1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: Curves.h
*
* Description:
* Two templated classes are defined here:
* Curve and BiPoly
* These classes are parametrized by the number type
* (called NT) which represents the
* domain of the coefficients of the underlying
* polynomials. Standard default is NT=BigInt, but
* we will allow NT=int, NT=BigRat, NT=BigFloat, NT=Expr.
* BiPoly represents the class of bivariate polynomials,
* i.e., each BiPoly object is an element of NT[X,Y].
* We store each BiPoly as a list of polynomials in X.
* Curve represents the class of plane curves whose equation
* is A(X,Y)=0, for some BiPoly A(X,Y).
* Features:
* --Constructor from strings such as
* "3 x^2 + 7 xy^2 - 4 x + 13".
* --Basic plot functions
*
* To Do:
* --Dump should produce human readable strings like
* "3 x^2 + 7 xy^2 - 4 x + 13".
* --String constructor generalizations:
* (1) allow one "=" sign (e.g., "3 x^2 = y^2 - xy")(DONE)
* (2) allow general parenthesis
* (3) allow X and Y (DONE)
* --We should be able to read/write
* curve definitions from/to files
* --Plot should be more efficient (use previous roots
* to help find the next roots, there should be
* a "plot structure" that is persistent)
* --Plot should refine in both x- and y-increments.
* --Plot should have some option to show the
* x- and y-axes, and to label some points.
* --verticalIntersect(...) should be implemented using
* Polynomial<BigFloat>, not Polynomial<Expr> for efficiency
* --the plot parameters (eps,xmin,xmax,ymin,ymax) must be
* made part of the Curve class (static members).
* Incorporate the "setParams" method into class.
*
* Author: Vikram Sharma and Chee Yap
* Date: April 12, 2004
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/poly/Curves.h $
* $Id: Curves.h 29485 2006-03-14 11:52:49Z efif $
***************************************************************************/
#ifndef CORE_CURVES_H
#define CORE_CURVES_H
#include <fstream>
#include <list>
#include "CORE/poly/Poly.h"
CORE_BEGIN_NAMESPACE
// ==================================================
// Curve Class
// ==================================================
//typedef BigInt NT;
//typedef Expr NT;
//typedef Polynomial<NT> PolyNT;
//typedef std::vector<Expr> VecExpr;
//typedef std::vector<BigInt> VecBigInt;
//typedef std::vector<NT> VecNT;
//typedef std::vector<Polynomial<NT> > VecPoly;
template <class NT>
class Monomial{
//Helper class to store the coefficients for given x-deg and y-deg
//Used by string input routines
public:
NT coeff;
int xdeg;
int ydeg;
Monomial(){
}
Monomial(NT& cf, int& dx, int& dy){
coeff = cf;
xdeg = dx;
ydeg = dy;
}
void dump(){
std::cout << coeff << "X^" << xdeg << " Y^" << ydeg;
}
};
//Class of Bivariate polynomials
// Viewed as a polynomial in Y with
// coefficients which are polynomials in X
template <class NT>
class BiPoly{
private:
//The following are used in the constructor from strings.
//For more details see the related constructor.
void constructFromString(string& s, char myX='x', char myY='y');
void constructX(int n, BiPoly<NT>& P);
void constructY(int n, BiPoly<NT>& P);
int getnumber(const char* c, int i, unsigned int len, BiPoly<NT> & P);
bool isint(char c);
int getint(const char* c, int i, unsigned int len, int & n);
int matchparen(const char* cstr, int start);
int getbasicterm(string s, BiPoly<NT> & P);
int getterm(string s, BiPoly<NT> & P);
public:
int ydeg; //Y-degree of the polynomial
std::vector<Polynomial<NT> > coeffX; //vector of (1+ydeg) polynomials in X
// If ydeg = d, then the polynomial is F(X,Y) =
// (Y^d * coeffX[d]) + (Y^{d-1} * coeffX[d-1]) +...+ (coeffX[0]).
////////////////////////////////////////////////////////
//Constructors
////////////////////////////////////////////////////////
//BiPoly()
BiPoly(); // zero polynomial
//BiPoly(n)
BiPoly(int n);// creates a BiPoly with nominal y-degree equal to n.
