File: Alpha_shape_2.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (1833 lines) | stat: -rw-r--r-- 51,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
// Copyright (c) 1997  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Alpha_shapes_2/include/CGAL/Alpha_shape_2.h $
// $Id: Alpha_shape_2.h 47026 2008-11-25 13:21:09Z afabri $
// 
//
// Author(s)     : Tran Kai Frank DA
//                 Andreas Fabri <Andreas.Fabri@geometryfactory.com>

#ifndef CGAL_ALPHA_SHAPE_2_H
#define CGAL_ALPHA_SHAPE_2_H

#include <CGAL/basic.h>

#include <list>
#include <set>
#include <map>
#include <vector>
#include <algorithm>
#include <utility>
#include <iostream>

#include <CGAL/utility.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Triangulation_vertex_base_2.h>
#include <CGAL/Triangulation_face_base_2.h>
#include <CGAL/Alpha_shape_vertex_base_2.h>
#include <CGAL/Alpha_shape_face_base_2.h>



CGAL_BEGIN_NAMESPACE

template < class Dt >
class Alpha_shape_2 : public Dt 
{
  // DEFINITION The class Alpha_shape_2<Dt> represents the family
  // of alpha-shapes of points in a plane for all positive alpha. It
  // maintains the underlying Delaunay triangulation which represents
  // connectivity and order among its faces. Each k-dimensional face of the
  // Delaunay triangulation is associated with an interval that specifies
  // for which values of alpha the face belongs to the alpha-shape (sorted
  // linear arrays resp. multimaps or interval trees). There are links
  // between the intervals and the k-dimensional faces of the Delaunay
  // triangulation (multimaps resp. std::hashtables).
  //

  //------------------------- TYPES ------------------------------------

public:
  typedef typename Dt::Geom_traits Gt;
  typedef typename Dt::Triangulation_data_structure Tds;

  typedef typename Gt::FT Coord_type;
  typedef typename Gt::FT NT;
  typedef typename Gt::FT FT;
  typedef typename Gt::Point_2 Point;
  typedef typename Gt::Segment_2 Segment;
  typedef typename Gt::Ray_2 Ray;
  typedef typename Gt::Line_2 Line;

  typedef typename Dt::Face_handle Face_handle;
  typedef typename Dt::Vertex_handle Vertex_handle;
  typedef typename Dt::Edge Edge;

  typedef typename Dt::Face_circulator Face_circulator;
  typedef typename Dt::Edge_circulator Edge_circulator;
  typedef typename Dt::Vertex_circulator Vertex_circulator;

  typedef typename Dt::Finite_faces_iterator Finite_faces_iterator;
  typedef typename Dt::Edge_iterator Edge_iterator;
  typedef typename Dt::Finite_vertices_iterator Finite_vertices_iterator;

  typedef typename Dt::Locate_type Locate_type;

  using Dt::finite_vertices_begin;
  using Dt::finite_vertices_end;
  using Dt::faces_begin;
  using Dt::faces_end;
  using Dt::edges_begin;
  using Dt::edges_end;
  using Dt::number_of_vertices;
  using Dt::cw;
  using Dt::ccw;
  using Dt::VERTEX;
  using Dt::EDGE;
  using Dt::FACE;
  using Dt::OUTSIDE_CONVEX_HULL;
  using Dt::OUTSIDE_AFFINE_HULL;
  using Dt::dimension;

  // for backward compatibility
  typedef Finite_vertices_iterator Vertex_iterator;
  typedef Finite_faces_iterator Face_iterator;

private:

  typedef std::multimap< Coord_type, Face_handle >  Interval_face_map;
  typedef typename Interval_face_map::value_type    Interval_face;

  typedef typename Tds::Face::Interval_3            Interval3;
  
  typedef std::multimap< Interval3, Edge >          Interval_edge_map;
  typedef typename Interval_edge_map::value_type    Interval_edge;

  typedef std::pair< Coord_type, Coord_type >       Interval2;
  typedef std::multimap< Interval2, Vertex_handle > Interval_vertex_map;
  typedef typename Interval_vertex_map::value_type  Interval_vertex;

  typedef Face_handle const const_void;
  typedef std::pair<const_void, int> const_Edge;

  typedef std::vector< Coord_type > Alpha_spectrum;
  
  typedef std::vector< Segment > Vect_seg;

