1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
/****************************************************************************
* Core Library Version 1.7, August 2004
* Copyright (c) 1995-2004 Exact Computation Project
* All rights reserved.
*
* This file is part of CORE (http://cs.nyu.edu/exact/core/); you may
* redistribute it under the terms of the Q Public License version 1.0.
* See the file LICENSE.QPL distributed with CORE.
*
* Licensees holding a valid commercial license may use this file in
* accordance with the commercial license agreement provided with the
* software.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* File: Poly.h
*
* Description: simple polynomial class
*
* REPRESENTATION:
* --Each polynomial has a nominal "degree" (this
* is an upper bound on the true degree, which
* is determined by the first non-zero coefficient).
* --coefficients are parametrized by some number type "NT".
* --coefficients are stored in the "coeff" array of
* length "degree + 1".
* CONVENTION: coeff[i] is the coefficient of X^i. So, a
* coefficient list begins with the constant term.
* --IMPORTANT CONVENTION:
* the zero polynomial has degree -1
* while nonzero constant polynomials have degree 0.
*
* FUNCTIONALITY:
* --Polynomial Ring Operations (+,-,*)
* --Power
* --Evaluation
* --Differentiation
* --Remainder, Quotient
* --GCD
* --Resultant, Discriminant (planned)
* --Polynomial Composition (planned)
* --file I/O (planned)
*
* Author: Chee Yap
* Date: May 28, 2002
*
* WWW URL: http://cs.nyu.edu/exact/
* Email: exact@cs.nyu.edu
*
* $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.2-branch/Core/include/CORE/poly/Poly.h $
* $Id: Poly.h 29702 2006-03-22 17:59:03Z drussel $
***************************************************************************/
#ifndef CORE_POLY_H
#define CORE_POLY_H
#include <CORE/BigFloat.h>
#include <CORE/Promote.h>
#include <vector>
CORE_BEGIN_NAMESPACE
using namespace std;
class Expr;
// ==================================================
// Typedefs
// ==================================================
//typedef std::vector<Expr> VecExpr;
//typedef std::pair<Expr, Expr> Interval;
//typedef std::vector<Interval> VecInterval;
typedef std::pair<BigFloat, BigFloat> BFInterval;
// NOTE: an error condition is indicated by
// the special interval (1, 0)
typedef std::vector<BFInterval> BFVecInterval;
// ==================================================
// Polynomial Class
// ==================================================
template <class NT>
class Polynomial {
private:
//The following are used in the constructor from strings.
//For more details see the related constructor.
public:
typedef std::vector<NT> VecNT;
typedef NT coeffType;
int degree; // This is the nominal degree (an upper bound
// on the true degree)
NT * coeff; // coeff is an array of size degree+1;
// This remark holds even when degree = -1.
// Notes:
// (1) coeff[i] is the coefficient of x^i
// (2) The Zero Polynomial has degree -1
// (3) Nonzero Constant Polynomials has degree 0
// STATIC MEMBERS
// static NT ccc_; // THIS IS A TEMPORARY HACK
static int COEFF_PER_LINE; // pretty print parameters
static const char * INDENT_SPACE; // pretty print parameters
static const Polynomial<NT> & polyZero();
static const Polynomial<NT> & polyUnity();
static Polynomial polyWilkinson; // a sample polynomial
static int NT_TYPE; // NT_TYPE = 1 if NT is integer type (int,long,BigInt)
// NT_TYPE = 2 if NT is BigFloat
// NT_TYPE = 3 if NT is BigRat
// NT_TYPE = 4 if NT is Expr
// Hack? NT_TYPE is needed for root bounds, etc.
// Constructors:
Polynomial(void); // the Zero Polynomial
Polynomial(int n); // construct the Unit Polynomial of nominal deg n>=0
Polynomial(int n, const NT * coef);
Polynomial(const Polynomial &);
Polynomial(const VecNT &);
Polynomial(int n, const char* s[]);
Polynomial(const string & s, char myX='x');
Polynomial(const char* s, char myX='x');
~Polynomial();
private:
void constructX(int n, Polynomial<NT>& P);
void constructFromString(string & s, char myX='x');
int getnumber(const char* c, int i, unsigned int len, Polynomial<NT> & P);
bool isint(char c);
int getint(const char* c, int i, unsigned int len, int & n);
int matchparen(const char* cstr, int start);
int getbasicterm(string & s, Polynomial<NT> & P);
int getterm(string & s, Polynomial<NT> & P);
public:
//Returns a Polynomial corresponding to s, which is supposed to
//contain as place-holders the chars 'x' and 'y'.
Polynomial<NT> getpoly(string & s);
// Assignment:
Polynomial & operator=(const Polynomial&);
// Expand and Contract
// -- they are semi-inverses: i.e., Contract(expand(p))=p
int expand(int n); // Change the current degree to n
// Helper function for polynomial arithmetic
int contract(); // get rid of leading zeros
// Polynomial arithmetic (these are all self-modifying):
Polynomial & operator+=(const Polynomial&); // +=
Polynomial & operator-=(const Polynomial&); // -=
Polynomial & operator*=(const Polynomial&); // *=
Polynomial & operator-(); // unary minus
Polynomial & power (unsigned int n) ; // power (*this is changed!)
