File: modular_filter.cpp

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (119 lines) | stat: -rw-r--r-- 4,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/* Modular arithmetic can be used as a filter, in this example modular 
   arithmetic is used to avoid unnecessary gcd computations of polynomials. 
   A gcd computation can be very costly due to coefficient growth within the 
   Euclidean algorithm. 
   
   The general idea is that firstly the gcd is computed with respect 
   to one prime only. If this modular gcd is constant we can (in most cases) 
   conclude that the actual gcd is constant as well. 
   
   For this purpose the example introduces the function may_have_common_factor.
   Note that there are two versions of this function, namely for the case 
   that the coefficient type is Modularizable and that it is not. 
   If the type is not Modularizable the filter is just not applied and the 
   function returns true. 
*/

#include <CGAL/basic.h>

#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>        
#include <CGAL/Polynomial.h>

// Function in case  Polynomial is Modularizable
template< typename Polynomial >
bool may_have_common_factor(
    const Polynomial& p1, const Polynomial& p2, CGAL::Tag_true){
  std::cout<< "The type is modularizable" << std::endl; 

  // Enforce IEEE double precision and rounding mode to nearest 
  // before useing modular arithmetic 
  CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
 
  // Use Modular_traits to convert to polynomials with modular coefficients
  typedef CGAL::Modular_traits<Polynomial> MT;
  typedef typename MT::Residue_type MPolynomial;
  typedef typename MT::Modular_image Modular_image;
  MPolynomial mp1 = Modular_image()(p1);
  MPolynomial mp2 = Modular_image()(p2);
  
  // check for unlucky primes, the polynomials should not lose a degree 
  typename CGAL::Polynomial_traits_d<Polynomial>::Degree  degree;
  typename CGAL::Polynomial_traits_d<MPolynomial>::Degree mdegree;
  if ( degree(p1) != mdegree(mp1)) return true;   
  if ( degree(p2) != mdegree(mp2)) return true; 

  // compute gcd for modular images 
  MPolynomial mg  = CGAL::gcd(mp1,mp2);
  
  // if the modular gcd is not trivial: return true 
  if ( mdegree(mg) > 0 ){
    std::cout << "The gcd may be non trivial" << std::endl;
    return true;
  }else{
    std::cout << "The gcd is trivial" << std::endl;
    return false; 
  }
}

// This function returns true, since the filter is not applicable 
template< typename Polynomial >
bool may_have_common_factor(
    const Polynomial&, const Polynomial&, CGAL::Tag_false){
  std::cout<< "The type is not modularizable" << std::endl; 
  return true; 
}

template< typename Polynomial >
Polynomial modular_filtered_gcd(const Polynomial& p1, const Polynomial& p2){
  typedef CGAL::Modular_traits<Polynomial> MT;
  typedef typename MT::Is_modularizable Is_modularizable;
    
  // Try to avoid actual gcd computation 
  if (may_have_common_factor(p1,p2, Is_modularizable())){
    // Compute gcd, since the filter indicates a common factor
    return CGAL::gcd(p1,p2);
  }else{
    typename CGAL::Polynomial_traits_d<Polynomial>::Univariate_content  content;
    return CGAL::gcd(content(p1),content(p2)); // return trivial gcd 
  }
}

int main(){
  CGAL::set_pretty_mode(std::cout);
    
  typedef CGAL::Gmpz NT; 
  typedef CGAL::Polynomial<NT> Poly; 

  Poly  f1(NT(2), NT(6), NT(4)); 
  Poly  f2(NT(12), NT(4), NT(8));
  Poly  f3(NT(3), NT(4));
    
  std::cout << "f1        : " << f1 << std::endl;
  std::cout << "f2        : " << f2 << std::endl;

  std::cout << "compute modular filtered gcd(f1,f2): " << std::endl;
  Poly g1 = modular_filtered_gcd(f1,f2);
  std::cout << "gcd(f1,f2): " << g1 << std::endl;

  std::cout << std::endl;
  Poly p1 = f1*f3;
  Poly p2 = f2*f3;
    
  std::cout << "f3        : " << f3 << std::endl;
  std::cout << "p1=f1*f3  : " << p1 << std::endl;
  std::cout << "p2=f2*f3  : " << p2 << std::endl;

  std::cout << "compute modular filtered gcd(p1,p2): " << std::endl;
  Poly g2 = modular_filtered_gcd(p1,p2);
  std::cout << "gcd(p1,p2): " << g2 << std::endl;
}

#else

int main (){
  std::cout << " This examples needs GMP! " << std::endl; 
}

#endif