  typedef Unique_hash_map< Face_handle, bool > Marked_face_set;

public:

  typedef typename std::list< Vertex_handle >::iterator 
  Alpha_shape_vertices_iterator;
  typedef typename std::list< Edge >::iterator Alpha_shape_edges_iterator;

  typedef typename Alpha_spectrum::const_iterator Alpha_iterator;
  // An iterator that allow to traverse the sorted sequence of
  // different alpha-values. The iterator is bidirectional and
  // non-mutable. Its value-type is Coord_type

  enum Classification_type {EXTERIOR, SINGULAR, REGULAR, INTERIOR};
  // Distinguishes the different cases for classifying a
  // k-dimensional face of the underlying Delaunay triangulation of
  // the alpha-shape.
  // 
  // `EXTERIOR' if the face does not belong to the alpha-complex.
  // 
  // `SINGULAR' if the face belongs to the boundary of the
  // alpha-shape, but is not incident to any higher-dimensional
  // face of the alpha-complex
  // 
  // `REGULAR' if face belongs to the boundary of the alpha-shape
  // and is incident to a higher-dimensional face of the
  // alpha-complex
  // 
  // `INTERIOR' if the face belongs to the alpha-complex, but does
  // not belong to the boundary of the alpha-shape

  enum Mode {GENERAL, REGULARIZED};
  // In general, an alpha shape is a non-connected, mixed-dimension
  // polygon. Its regularized version is formed by the set of
  // regular edges and their vertices

  //------------------------ private VARIABLES -------------------------

private:

  // only finite edges and faces are inserted into the maps 
  Interval_face_map _interval_face_map;
  Interval_edge_map _interval_edge_map;
  Interval_vertex_map _interval_vertex_map;

  Alpha_spectrum _alpha_spectrum;
 
  Coord_type _alpha;
  Mode _mode;
  // should be constants
  Coord_type Infinity;
  Coord_type UNDEFINED;
  
  mutable std::list< Vertex_handle > Alpha_shape_vertices_list;
  mutable std::list< Edge > Alpha_shape_edges_list;

  mutable bool use_vertex_cache;
  mutable bool use_edge_cache;
public:

  //------------------------- CONSTRUCTORS ------------------------------
 
  // Introduces an empty alpha-shape `A' for a positive
  // alpha-value `alpha'. Precondition: `alpha' >= 0.
  Alpha_shape_2(Coord_type alpha = Coord_type(0), 
		Mode m = GENERAL)
    : _alpha(alpha), _mode(m), Infinity(-1), UNDEFINED(-2),
      use_vertex_cache(false), use_edge_cache(false)
    {}
 
  // Introduces an alpha-shape `A' for a positive alpha-value
  // `alpha' that is initialized with the points in the range
  // from first to last

  template <class InputIterator>
  Alpha_shape_2(const InputIterator& first,  
		const InputIterator& last,  
		const Coord_type& alpha = Coord_type(0),
		Mode m = GENERAL)
    : _alpha(alpha), _mode(m), Infinity(-1), UNDEFINED(-2) ,
      use_vertex_cache(false), use_edge_cache(false)
    {
      Dt::insert(first, last);
      if (dimension() == 2)
	{
	  // Compute the associated _interval_face_map
	  initialize_interval_face_map();

	  // Compute the associated _interval_edge_map
	  initialize_interval_edge_map();
   
	  // Compute the associated _interval_vertex_map
	  initialize_interval_vertex_map();

	  // merge the two maps
	  initialize_alpha_spectrum();
	}
    }
 
public:

  //----------- OUTPUT POINTS CONNECTED BY PAIRS ----------------------

  std::list<Point> Output();
 
  std::ostream& op_ostream(std::ostream& os) const;

 
  //----------------------- OPERATIONS ---------------------------------

  // Introduces an alpha-shape `A' for a positive alpha-value
  // `alpha' that is initialized with the points in the range
  // from first to last

  template < class InputIterator >  
  int make_alpha_shape(const InputIterator& first,  
		       const InputIterator& last) 
    {

      clear();

      int n =  Dt::insert(first, last);
 
      if (dimension() == 2)
	{   
	  // Compute the associated _interval_face_map
	  initialize_interval_face_map();

	  // Compute the associated _interval_edge_map
	  initialize_interval_edge_map();

