline BigFloat RealBigFloat::BigFloatValue() const {
return ker;
}
// isExact()
template<>
inline bool RealBigFloat::isExact() const {
return ker.isExact();
}
// sign()
template<>
inline int RealBigInt::sgn() const {
return sign(ker);
}
template<>
inline int RealBigRat::sgn() const {
return sign(ker);
}
template<>
inline int RealBigFloat::sgn() const {
return ker.sign();
}
// isZeroIn()
template<>
inline bool RealBigInt::isZeroIn() const {
return sign(ker) == 0;
}
template<>
inline bool RealBigRat::isZeroIn() const {
return sign(ker) == 0;
}
template<>
inline bool RealBigFloat::isZeroIn() const {
return ker.isZeroIn();
}
// approx
template <class T>
inline BigFloat Realbase_for<T>::approx(const extLong& r, const extLong& a) const {
BigFloat x;
x.approx(ker, r, a);
return x;
}
template <>
inline BigFloat RealLong::approx(const extLong& r, const extLong& a) const {
BigFloat x;
x.approx(BigInt(ker), r, a);
return x;
}
template <>
inline BigFloat RealDouble::approx(const extLong& r, const extLong& a) const {
BigFloat x;
x.approx(BigRat(ker), r, a);
return x;
}
// sqrt
template <class T>
inline BigFloat Realbase_for<T>::sqrt(const extLong& a) const {
return BigFloat(ker).sqrt(a);
}
template <class T>
inline BigFloat Realbase_for<T>::sqrt(const extLong& a, const BigFloat& A) const {
return BigFloat(ker).sqrt(a, A);
}
// ULV_E()
template<>
inline void RealLong::ULV_E(extLong &up, extLong &lp, extLong &v2p,
extLong &v2m, extLong &v5p, extLong &v5m) const {
// TODO : extract the power of 5.
up = lp = v2p = v2m = v5p = v5m = EXTLONG_ZERO;
if (ker == 0)
return;
// Extract the power of 2.
unsigned long exp = 0;
unsigned long tmp_ker = ker;
while ((tmp_ker&1) != 0) {
tmp_ker = tmp_ker/2;
++exp;
}
up = clLg(tmp_ker);
lp = 0;
v2p = exp;
}
template<>
inline void RealDouble::ULV_E(extLong &up, extLong &lp, extLong &v2p,
extLong &v2m, extLong &v5p, extLong &v5m) const {
// TODO : can probably be made faster using frexp() or such.
// TODO : extract the power of 5.
BigRat R = BigRat(ker);
up = ceilLg(numerator(R));
v2m = ceilLg(denominator(R));
lp = v2p = v5m = v5p = EXTLONG_ZERO;
}
template<>
inline void RealBigInt::ULV_E(extLong &up, extLong &lp, extLong &v2p,
extLong &v2m, extLong &v5p, extLong &v5m) const {
up = lp = v2p = v2m = v5p = v5m = EXTLONG_ZERO;
if (ker == 0)
return;
// Extract power of 5.
int exp5;
BigInt remainder5;
getKaryExpo(ker, remainder5, exp5, 5);
v5p = exp5;
// Extract power of 2.
int exp2 = getBinExpo(remainder5);
up = ceilLg(remainder5) - exp2;
v2p = exp2;
}
template<>
inline void RealBigRat::ULV_E(extLong &up, extLong &lp, extLong &v2p,
extLong &v2m, extLong &v5p, extLong &v5m) const {
up = lp = v2p = v2m = v5p = v5m = EXTLONG_ZERO;
if (ker == 0)
return;
// Extract power of 5.
int exp5;
BigInt num5, den5;
getKaryExpo(numerator(ker), num5, exp5, 5);
if (exp5 != 0) {
v5p = exp5;
den5 = denominator(ker);
} else {
getKaryExpo(denominator(ker), den5, exp5, 5);
v5m = exp5;
}
// Now we work with num5/den5.