Polynomial & mulScalar (const NT & c); // return (*this) * (c)
Polynomial & mulXpower(int i); // If i >= 0, then this is equivalent
// to multiplying by X^i.
// If i < 0 to dividing by X^i
Polynomial pseudoRemainder (const Polynomial& B, NT& C); // C = return value
Polynomial pseudoRemainder (const Polynomial& B); // no C version
// The pseudo quotient of (*this) mod B
// is returned, but (*this) is transformed
// into the pseudo remainder. If the argument C is provided,
// Then C*(*this) = B*pseudo-quotient + pseudo-remainder.
Polynomial & negPseudoRemainder (const Polynomial& B); // negative remainder
Polynomial reduceStep (const Polynomial& B ); //helper for pseudoRemainder
// One step of pseudo remainder
// What is returned is a special polynomial C + X*M (not "C+M")
// telling us the initial constant C and
// the quotient M of C*(THIS) divided by p.
Polynomial testReduceStep(const Polynomial& A, const Polynomial& B); //helper
// Get functions
int getDegree() const; // nominal degree
int getTrueDegree() const; // true degree
NT getCoeffi(int i) const;
const NT & getLeadCoeff() const; // get TRUE leading coefficient
const NT & getTailCoeff() const; // get last non-zero coefficient
NT** getCoeffs() ; // get all coefficients
const NT& getCoeff(int i) const; // Get single coefficient of X^i
// NULL pointer if invalid i
// Set functions
bool setCoeff(int i, const NT & cc); // Make cc the coefficient of X^i
// Return FALSE if invalid i
// !! User's responsibility to
// delete the old coefficient if
// necessary !!
// Helper Functions:
/// Reverse reverses the coefficients
void reverse();
/// Negation of a polynomial (multiplication by -1)
/// Useful for Sturm
Polynomial & negate();
/// Suppressing Zero Roots
/// It amounts to dividing (*this) by X^k, so that the
/// the tail coeff is non-zero. Returns the value of k.
int makeTailCoeffNonzero();
// Evaluation Functions:
/// Polynomial evaluation where the coefficients are approximated first
/// Returns a BigFloat with error that contains the value
BigFloat evalApprox(const BigFloat& f,
const extLong& r=defRelPrec, const extLong& a=defAbsPrec) const;
/// Polynomial evaluation at a BigFloat value.
/// The returned BigFloat (with error) has the exact sign.
/// In particular, if the value is 0, we return 0.
/// @param oldMSB is any estimate of the negative log of the evaluation
BigFloat evalExactSign(const BigFloat& val, const extLong& oldMSB=54) const;
/// Polynomial evaluation that return the same type as its argument
/// Caution: The type T must be greater or equal to the type NT
/// NOTE: Eventually, we will remove this restriction by
/// introduce MaxType(NT,T) for the return type.
template <class T>
MAX_TYPE(NT, T) eval(const T&) const;
// Bounds
BigFloat CauchyUpperBound() const; // Cauchy Root Upper Bound
BigFloat CauchyLowerBound() const; // Cauchy Root Lower Bound
BigInt CauchyBound() const; // Cauchy Root Bound from Erich Kaltofen
BigInt UpperBound() const; // Another Cauchy Root Bound; an improvement over
//Erich Kaltofen
BigFloat sepBound() const; // separation bound (multiple roots allowed)
BigFloat height() const; // height return type BigFloat
BigFloat length() const; // length return type BigFloat
// Differentiation
Polynomial & differentiate() ; // self-differentiation
Polynomial & differentiate(int n) ; // multi self-differentiation
// Reductions of polynomials (NT must have gcd function)
Polynomial sqFreePart(); // Square free part of P is P/gcd(P,P'). Return gcd
Polynomial & primPart(); // Primitive Part of *this (which is changed)
//////////////////////////////////////////////////////////////////
// Resultant and discriminant
// NT & resultant() ; // resultant
// NT & discriminant() ; // discriminant
// Composition of Polynomials:
// NOT yet implemented
//////////////////////////////////////////////////////////////////
// Polynomial Dump
void dump(std::ofstream & ofs, std::string msg="",
std::string com="# ", std::string com2="# ") const; // dump to file
void dump(std::string msg="", std::string com="# ",
std::string com2="# ") const; // dump to cout
void filedump(std::ostream & os, std::string msg="", std::string com="# ",
std::string com2="# ") const; // dump workhorse (called by dump())
void mapleDump() const; // dump of maple code for Polynomial
}; //Polynomial Class
// template < class NT >
// NT Polynomial<NT>::ccc_;
// ==================================================
// Static Constants
// Does this belong here?