	  // Compute the associated _interval_vertex_map
	  initialize_interval_vertex_map();
  
	  // merge the two maps
	  initialize_alpha_spectrum();
	}
      return n;
    }

private :

  //--------------------- INITIALIZATION OF PRIVATE MEMBERS -----------

  void initialize_interval_face_map();

  void initialize_interval_edge_map();

  void initialize_interval_vertex_map();

  void initialize_alpha_spectrum();

  //---------------------------------------------------------------------

public:

  void clear() 
    {
      // clears the structure
      Dt::clear();

      _interval_face_map.clear();
      _interval_edge_map.clear();
      _interval_vertex_map.clear();
    
      _alpha_spectrum.clear();

      Alpha_shape_vertices_list.clear();
      Alpha_shape_edges_list.clear();
    
      set_alpha(Coord_type(0)); 
      set_mode(GENERAL);

    }

  //----------------------- PRIVATE MEMBERS --------------------------

private:
   
  struct Less 
  {
    bool operator()(const Interval_edge& ie, 
		    const Coord_type& alpha) 
      {
	return ie.first.first < alpha; 
      }

    bool operator()( const Coord_type& alpha, 
		     const Interval_edge& ie) 
      {
	return alpha < ie.first.first; 
      }

    // Needed for STL implementations of upper_bound which in debug mode 
    // check sortedness of range
    bool operator()(const Interval_edge& ie, 
		    const Interval_edge& ie2) const
      {
	return ie < ie2;
      }
  };

  
  //----------------------- ACCESS TO PRIVATE MEMBERS -----------------

private:
   
  
  Coord_type find_interval(const Face_handle& f) const 
    {
      return f->get_alpha();
      // return the value Alpha f the face f
    }
 
  Interval3 find_interval(const_Edge e)  const 
    { // corriger le parametrage
      return (e.first)->get_ranges(e.second);
      // return the Interval3 for the edge n
    }


  //---------------------------------------------------------------------

public:

  Coord_type set_alpha(const Coord_type& alpha) 
    {
      // Sets the alpha-value to `alpha'. Precondition: `alpha' >= 0.
      // Returns the previous alpha
      Coord_type previous_alpha = _alpha;
      _alpha = alpha;
      use_vertex_cache = false;
      use_edge_cache = false;
      return previous_alpha;
    }

  const Coord_type&  get_alpha() const 
    {
      // Returns the current alpha-value.
      return _alpha;
    }
  
  const Coord_type&  get_nth_alpha(int n) const 
    {
      // Returns the n-th alpha-value.
      // n < size()
      if (! _alpha_spectrum.empty())
	return _alpha_spectrum[n];
      else
	return UNDEFINED;
    }
  
  int number_of_alphas() const 
    {
      // Returns the number of not necessary different alpha-values
      return _alpha_spectrum.size();
    }

  //---------------------------------------------------------------------

private:

  // the dynamic version is not yet implemented
  // desactivate the triangulation member functions
  Vertex_handle insert(const Point& p);
  // Inserts point `p' in the alpha shape and returns the
  // corresponding vertex of the underlying Delaunay triangulation.
  // If point `p' coincides with an already existing vertex, this
  // vertex is returned and the alpha shape remains unchanged.
  // Otherwise, the vertex is inserted in the underlying Delaunay
  // triangulation and the associated intervals are updated.

  void remove(Vertex_handle v);
  // Removes the vertex from the underlying Delaunay triangulation.
  // The created hole is retriangulated and the associated intervals
  // are updated.

  //---------------------------------------------------------------------

public:

  Mode set_mode(Mode mode = GENERAL ) 
    {
      // Sets `A' to its general or regularized version. Returns the
      // previous mode.

      Mode previous_mode = _mode;
      _mode = mode;
      return previous_mode;
    }

  Mode get_mode() const 
    {
      // Returns whether `A' is general or regularized.
      return _mode;
    }

  //---------------------------------------------------------------------

private:


void
update_alpha_shape_vertex_list()const;

  //---------------------------------------------------------------------

  void
  update_alpha_shape_edges_list() const;
  

  //---------------------------------------------------------------------

public:

  Alpha_shape_vertices_iterator alpha_shape_vertices_begin() const
    { 
    if(!use_vertex_cache){
      update_alpha_shape_vertex_list();
    }
      return Alpha_shape_vertices_list.begin();
    }