//BiPoly(vp)
BiPoly(std::vector<Polynomial<NT> > vp); // From vector of Polynomials
//BiPoly(p, flag):
// if true, it converts polynomial p(X) into P(Y)
// if false, it creates the polynomial Y-p(X)
BiPoly(Polynomial<NT> p, bool flag=false);
//BiPoly(deg, d[], C[]):
// Takes in a list of list of coefficients.
// Each cofficient list represents a polynomial in X
//
// deg - ydeg of the bipoly
// d[] - array containing the degrees of each coefficient (i.e., X poly)
// C[] - list of coefficients, we use array d to select the
// coefficients
BiPoly(int deg, int *d, NT *C);
//BiPoly(String s, char myX, char myY)
// myX and myY are names of the two variables.
// Default values of myX and myY are 'x' and 'y'.
// The string s has the form "3 x^2 + 7 xy^2 - 4 x + 13"
//
// For now, we assume no parentheses, * or =.
BiPoly(const string& s, char myX='x', char myY='y');
BiPoly(const char* s, char myX='x', char myY='y');
// copy constructor
BiPoly(const BiPoly<NT>&);
//Destructor
~BiPoly();
//Destructor helper
void deleteCoeffX();
////////////////////////////////////////////////////////
// METHODS
////////////////////////////////////////////////////////
// filedump (msg, ofs, com, com2)
// where msg, com, com2 are strings.
// msg is an message and com, com2 are the strings
// preceding each output line
// (e.g., msg="BiVariate Polynomial" and com=com2="# ")
// This is called by the other dump functions
void dump(std::ostream & os, std::string msg = "",
std::string com="# ", std::string com2 = "# ") const;
// dump(ofs, msg, com) -- dump to file
//void dump(std::ofstream & ofs, std::string msg,
// std::string com="# ", std::string com2="# ") const;
// dump(msg, com) -- dump to std output
void dump(std::string msg="", std::string com="",
std::string com2="") const;
/*Cannot work with these two functions right now.
BiPoly as per now can only handle BigInt and int since
Expr cannot be handled by Polynomial class.*/
// yPolynomial(x)
// returns the polynomial (in Y) when we substitute X=x
/* BiPoly<NT> yPolynomial(const Expr & x) {
VecExpr vE;
for (int i=0; i<= ydeg; i++) {
vE.push_back(coeffX[i].eval(x));
}
return BiPoly<NT>(vE);
}//yPolynomial
*/
Polynomial<NT> yPolynomial(const NT & x);
// Expr version of yPoly (temporary hack)
Polynomial<Expr> yExprPolynomial(const Expr & x);
// BF version of yPoly (temporary hack)
Polynomial<BigFloat> yBFPolynomial(const BigFloat & x);
// xPolynomial(y)
// returns the polynomial (in X) when we substitute Y=y
//
// N.B. May need the
// Polynomial<Expr> xExprPolynomial(Expr y)
// version too...
//
Polynomial<NT> xPolynomial(const NT & y) ;
// getYdegree()
int getYdegree() const;
// getXdegree()
int getXdegree();
// getTrueYdegree
int getTrueYdegree();
//eval(x,y)
Expr eval(Expr x, Expr y);//Evaluate the polynomial at (x,y)
////////////////////////////////////////////////////////
// Polynomial arithmetic (these are all self-modifying)
////////////////////////////////////////////////////////
// Expands the nominal y-degree to n;
// Returns n if nominal y-degree is changed to n
// Else returns -2
int expand(int n);
// contract() gets rid of leading zero polynomials
// and returns the new (true) y-degree;
// It returns -2 if this is a no-op
int contract();
// Self-assignment
BiPoly<NT> & operator=( const BiPoly<NT>& P);
// Self-addition
BiPoly<NT> & operator+=( BiPoly<NT>& P);
// Self-subtraction
BiPoly<NT> & operator-=( BiPoly<NT>& P);
// Self-multiplication
BiPoly<NT> & operator*=( BiPoly<NT>& P);
// Multiply by a polynomial in X
BiPoly<NT> & mulXpoly( Polynomial<NT> & p);
//Multiply by a constant
BiPoly<NT> & mulScalar( NT & c);
// mulYpower: Multiply by Y^i (COULD be a divide if i<0)
BiPoly<NT> & mulYpower(int s);
// Divide by a polynomial in X.
