1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
// ----------------------------------------------------------------------------
// USAGE EXAMPLES
// ----------------------------------------------------------------------------
//----------------------------------------------------------
// Discrete Conformal Map parameterization
// circle border
// OpenNL solver
// output is a eps map
// input file is mesh.off
//----------------------------------------------------------
// polyhedron_ex_parameterization -t conformal -b circle mesh.off mesh.eps
//----------------------------------------------------------
// floater parameterization
// square border
// TAUCS solver
// output is a eps map
// input file is mesh.off
//----------------------------------------------------------
// polyhedron_ex_parameterization -t floater -b square -s taucs mesh.off mesh.eps
//----------------------------------------------------------
// Least Squares Conformal Maps parameterization
// two pinned vertices (automatically picked)
// OpenNL solver
// output is a .obj
// input file is mesh.off
//----------------------------------------------------------
// polyhedron_ex_parameterization -t lscm -b 2pts mesh.off mesh.obj
#include <CGAL/Cartesian.h>
#include <CGAL/Timer.h>
#include <CGAL/parameterize.h>
#include <CGAL/Parameterization_mesh_patch_3.h>
#include <CGAL/Circular_border_parameterizer_3.h>
#include <CGAL/Square_border_parameterizer_3.h>
#include <CGAL/Two_vertices_parameterizer_3.h>
#include <CGAL/Barycentric_mapping_parameterizer_3.h>
#include <CGAL/Discrete_conformal_map_parameterizer_3.h>
#include <CGAL/Discrete_authalic_parameterizer_3.h>
#include <CGAL/Mean_value_coordinates_parameterizer_3.h>
#include <CGAL/LSCM_parameterizer_3.h>
#include <CGAL/Parameterization_mesh_feature_extractor.h>
#include <CGAL/OpenNL/linear_solver.h>
#ifdef CGAL_USE_TAUCS
#include <CGAL/Taucs_solver_traits.h>
#endif
#include "Polyhedron_ex.h"
#include "Mesh_cutter.h"
#include "Parameterization_polyhedron_adaptor_ex.h"
#include <iostream>
#include <string.h>
#include <ctype.h>
#include <fstream>
#include <cassert>
#ifdef CGAL_USE_BOOST_PROGRAM_OPTIONS
#include <boost/program_options.hpp>
namespace po = boost::program_options;
#endif
// ----------------------------------------------------------------------------
// Private types
// ----------------------------------------------------------------------------
typedef Polyhedron_ex Polyhedron;
// Mesh adaptors
typedef Parameterization_polyhedron_adaptor_ex Parameterization_polyhedron_adaptor;
typedef CGAL::Parameterization_mesh_patch_3<Parameterization_polyhedron_adaptor>
Mesh_patch_polyhedron;
// Type describing a border or seam as a vertex list
typedef std::list<Parameterization_polyhedron_adaptor::Vertex_handle>
Seam;
// ----------------------------------------------------------------------------
// Private functions
// ----------------------------------------------------------------------------
// Cut the mesh to make it homeomorphic to a disk
// or extract a region homeomorphic to a disc.
// Return the border of this region (empty on error)
//
// CAUTION:
// This method is provided "as is". It is very buggy and simply part of this example.
// Developers using this package should implement a more robust cut algorithm!