  // for backward compatibility
  Alpha_shape_vertices_iterator Alpha_shape_vertices_begin()
    {
      return alpha_shape_vertices_begin();
    }
  //---------------------------------------------------------------------

  Alpha_shape_vertices_iterator alpha_shape_vertices_end() const
    {
      return Alpha_shape_vertices_list.end();
    }

  Alpha_shape_vertices_iterator Alpha_shape_vertices_end() const
    {
      return Alpha_shape_vertices_list.end();
    }
  //---------------------------------------------------------------------

  Alpha_shape_edges_iterator alpha_shape_edges_begin() const
    {
      if(!use_edge_cache){
      update_alpha_shape_edges_list();
    }
      return Alpha_shape_edges_list.begin();
    }

  Alpha_shape_edges_iterator Alpha_shape_edges_begin() const
  {
    return alpha_shape_edges_begin();
  }
  //---------------------------------------------------------------------

  Alpha_shape_edges_iterator alpha_shape_edges_end() const
    {
      return Alpha_shape_edges_list.end();
    }

  Alpha_shape_edges_iterator Alpha_shape_edges_end() const
    {
      return Alpha_shape_edges_list.end();
    }
public: 
  
  // Traversal of the alpha-Values
  // 
  // The alpha shape class defines an iterator that allows to
  // visit the sorted sequence of alpha-values. This iterator is
  // non-mutable and bidirectional. Its value type is Coord_type.

  Alpha_iterator alpha_begin() const 
    {
      // Returns an iterator that allows to traverse the sorted sequence
      // of alpha-values of `A'.
      return _alpha_spectrum.begin(); 
    }

  Alpha_iterator alpha_end() const 
    {
      // Returns the corresponding past-the-end iterator.
      return _alpha_spectrum.end(); 
    }
  
  Alpha_iterator alpha_find(const Coord_type& alpha) const 
    {
      // Returns an iterator pointing to an element with alpha-value
      // `alpha', or the corresponding past-the-end iterator if such an
      // element is not found.
      return std::find(_alpha_spectrum.begin(),
		       _alpha_spectrum.end(),
		       alpha);
    }

  Alpha_iterator alpha_lower_bound(const Coord_type& alpha) const 
    {
      // Returns an iterator pointing to the first element with
      // alpha-value not less than `alpha'.
      return std::lower_bound(_alpha_spectrum.begin(),
			      _alpha_spectrum.end(),
			      alpha);
    }

  Alpha_iterator alpha_upper_bound(const Coord_type& alpha) const 
    {
      // Returns an iterator pointing to the first element with
      // alpha-value greater than `alpha'.
      return std::upper_bound(_alpha_spectrum.begin(),
			      _alpha_spectrum.end(),
			      alpha);
    }

  //--------------------- PREDICATES -----------------------------------

  // the classification predicates take 
  //      amortized const time if STL_STD::HASH_TABLES
  //      O(log #alpha_shape ) otherwise

  Classification_type  classify(const Point& p ) const 
    {
      return classify( p, get_alpha());
    }

  
  Classification_type  classify(const Point& p,   
				const Coord_type& alpha) const 
    {
      // Classifies a point `p' with respect to `A'.
      Locate_type type;
      int i;
      Face_handle pFace = locate(p, type, i);
      switch (type) 
	{
	case VERTEX            : return classify(pFace->vertex(i), alpha);
	case EDGE              : return classify(pFace, i, alpha);
	case FACE              : return classify(pFace, alpha);
	case OUTSIDE_CONVEX_HULL : 
	case OUTSIDE_AFFINE_HULL : return EXTERIOR;
	default                : return EXTERIOR;
	}
    }

  //---------------------------------------------------------------------

  Classification_type  classify(const Face_handle& f) const 
    {
      // Classifies the face `f' of the underlying Delaunay
      // triangulation with respect to `A'.
      return classify(f, get_alpha());
    }
  
  Classification_type  classify(const Face_handle& f, 
				const Coord_type& alpha) const 
    {
      // Classifies the face `f' of the underlying Delaunay
      // triangulation with respect to `A'.
      // we consider open circles :
      // f->radius == alpha => f exterior
      // problem the operator [] is non-const

      if (is_infinite(f)) return EXTERIOR;
    