// We replace the coeffX[i] by the pseudoQuotient(coeffX[i], P)
BiPoly<NT> & divXpoly( Polynomial<NT> & p);
//Using the standard definition of pseudRemainder operation.
// --No optimization!
BiPoly<NT> pseudoRemainderY (BiPoly<NT> & Q);
//Partial Differentiation
//Partial Differentiation wrt Y
BiPoly<NT> & differentiateY();
BiPoly<NT> & differentiateX();
BiPoly<NT> & differentiateXY(int m, int n);//m times wrt X and n times wrt Y
//Represents the bivariate polynomial in (R[X])[Y] as a member
//of (R[Y])[X].
//But since our polynomials in X can only have NT coeff's thus
// to represent the above polynomial we switch X and Y once
// the conversion has been done.
//NOTE: This is different from replacing X by Y which was
// done in the case of the constructor from a polynomial in X
//Need to calculate resultant wrt X.
BiPoly<NT> & convertXpoly();
//Set Coeffecient to the polynomial passed as a parameter
bool setCoeff(int i, Polynomial<NT> p);
void reverse();
Polynomial<NT> replaceYwithX();
//Binary-power operator
BiPoly<NT>& pow(unsigned int n);
//Returns a Bipoly corresponding to s, which is supposed to
//contain as place-holders the chars 'x' and 'y'.
BiPoly<NT> getbipoly(string s);
};//BiPoly Class
////////////////////////////////////////////////////////
// Helper Functions
////////////////////////////////////////////////////////
//Experimental version of constructor from strings containing general
//parentheses
// zeroPinY(P)
// checks whether a Bi-polynomial is a zero Polynomial
template <class NT>
bool zeroPinY(BiPoly<NT> & P);
// gcd(P,Q)
// This gcd is based upon the subresultant PRS to avoid
// exponential coeffecient growth and gcd computations, both of which
// are expensive since the coefficients are polynomials
template <class NT>
BiPoly<NT> gcd( BiPoly<NT>& P ,BiPoly<NT>& Q);
// resY(P,Q):
// Resultant of Bi-Polys P and Q w.r.t. Y.
// So the resultant is a polynomial in X
template <class NT>
Polynomial<NT> resY( BiPoly<NT>& P ,BiPoly<NT>& Q);
// resX(P,Q):
// Resultant of Bi-Polys P and Q w.r.t. X.
// So the resultant is a polynomial in Y
// We first convert P, Q to polynomials in X. Then
// call resY and then turn it back into a polynomial in Y
// QUESTION: is this last switch really necessary???
template <class NT>
BiPoly<NT> resX( BiPoly<NT>& P ,BiPoly<NT>& Q);
//Equality operator for BiPoly
template <class NT>
bool operator==(const BiPoly<NT>& P, const BiPoly<NT>& Q);
//Addition operator for BiPoly
template <class NT>
BiPoly<NT> operator+(const BiPoly<NT>& P, const BiPoly<NT>& Q);
//Subtraction operator for BiPoly
template <class NT>
BiPoly<NT> operator-(const BiPoly<NT>& P, const BiPoly<NT>& Q);
//Multiplication operator for BiPoly
template <class NT>
BiPoly<NT> operator*(const BiPoly<NT>& P, const BiPoly<NT>& Q);
////////////////////////////////////////////////////////
//Curve Class
// extends BiPoly Class
////////////////////////////////////////////////////////
template < class NT >
class Curve : public BiPoly<NT> {
public:
// Colors for plotting curves
const static int NumColors=7;
static double red_comp(int i){
static double RED_COMP[] = {0.9, 0.8, 0.7, 0.6, 0.8, 0.8, 0.7};
return RED_COMP[i % NumColors];
}
static double green_comp(int i){
static double GREEN_COMP[] = {0.5, 0.9, 0.3, 0.9, 0.7, 0.55, 0.95};
return GREEN_COMP[i % NumColors];
}
static double blue_comp(int i){
static double BLUE_COMP[] = {0.8, 0.3, 0.8, 0.5, 0.4, 0.85, 0.35};
return BLUE_COMP[i % NumColors];
}
Curve(); // zero polynomial
//Curve(vp):
// construct from a vector of polynomials
Curve(std::vector<Polynomial<NT> > vp);
// : BiPoly<NT>(vp){
//}
//Curve(p):
// Converts a polynomial p(X) to a BiPoly in one of two ways:
// (1) if flag is false, the result is Y-p(X)
// (2) if flag is true, the result is p(Y)
// The default is (1) because we usually want to plot the
// graph of the polynomial p(X)
Curve(Polynomial<NT> p, bool flag=false);
// : BiPoly<NT>(p, flag){
//}
//Curve(deg, d[], C[]):
// Takes in a list of list of coefficients.