static Seam cut_mesh(Parameterization_polyhedron_adaptor& mesh_adaptor)
{
// Helper class to compute genus or extract borders
typedef CGAL::Parameterization_mesh_feature_extractor<Parameterization_polyhedron_adaptor_ex>
Mesh_feature_extractor;
typedef Mesh_feature_extractor::Border Border;
typedef Mesh_cutter::Backbone Backbone;
Seam seam; // returned list
// Get refererence to Polyhedron_3 mesh
Polyhedron& mesh = mesh_adaptor.get_adapted_mesh();
// Extract mesh borders and compute genus
Mesh_feature_extractor feature_extractor(mesh_adaptor);
int nb_borders = feature_extractor.get_nb_borders();
int genus = feature_extractor.get_genus();
// If mesh is a topological disk
if (genus == 0 && nb_borders > 0)
{
// Pick the longest border
seam = feature_extractor.get_longest_border();
}
else // if mesh is *not* a topological disk, create a virtual cut
{
Backbone seamingBackbone; // result of cutting
Backbone::iterator he;
// Compute a cutting path that makes the mesh a "virtual" topological disk
mesh.compute_facet_centers();
Mesh_cutter cutter(mesh);
if (genus == 0)
{
// no border, we need to cut the mesh
assert (nb_borders == 0);
cutter.cut(seamingBackbone); // simple cut
}
else // genus > 0 -> cut the mesh
{
cutter.cut_genus(seamingBackbone);
}
// The Mesh_cutter class is quite buggy
// => we check that seamingBackbone is valid
//
// 1) Check that seamingBackbone is not empty
if (seamingBackbone.begin() == seamingBackbone.end())
return seam; // return empty list
//
// 2) Check that seamingBackbone is a loop and
// count occurences of seam halfedges
mesh.tag_halfedges(0); // Reset counters
for (he = seamingBackbone.begin(); he != seamingBackbone.end(); he++)
{
// Get next halfedge iterator (looping)
Backbone::iterator next_he = he;
next_he++;
if (next_he == seamingBackbone.end())
next_he = seamingBackbone.begin();
// Check that seamingBackbone is a loop: check that
// end of current HE == start of next one
if ((*he)->vertex() != (*next_he)->opposite()->vertex())
return seam; // return empty list
// Increment counter (in "tag" field) of seam halfedges
(*he)->tag( (*he)->tag()+1 );
}
//
// 3) check that the seamingBackbone is a two-way list
for (he = seamingBackbone.begin(); he != seamingBackbone.end(); he++)
{
// Counter of halfedge and opposite halfedge must be 1
if ((*he)->tag() != 1 || (*he)->opposite()->tag() != 1)
return seam; // return empty list
}
// Convert list of halfedges to a list of vertices
for (he = seamingBackbone.begin(); he != seamingBackbone.end(); he++)
seam.push_back((*he)->vertex());
}
return seam;
}
// Call appropriate parameterization method based on command line parameters
template<
class ParameterizationMesh_3, // 3D surface
class GeneralSparseLinearAlgebraTraits_d,
// Traits class to solve a general sparse linear system
class SymmetricSparseLinearAlgebraTraits_d
// Traits class to solve a symmetric sparse linear system
>
typename CGAL::Parameterizer_traits_3<ParameterizationMesh_3>::Error_code
parameterize(ParameterizationMesh_3& mesh, // Mesh parameterization adaptor
const std::string& type, // type of parameterization (see usage)
const std::string& border) // type of border parameterization (see usage)
{
typename CGAL::Parameterizer_traits_3<ParameterizationMesh_3>::Error_code err;
if ( (type == std::string("floater")) && (border == std::string("circle")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Mean_value_coordinates_parameterizer_3<
ParameterizationMesh_3,
CGAL::Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("floater")) && (border == std::string("square")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Mean_value_coordinates_parameterizer_3<
ParameterizationMesh_3,
CGAL::Square_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("barycentric")) && (border == std::string("circle")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Barycentric_mapping_parameterizer_3<
ParameterizationMesh_3,
