File: conjugate_gradient.h

package info (click to toggle)
cgal 3.2.1-2
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 47,752 kB
  • ctags: 72,510
  • sloc: cpp: 397,707; ansic: 10,393; sh: 4,232; makefile: 3,713; perl: 394; sed: 9
file content (178 lines) | stat: -rw-r--r-- 5,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
 * author:  Bruno Levy, INRIA, project ALICE
 * website: http://www.loria.fr/~levy/software
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Scientific work that use this software can reference the website and
 * the following publication:
 *
 * @INPROCEEDINGS {levy:NMDGP:05,
 *    AUTHOR = Bruno Levy,
 *    TITLE  = Numerical Methods for Digital Geometry Processing,
 *    BOOKTITLE =Israel Korea Bi-National Conference,
 *    YEAR=November 2005,
 *    URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
 * }
 *
 *  Laurent Saboret 01/2005-04/2005: Changes for CGAL:
 *      - Added OpenNL namespace
 *      - solve() returns true on success
 *      - test divisions by zero with IsZero() method
 *      - added comments and traces
 */

#ifndef __OPENNL_CONJUGATE_GRADIENT__
#define __OPENNL_CONJUGATE_GRADIENT__

#include <OpenNL/blas.h>

#include <cmath>
#include <cfloat>
#include <climits>
#include <cassert>

namespace OpenNL {


// Utility macro to display a variable's value
// Usage: x=3.7; cerr << OPENNL_STREAM_TRACE(x) << endl;
//        prints
//        x=3.7
#define OPENNL_STREAM_TRACE(var) #var << "=" << var << " "


/**
 *  The Conjugate Gradient algorithm without preconditioner:
 *  Ashby, Manteuffel, Saylor
 *     A taxononmy for conjugate gradient methods
 *     SIAM J Numer Anal 27, 1542-1568 (1990)
 *
 * This implementation is inspired by the lsolver library,
 * by Christian Badura, available from:
 * http://www.mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver/
 *
 * @param A generic matrix, a function
 *   mult(const MATRIX& M, const double* x, double* y)
 *   needs to be defined.
 * @param b right hand side of the system.
 * @param x initial value.
 * @param eps threshold for the residual.
 * @param max_iter maximum number of iterations.
 */

template< class MATRIX, class VECTOR > class Solver_CG {
public:
    typedef MATRIX Matrix ;
    typedef VECTOR Vector ;
    typedef typename Vector::CoeffType CoeffType ;

    Solver_CG() {
        epsilon_ = 1e-6 ;
        max_iter_ = 0 ;
    }

    void set_epsilon(CoeffType eps) { epsilon_ = eps ; }
    void set_max_iter(unsigned int max_iter) { max_iter_ = max_iter ; }

    // Solve the sparse linear system "A*x = b" for A SYMMETRIC POSITIVE
    // Return true on success
    //
    // Preconditions:
    // * A.dimension() == b.dimension()
    // * A.dimension() == x.dimension()
    bool solve(const MATRIX &A, const VECTOR& b, VECTOR& x) {
        assert(A.dimension() == b.dimension()) ;
        assert(A.dimension() == x.dimension()) ;
        assert (A.dimension() > 0);

        unsigned int n = A.dimension() ;                        // (Square) matrix dimension

        unsigned int max_iter = max_iter_ ;                     // Max number of iterations
        if(max_iter == 0) {
            max_iter = 5 * n ;
        }
        Vector g(n) ;
        Vector r(n) ;
        Vector p(n) ;
        unsigned int its=0;                                     // Loop counter
        CoeffType t, tau, sig, rho, gam;
        CoeffType bnorm2 = BLAS<Vector>::dot(b,b) ;
        CoeffType err=epsilon_*epsilon_*bnorm2 ;                // Error to reach
        // Current residue g=b-A*x
        mult(A,x,g);
        BLAS<Vector>::axpy(-1,b,g);
        BLAS<Vector>::scal(-1,g);
        // Initially, r=g=b-A*x
        BLAS<Vector>::copy(g,r);                                // r = g
        CoeffType gg=BLAS<Vector>::dot(g,g);                    // Current error gg = (g|g)

        while ( gg>err && its < max_iter)
        {
            mult(A,r,p);
            rho=BLAS<Vector>::dot(p,p);
            sig=BLAS<Vector>::dot(r,p);
            tau=BLAS<Vector>::dot(g,r);
            if (IsZero(sig))
                break;                                          // stop if bad conditioning
            t=tau/sig;
            BLAS<Vector>::axpy(t,r,x);
            BLAS<Vector>::axpy(-t,p,g);
            if (IsZero(tau))
                break;                                          // stop if bad conditioning
            gam=(t*t*rho-tau)/tau;
            BLAS<Vector>::scal(gam,r);
            BLAS<Vector>::axpy(1,g,r);
            gg=BLAS<Vector>::dot(g,g);                          // Current error gg = (g|g)
            its++;
        }

        bool success = (gg <= err);
#ifndef NDEBUG
        // Trace on error
        if ( ! success )
            std::cerr << "Solver_CG<>::solve: failure: "
                      << "(" << OPENNL_STREAM_TRACE(its) << OPENNL_STREAM_TRACE(max_iter)
                             << OPENNL_STREAM_TRACE(gg) << OPENNL_STREAM_TRACE(err)
                      << ")" << std::endl;
#endif
        return success;
    }

private:
    // Test if a floating point number is (close to) 0.0
    static inline bool IsZero(CoeffType a)
    {
        return (fabs(a) < 10.0 * std::numeric_limits<CoeffType>::min());
    }

    // Test if 2 floating point numbers are very close
    static inline bool AreEqual(CoeffType a, CoeffType b)
    {
        if (IsZero(a))
            return IsZero(b);
        else
            return IsZero(b/a - 1.0);
    }

private:
    CoeffType epsilon_ ;
    unsigned int max_iter_ ;
} ;


}; // namespace OpenNL

#endif // __OPENNL_CONJUGATE_GRADIENT__