// Each cofficient list represents a polynomial in X
//
// deg - ydeg of the bipoly
// d[] - array containing the degrees of each coefficient (i.e., X poly)
// C[] - list of coefficients, we use array d to select the
// coefficients
Curve(int deg, int *d, NT *C);
// : BiPoly<NT>(deg, d, C){
//}
Curve(const BiPoly<NT> &P);
// : BiPoly<NT>(P){
//}
//Curve(n) -- the nominal y-degree is n
Curve(int n);
//Creates a curve from a string (no parentheses, no *, no =)
Curve(const string & s, char myX='x', char myY='y');
Curve(const char* s, char myX='x', char myY='y');
/////////////////////////////////////////////////////////////////////////
// verticalIntersections(x, vecI, aprec=0):
// The list vecI is passed an isolating intervals for y's such that (x,y)
// lies on the curve.
// If aprec is non-zero (!), the intervals have with < 2^{-aprec}.
// Return is -2 if curve equation does not depend on Y
// -1 if infinitely roots at x,
// 0 if no roots at x
// 1 otherwise
int verticalIntersections(const BigFloat & x, BFVecInterval & vI,
int aprec=0);
// TO DO:
// horizontalIntersections(...)
/////////////////////////////////////////////////////////////////////////
// plot(eps, x1, y1, x2, y2)
//
// All parameters have defaults
//
// Gives the points on the curve at resolution "eps". Currently,
// eps is viewed as delta-x step size (but it could change).
// The display is done in the rectangale
// defined by [(x1, y1), (x2, y2)].
// The output is written into a file in the format specified
// by our drawcurve function (see COREPATH/ext/graphics).
//
// Heuristic: the open polygonal lines end when number of roots
// changes...
//
int plot( BigFloat eps=0.1, BigFloat x1=-1.0,
BigFloat y1=-1.0, BigFloat x2=1.0, BigFloat y2=1.0, int fileNo=1);
// selfIntersections():
// this should be another member function that lists
// all the self-intersections of a curve
//
// template <class NT>
// void selfIntersections(BFVecInterval &vI){
// ...
// }
};// Curve class
////////////////////////////////////////////////////////
// Curve helper functions
////////////////////////////////////////////////////////
//Xintersections(C, D, vI):
// returns the list vI of x-ccordinates of possible intersection points.
// Assumes that C & D are quasi-monic.(or generally aligned)
template <class NT>
void Xintersections( Curve<NT>& P ,Curve<NT>& Q, BFVecInterval &vI);
//Yintersections(C, D, vI):
// similar to Xintersections
template <class NT>
void Yintersections( Curve<NT>& P ,Curve<NT>& Q, BFVecInterval &vI);
// Display Intervals
template <class NT>
void showIntervals(char* s, BFVecInterval &vI);
// Set Display Parameters
// ...
////////////////////////////////////////////////////////
// IMPLEMENTATIONS ARE FOUND IN Curves.tcc
////////////////////////////////////////////////////////
#include <CORE/poly/Curves.tcc>
CORE_END_NAMESPACE
#endif
/*************************************************************************** */
// END
/*************************************************************************** */
|