CGAL::Circular_border_uniform_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("barycentric")) && (border == std::string("square")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Barycentric_mapping_parameterizer_3<
ParameterizationMesh_3,
CGAL::Square_border_uniform_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("conformal")) && (border == std::string("circle")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Discrete_conformal_map_parameterizer_3<
ParameterizationMesh_3,
CGAL::Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("conformal")) && (border == std::string("square")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Discrete_conformal_map_parameterizer_3<
ParameterizationMesh_3,
CGAL::Square_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("authalic")) && (border == std::string("circle")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Discrete_authalic_parameterizer_3<
ParameterizationMesh_3,
CGAL::Circular_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("authalic")) && (border == std::string("square")) )
{
err = CGAL::parameterize(
mesh,
CGAL::Discrete_authalic_parameterizer_3<
ParameterizationMesh_3,
CGAL::Square_border_arc_length_parameterizer_3<ParameterizationMesh_3>,
GeneralSparseLinearAlgebraTraits_d
>());
}
else if ( (type == std::string("lscm")) && (border == std::string("2pts")) )
{
err = CGAL::parameterize(
mesh,
CGAL::LSCM_parameterizer_3<
ParameterizationMesh_3,
CGAL::Two_vertices_parameterizer_3<ParameterizationMesh_3>,
SymmetricSparseLinearAlgebraTraits_d
>());
}
else
{
std::cerr << "Error: invalid parameters combination " << type << " + " << border << std::endl;
err = CGAL::Parameterizer_traits_3<ParameterizationMesh_3>::ERROR_WRONG_PARAMETER;
}
return err;
}
// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------
#ifdef CGAL_USE_BOOST_PROGRAM_OPTIONS
int main(int argc, char * argv[])
#else
int main()
#endif
{
CGAL::Timer total_timer;
total_timer.start();
std::cerr << "PARAMETERIZATION" << std::endl;
//***************************************
// Read options on the command line
//***************************************
std::string type; // default: Floater param
std::string border; // default: circular border param.
std::string solver; // default: OpenNL solver
std::string input; // required
std::string output; // default: out.eps
try
{
#ifdef CGAL_USE_BOOST_PROGRAM_OPTIONS
po::options_description desc("Allowed options");
desc.add_options()
("help,h", "prints this help message")
("type,t", po::value<std::string>(&type)->default_value("floater"),
"parameterization method: floater, conformal, barycentric, authalic or lscm")
("border,b", po::value<std::string>(&border)->default_value("circle"),
"border shape: circle, square or 2pts (lscm only)")
("solver,s", po::value<std::string>(&solver)->default_value("opennl"),
"solver: opennl or taucs")
("input,i", po::value<std::string>(&input)->default_value(""),
"input mesh (OFF)")
("output,o", po::value<std::string>(&output)->default_value("out.eps"),
"output file (EPS or OBJ)")
;
po::positional_options_description p;
p.add("input", 1);
p.add("output", 1);
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).options(desc).positional(p).run(), vm);
po::notify(vm);
if (vm.count("help")) {
std::cout << desc << "\n";
return 1;
}
#else
std::cerr << "Command-line options require Boost.ProgramOptions" << std::endl;
std::cerr << "Use hard-coded options" << std::endl;
border = "square";
type = "floater";
solver = "opennl";
input = "data/rotor.off";
output = "rotor_floater_square_opennl_parameterized.obj";
#endif
}
catch(std::exception& e) {
std::cerr << "error: " << e.what() << "\n";
return 1;
}
catch(...) {
std::cerr << "Exception of unknown type!\n";
}
//***************************************
// Read the mesh
//***************************************
CGAL::Timer task_timer;
task_timer.start();
// Read the mesh
std::ifstream stream(input.c_str());