      // the version that computes the squared radius seems to be 
      // much faster
    
      return (find_interval(f) < alpha) ? 
	INTERIOR :
	EXTERIOR;

    }

  //---------------------------------------------------------------------
  
  Classification_type  classify(const Edge& edge) const
    {  
      return classify(edge.first, edge.second, get_alpha());
    }

  Classification_type  classify(const Face_handle& f, 
				int i) const 
    {  
      return classify(f, i, get_alpha());
    }

  Classification_type  classify(const Edge& edge,
				const Coord_type& alpha) const 
    {  
      return classify(edge.first, edge.second, alpha);
    }

  Classification_type  classify(const Face_handle& f, 
				int i,
				const Coord_type& alpha) const;

  
  //---------------------------------------------------------------------

  Classification_type  classify(const Vertex_handle& v) const 
    {
      return classify(v, get_alpha());
    }

  Classification_type  classify(const Vertex_handle& v,
				const Coord_type& alpha) const;

  //--------------------- NB COMPONENTS ---------------------------------
  int
  number_solid_components() const
    {
      return number_of_solid_components(get_alpha());
    }

  int
  number_of_solid_components() const
    {
      return number_of_solid_components(get_alpha());
    }

  int 
  number_solid_components(const Coord_type& alpha) const
    {
      return number_of_solid_components(get_alpha());
    }

  int
  number_of_solid_components(const Coord_type& alpha) const;

private:

  void traverse(const Face_handle& pFace,
		Marked_face_set& marked_face_set, 
		const Coord_type alpha) const;

  class Line_face_circulator;

  //----------------------------------------------------------------------

public:

  Alpha_iterator find_optimal_alpha(int nb_components);  	

private:

  Coord_type find_alpha_solid() const;

  //---------------------- PREDICATES ------------------------------------

private:
  
  bool is_attached(const Face_handle& f, int i) const 
    {
      Bounded_side b = 
	Gt().side_of_bounded_circle_2_object()(f->vertex(cw(i))->point(),
					       f->vertex(ccw(i))->point(),
					       f->vertex(i)->point());
 
      return (b == ON_BOUNDED_SIDE) ? true : false;
    }
  
  //-------------------- GEOMETRIC PRIMITIVES ----------------------------

  Coord_type squared_radius(const Face_handle& f) const 
    {
      return 
	Gt().compute_squared_radius_2_object()(f->vertex(0)->point(),
					       f->vertex(1)->point(),
					       f->vertex(2)->point());
    }

  Coord_type squared_radius(const Face_handle& f, int i) const 
    {
      return 
	Gt().compute_squared_radius_2_object()(f->vertex(ccw(i))->point(),
					       f->vertex(cw(i))->point());
    }

  //---------------------------------------------------------------------

private:
  // prevent default copy constructor and default assigment
  
  Alpha_shape_2(const Alpha_shape_2& A);

  Alpha_shape_2& operator=(const Alpha_shape_2& A);


public:
  // to debug
  void print_edge_map();

};


//---------------------------------------------------------------------
//----------------------- MEMBER FUNCTIONS -----------------------------
//---------------------------------------------------------------------


template < class Dt >
void 
Alpha_shape_2<Dt>::initialize_interval_face_map() 
{
  Coord_type alpha_f;

  // only finite faces
  for(Finite_faces_iterator face_it = faces_begin(); face_it != faces_end(); ++face_it)
    {
      alpha_f = squared_radius(face_it);
      _interval_face_map.insert(Interval_face(alpha_f, face_it));

      // cross references
      face_it->set_alpha(alpha_f);
    } 
}

//-------------------------------------------------------------------------

template < class Dt >
void 
Alpha_shape_2<Dt>::initialize_interval_edge_map() 
{  
  Edge_iterator edge_it;
  Edge edge;

  // only finite faces
  for( edge_it = edges_begin(); 
       edge_it != edges_end(); 
       ++edge_it) 
    { 
      Interval3 interval;
      edge = (*edge_it);

      Face_handle pFace = edge.first;
      int i = edge.second;
      Face_handle pNeighbor = pFace->neighbor(i);
      int Neigh_i = pNeighbor->index(pFace);
      