// ==================================================
template < class NT >
CORE_INLINE
const Polynomial<NT> & Polynomial<NT>::polyZero() {
static Polynomial<NT> zeroP;
return zeroP;
}
template < class NT >
CORE_INLINE
const Polynomial<NT> & Polynomial<NT>::polyUnity() {
static NT c[] = {1};
static Polynomial<NT> unityP(0, c);
return unityP;
}
// ==================================================
// Useful functions for Polynomial class
// ==================================================
// polynomial arithmetic:
template < class NT >
Polynomial<NT> operator+(const Polynomial<NT>&, const Polynomial<NT>&);// +
template < class NT >
Polynomial<NT> operator-(const Polynomial<NT>&, const Polynomial<NT>&);// -
template < class NT >
Polynomial<NT> operator*(const Polynomial<NT>&, const Polynomial<NT>&);// *
template < class NT >
Polynomial<NT> power(const Polynomial<NT>&, int n); // power
template < class NT >
Polynomial<NT> differentiate(const Polynomial<NT>&); // differentiate
template < class NT >
Polynomial<NT> differentiate(const Polynomial<NT>&, int n); // multi-differ.
//Content of a Polynomial
template < class NT >
NT content(const Polynomial<NT>& p);
template <class NT>
bool isDivisible(Polynomial<NT> p, Polynomial<NT> q);
// GCD of two polynomials
template < class NT >
Polynomial<NT> gcd(const Polynomial<NT>& p, const Polynomial<NT>& q);
//Resultant of two polynomials
template < class NT >
NT res( Polynomial<NT> p, Polynomial<NT> q);
//Principal Subresultant Coefficient (psc) of two polynomials
template < class NT >
NT psc(int i, Polynomial<NT> p, Polynomial<NT> q);
//Returns the polynomial which contains only the real roots
//of P which have multiplicity d
template < class NT >
Polynomial<NT> factorI(Polynomial<NT> p, int d);
// comparisons
template < class NT >
bool operator==(const Polynomial<NT>&, const Polynomial<NT>&); // ==
template < class NT >
bool operator!=(const Polynomial<NT>&, const Polynomial<NT>&); // !=
template < class NT >
bool zeroP(const Polynomial <NT>&); // =Zero Poly?
template < class NT >
bool unitP(const Polynomial <NT>&); // =Unit Poly?
// stream i/o
template < class NT >
std::ostream& operator<<(std::ostream&, const Polynomial<NT>&);
template < class NT >
std::istream& operator>>(std::istream&, Polynomial<NT>&);
// ==================================================
// Inline Functions
// ==================================================
// friend polynomial arithmetic:
template < class NT >
CORE_INLINE
Polynomial<NT> operator+(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // +
return Polynomial<NT>(p1) += p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> operator-(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // -
return Polynomial<NT>(p1) -= p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> operator*(const Polynomial<NT>& p1,
const Polynomial<NT>& p2) { // *
return Polynomial<NT> (p1) *= p2;
}
template < class NT >
CORE_INLINE
Polynomial<NT> power(const Polynomial<NT>& p, int n) { // power
return Polynomial<NT>(p).power(n);
}
// equal to zero poly?
template < class NT >
CORE_INLINE
bool zeroP(const Polynomial <NT>& p) { // =Zero Poly?
return (p.getTrueDegree()== -1);
}
template < class NT >
CORE_INLINE
bool unitP(const Polynomial <NT>& p) { // =Unit Poly?
int d = p.getTrueDegree();
return ((d == 0) && p.coeff[0]==1 );
}
// get functions
template < class NT >
CORE_INLINE
int Polynomial<NT>::getDegree() const {
return degree;
}
// get TRUE leading coefficient
template < class NT >
CORE_INLINE
const NT & Polynomial<NT>::getLeadCoeff() const {
return getCoeff(getTrueDegree());
}
// get last non-zero coefficient
template < class NT >
CORE_INLINE
const NT & Polynomial<NT>::getTailCoeff() const {
for (int i = 0; i<= getTrueDegree(); i++)
if (coeff[i] != 0)
return coeff[i];
// This ought to be an error (user should check this) :
NT * zero = new NT(0);
return *zero;
}
template < class NT >
CORE_INLINE
NT** Polynomial<NT>::getCoeffs() {
return &coeff;
}
template < class NT >
CORE_INLINE
const NT& Polynomial<NT>::getCoeff(int i) const {
//if (i > degree) return NULL;
assert(i <= degree);
return coeff[i];
}
// set functions
template < class NT >
CORE_INLINE
bool Polynomial<NT>::setCoeff(int i, const NT & cc) {
if ((i<0) || (i > degree))
return false;
coeff[i] = cc;
return true;
}
// IMPLEMENTATIONS ARE FOUND IN
//#include <CORE/poly/Poly.tcc>
//
// We include this file from CORE/Expr.h, AFTER the definition
// of class Expr, because otherwise VC++.net2003 can'y compile Expr.cpp
CORE_END_NAMESPACE
#endif
|