Polyhedron mesh;
stream >> mesh;
if(!stream || !mesh.is_valid() || mesh.empty())
{
std::cerr << "Error: cannot read OFF file " << input << std::endl;
return EXIT_FAILURE;
}
std::cerr << "Read file " << input << ": "
<< task_timer.time() << " seconds "
<< "(" << mesh.size_of_facets() << " facets, "
<< mesh.size_of_vertices() << " vertices)" << std::endl;
task_timer.reset();
//***************************************
// Create mesh adaptor
//***************************************
// The Surface_mesh_parameterization package needs an adaptor to handle Polyhedron_ex meshes
Parameterization_polyhedron_adaptor mesh_adaptor(mesh);
// The parameterization methods support only meshes that
// are topological disks => we need to compute a cutting path
// that makes the mesh a "virtual" topological disk
//
// 1) Cut the mesh
Seam seam = cut_mesh(mesh_adaptor);
if (seam.empty())
{
std::cerr << "Input mesh not supported: the example cutting algorithm is too simple to cut this shape" << std::endl;
return EXIT_FAILURE;
}
//
// 2) Create adaptor that virtually "cuts" a patch in a Polyhedron_ex mesh
Mesh_patch_polyhedron mesh_patch(mesh_adaptor, seam.begin(), seam.end());
if (!mesh_patch.is_valid())
{
std::cerr << "Input mesh not supported: non manifold shape or invalid cutting" << std::endl;
return EXIT_FAILURE;
}
std::cerr << "Mesh cutting: " << task_timer.time() << " seconds." << std::endl;
task_timer.reset();
//***************************************
// switch parameterization
//***************************************
std::cerr << "Parameterization..." << std::endl;
// Defines the error codes
typedef CGAL::Parameterizer_traits_3<Mesh_patch_polyhedron> Parameterizer;
Parameterizer::Error_code err;
if (solver == std::string("opennl"))
{
err = parameterize<Mesh_patch_polyhedron,
OpenNL::DefaultLinearSolverTraits<double>,
OpenNL::SymmetricLinearSolverTraits<double>
>(mesh_patch, type, border);
}
else if (solver == std::string("taucs"))
{
#ifdef CGAL_USE_TAUCS
err = parameterize<Mesh_patch_polyhedron,
CGAL::Taucs_solver_traits<double>,
CGAL::Taucs_symmetric_solver_traits<double>
>(mesh_patch, type, border);
#else
std::cerr << "Error: TAUCS is not installed" << std::endl;
err = Parameterizer::ERROR_WRONG_PARAMETER;
#endif
}
else
{
std::cerr << "Error: invalid solver parameter " << solver << std::endl;
err = Parameterizer::ERROR_WRONG_PARAMETER;
}
// Report errors
switch(err) {
case Parameterizer::OK: // Success
break;
case Parameterizer::ERROR_EMPTY_MESH: // Input mesh not supported
case Parameterizer::ERROR_NON_TRIANGULAR_MESH:
case Parameterizer::ERROR_NO_TOPOLOGICAL_DISC:
case Parameterizer::ERROR_BORDER_TOO_SHORT:
std::cerr << "Input mesh not supported: " << Parameterizer::get_error_message(err) << std::endl;
return EXIT_FAILURE;
break;
default: // Error
std::cerr << "Error: " << Parameterizer::get_error_message(err) << std::endl;
return EXIT_FAILURE;
break;
};
std::cerr << "Parameterization: " << task_timer.time() << " seconds." << std::endl;
task_timer.reset();
//***************************************
// Output
//***************************************
// get output file's extension
std::string extension = output.substr(output.find_last_of('.'));
// Save mesh
if (extension == ".eps" || extension == ".EPS")
{
// write Postscript file
if ( ! mesh.write_file_eps(output.c_str()) )
{
std::cerr << "Error: cannot write file " << output << std::endl;
return EXIT_FAILURE;
}
}
else if (extension == ".obj" || extension == ".OBJ")
{
// write Wavefront obj file
if ( ! mesh.write_file_obj(output.c_str()) )
{
std::cerr << "Error: cannot write file " << output << std::endl;
return EXIT_FAILURE;
}
}
else
{
std::cerr << "Error: output format not supported" << output << std::endl;
err = Parameterizer::ERROR_WRONG_PARAMETER;
return EXIT_FAILURE;
}
std::cerr << "Write file " << output << ": "
<< task_timer.time() << " seconds " << std::endl;
return EXIT_SUCCESS;
}
|