      // not on the convex hull
      
      if(!is_infinite(pFace) && !is_infinite(pNeighbor)) 
	{ 
	  Coord_type squared_radius_Face = 
	    find_interval(pFace);
	  Coord_type squared_radius_Neighbor = 
	    find_interval(pNeighbor);
	  if (squared_radius_Neighbor < squared_radius_Face) 
	    {	    
	      edge =  Edge(pNeighbor, Neigh_i);
	      Coord_type coord_tmp = squared_radius_Face;
	      squared_radius_Face = squared_radius_Neighbor;
	      squared_radius_Neighbor = coord_tmp;
	    }
	  interval = (is_attached(pFace, i) || 
		      is_attached(pNeighbor, Neigh_i)) ?
	    make_triple(UNDEFINED,
			squared_radius_Face, 
			squared_radius_Neighbor):
	    make_triple(squared_radius(pFace, i),
			squared_radius_Face, 
			squared_radius_Neighbor);
	}
      else 
	{ // on the convex hull

	  if(is_infinite(pFace)) 
	    {
	      if (!is_infinite(pNeighbor)) 
		{
		  interval =  (is_attached(pNeighbor,
					   Neigh_i)) ?
		    make_triple(UNDEFINED,
				find_interval(pNeighbor), 
				Infinity):
		    make_triple(squared_radius(pNeighbor, 
					       Neigh_i), 
				find_interval(pNeighbor), 
				Infinity); 
		  edge =  Edge(pNeighbor, Neigh_i);
		}
	      else 
		{
		  // both faces are infinite by definition unattached
		  // the edge is finite by construction
		  CGAL_triangulation_precondition((is_infinite(pNeighbor) 
						   && is_infinite(pFace)));
		  interval = make_triple(squared_radius(pFace, i), 
					 Infinity,
					 Infinity);
		}
	    }
	  else 
	    { // is_infinite(pNeighbor)
	   
	      CGAL_triangulation_precondition((is_infinite(pNeighbor) 
					       && !is_infinite(pFace)));
	      if (is_attached(pFace, i))
		interval = make_triple(UNDEFINED,
				       find_interval(pFace),
				       Infinity);
	      else
		interval = make_triple(squared_radius(pFace, i),
				       find_interval(pFace),
				       Infinity);

	    }
	}
      
      _interval_edge_map.insert(Interval_edge(interval, edge));
      
      // cross-links
      (edge.first)->set_ranges(edge.second,interval);
      // MY : to fix a bug I store the interval of the edge in both faces 
      Face_handle neighbor = (edge.first)->neighbor(edge.second);
      int ni = neighbor->index(edge.first);
      neighbor->set_ranges( ni, interval);

    }

  // Remark:
  // The interval_edge_map will be sorted as follows
  // first the attached edges on the convex hull
  // second                   not on the convex hull
  // third the un-attached edges on the convex hull
  // finally                     not on the convex hull
  // 
  // if we are in regularized mode we should sort differently
  // by the second third first Key
}

//-------------------------------------------------------------------------

template < class Dt >
void 
Alpha_shape_2<Dt>::initialize_interval_vertex_map() 
{
  Coord_type alpha_mid_v;
  Coord_type alpha_max_v;
  Coord_type alpha_f;

  Finite_vertices_iterator vertex_it;

  for( vertex_it = finite_vertices_begin(); 
       vertex_it != finite_vertices_end(); 
       ++vertex_it) 
    {
      Vertex_handle v = vertex_it;
      Face_handle f;

      alpha_max_v = Coord_type(0);    
      alpha_mid_v = (!_interval_face_map.empty() ?
		     (--_interval_face_map.end())->first :
		     Coord_type(0));

      //----------------- examine incident edges --------------------------
      
// 	// if we used Edelsbrunner and Muecke's definition
// 	// singular means not incident to any higher-dimensional face
// 	// regular means incident to a higher-dimensional face
// 	Edge_circulator edge_circ = this->incident_edges(v),
// 	edge_done(edge_circ);

// 	do 
      
// 	{ 
// 	f = (*edge_circ).first;
// 	int i = (*edge_circ).second;

// 	if (is_infinite(f, i))
      
// 	{
// 	alpha_max_v = Infinity;
// 	}
// 	else
      
// 	{
// 	Interval3 interval3 = find_interval(const_Edge(f, i));
				
	
// 	alpha_mid_v = (interval3.first != UNDEFINED) ?
// 	CGAL::min BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_mid_v, interval3.first): 
// 	CGAL::min BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_mid_v, interval3.second); 
			
