File: first_lp_from_iterators.cpp

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (54 lines) | stat: -rw-r--r-- 2,130 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// example: construct a linear program from given iterators
// the LP below is the first linear program example in the user manual
#include <iostream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Linear_program_from_iterators
<int**,                                                // for A
 int*,                                                 // for b
 CGAL::Const_oneset_iterator<CGAL::Comparison_result>, // for r
 bool*,                                                // for fl
 int*,                                                 // for l
 bool*,                                                // for fu
 int*,                                                 // for u
 int*>                                                 // for c 
Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

int main() {
  int  Ax[] = {1, -1};                        // column for x
  int  Ay[] = {1,  2};                        // column for y
  int*  A[] = {Ax, Ay};                       // A comes columnwise
  int   b[] = {7, 4};                         // right-hand side
  CGAL::Const_oneset_iterator<CGAL::Comparison_result> 
        r(    CGAL::SMALLER);                 // constraints are "<="
  bool fl[] = {true, true};                   // both x, y are lower-bounded
  int   l[] = {0, 0};
  bool fu[] = {false, true};                  // only y is upper-bounded
  int   u[] = {0, 4};                         // x's u-entry is ignored
  int   c[] = {0, -32};
  int  c0   = 64;                             // constant term

  // now construct the linear program; the first two parameters are
  // the number of variables and the number of constraints (rows of A)
  Program lp (2, 2, A, b, r, fl, l, fu, u, c, c0);

  // solve the program, using ET as the exact type
  Solution s = CGAL::solve_linear_program(lp, ET());

  // output solution
  std::cout << s;
  return 0;
}