int exp2 = getBinExpo(num5);
if (exp2 != 0) {
v2p = exp2;
} else {
exp2 = getBinExpo(den5);
v2m = exp2;
}
up = ceilLg(num5) - v2p;
lp = ceilLg(den5) - v2m;
}
template<>
inline void RealBigFloat::ULV_E(extLong &up, extLong &lp, extLong &v2p,
extLong &v2m, extLong &v5p, extLong &v5m) const {
// TODO : extract power of 5.
up = lp = v2p = v2m = v5p = v5m = EXTLONG_ZERO;
BigRat R = ker.BigRatValue();
up = ceilLg(numerator(R));
v2m = ceilLg(denominator(R));
}
// flrLgErr && clLgErr
template<>
inline extLong RealBigFloat::flrLgErr() const {
return ker.flrLgErr();
}
template<>
inline extLong RealBigFloat::clLgErr() const {
return ker.clLgErr();
}
// height && length
template<>
inline unsigned long RealLong::length() const {
return clLg(1+ core_abs(ker));
} // length is (log_2(1+ker^2)) /2.
template<>
inline unsigned long RealLong::height() const {
return clLg(core_max(1L, core_abs(ker)));
} // height is max{1, |ker|}
template<>
inline unsigned long RealDouble::length() const {
BigRat R = BigRat(ker);
long ln = 1 + ceilLg(numerator(R));
long ld = 1 + ceilLg(denominator(R));
return (ln>ld) ? ln : ld; ///< an upper bound on log_2(sqrt(num^2+den^2))
}
template<>
inline unsigned long RealDouble::height() const {
BigRat R = BigRat(ker);
long ln = ceilLg(numerator(R));
long ld = ceilLg(denominator(R));
return (ln>ld) ? ln : ld; ///< an upper bound on log_2(max(|num|, |den|))
}
template<>
inline unsigned long RealBigInt::length() const {
return ceilLg(1 + abs(ker));
}
template<>
inline unsigned long RealBigInt::height() const {
BigInt r(abs(ker));
if (r<1)
r = 1;
return ceilLg(r);
}
template<>
inline unsigned long RealBigFloat::length() const {
// Chen Li: A bug fixed.
// The statement in the older version with the bug was:
// BigRat R = BigRat(ker);
// The BigRat(BigFloat) actually is a
// conversion operator (defined in BigFloat.h), _NOT_
// an ordinary class constructor! The C++ language
// specify that an intialization is not an assignment
// but a constructor operation!
// Considering that BigRat(BigFloat) is a conversion
// operator not really a constructor. The programmer's
// intent is obvious to do an assignment.
// However, the g++ seems to be confused by the above
// initialization.
BigRat R = ker.BigRatValue();
long ln = 1 + ceilLg(numerator(R));
long ld = 1 + ceilLg(denominator(R));
return ( ln > ld ) ? ln : ld;
}
template<>
inline unsigned long RealBigFloat::height() const {
// Chen Li: A bug fixed. The old statement with the bug was:
// BigRat R = BigRat(ker);
// Detailed reasons see above (in RealBigFloat::length()!
BigRat R = ker.BigRatValue();
long ln = ceilLg(numerator(R));
long ld = ceilLg(denominator(R));
return ( ln > ld ) ? ln : ld;
}
template<>
inline unsigned long RealBigRat::length() const {
long ln = 1 + ceilLg(numerator(ker));
long ld = 1 + ceilLg(denominator(ker));
return ( ln > ld ) ? ln : ld;
}
template<>
inline unsigned long RealBigRat::height() const {
long ln = ceilLg(numerator(ker));
long ld = ceilLg(denominator(ker));
return (ln > ld ) ? ln : ld;
}
// toString()
template<>
inline std::string RealBigInt::toString(long, bool) const {
return ker.get_str();
}
template<>
inline std::string RealBigRat::toString(long, bool) const {
return ker.get_str();
}
template<>
inline std::string RealBigFloat::toString(long prec, bool sci) const {
return ker.toString(prec, sci);
}
CORE_END_NAMESPACE
#endif // _CORE_REALREP_H_
|