// 	if (alpha_max_v != Infinity)
      
// 	{
// 	alpha_max_v = (interval3.third != Infinity) ?
// 	CGAL::max BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_max_v, interval3.third):
// 	Infinity;
// 	}
// 	}
// 	}
// 	while(++edge_circ != edge_done);
     

      //-------------- examine incident faces --------------------------
      
      // we use a different definition than Edelsbrunner and Muecke
      // singular means not incident to any 2-dimensional face
      // regular means incident to a 2-dimensional face
     
      Face_circulator face_circ = this->incident_faces(v),
	done = face_circ;
   
      if (!face_circ.is_empty()) 
	{
	  do 
	    {
	      f = face_circ;
	      if (is_infinite(f)) 
		{
		  alpha_max_v = Infinity;
		  // continue;
		}
	      else 
		{
		  alpha_f = find_interval(f);
		  // if we define singular as not incident to a 2-dimensional
		  // face
		  alpha_mid_v = CGAL::min BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_mid_v, alpha_f);
		    
		  if (alpha_max_v != Infinity)
		    alpha_max_v = CGAL::max BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_max_v, alpha_f);
			    
		}
	    }
	  while(++face_circ != done);
	}
	
 
      Interval2 interval = std::make_pair(alpha_mid_v, alpha_max_v);
      _interval_vertex_map.insert(Interval_vertex(interval, vertex_it));

      // cross references
      vertex_it->set_range(interval);
    }
}

//-------------------------------------------------------------------------

template < class Dt >
void 
Alpha_shape_2<Dt>::initialize_alpha_spectrum() 
{

  // skip the attached edges 
  // <=> _interval_edge_map.first.first == UNDEFINED
  typename Interval_edge_map::iterator 
    edge_it = std::upper_bound(_interval_edge_map.begin(),
			       _interval_edge_map.end(),
			       UNDEFINED,
			       Less());

  // merge the maps which is sorted and contains the alpha-values
  // of the unattached edges and the triangles.
  // eliminate duplicate values due to for example attached edges
  // merge and copy from STL since assignment should be function object
	
  typename Interval_face_map::iterator
    face_it = _interval_face_map.begin();

  _alpha_spectrum.reserve(_interval_face_map.size() +
			  _interval_edge_map.size()/ 2 );
  // should be only the number of unattached edges
  // size_type nb_unattached_edges;
  // distance(edge_it, _interval_edge_map.end(), nb_unattached_edges);
  // however the distance function is expensive

  while (edge_it != _interval_edge_map.end() ||
	 face_it != _interval_face_map.end()) 
    {
      if (face_it != _interval_face_map.end() &&
	  (edge_it == _interval_edge_map.end() ||
	   ((*face_it).first < (*edge_it).first.first))) 
	{
	  if (((_alpha_spectrum.empty() || 
		_alpha_spectrum.back() < (*face_it).first)) && 
	      ((*face_it).first > Coord_type(0)))
	    _alpha_spectrum.push_back((*face_it).first);
	  face_it++;
	}
      else
	{
	  if (((_alpha_spectrum.empty() || 
		_alpha_spectrum.back() < (*edge_it).first.first)) &&
	      (((*edge_it).first.first) > Coord_type(0)))
	    _alpha_spectrum.push_back((*edge_it).first.first);
	  edge_it++;
	}
    }
    
  while (edge_it != _interval_edge_map.end()) 
    {
      if (((_alpha_spectrum.empty() || 
	    _alpha_spectrum.back() < (*edge_it).first.first))&&
	  (((*edge_it).first.first) > Coord_type(0)))
	_alpha_spectrum.push_back((*edge_it).first.first);
      edge_it++;
    }

  while (face_it != _interval_face_map.end()) 
    { 
      if (((_alpha_spectrum.empty() || 
	    _alpha_spectrum.back() < (*face_it).first))&&
	  ((*face_it).first > Coord_type(0)))
	_alpha_spectrum.push_back((*face_it).first);
      face_it++;
    }

}


//-------------------------------------------------------------------------



template < class Dt >
void
Alpha_shape_2<Dt>::update_alpha_shape_vertex_list()const {
	//typedef typename Alpha_shape_2<Dt>::Interval_vertex_map 
	//                                              Interval_vertex_map;
	typename Interval_vertex_map::const_iterator vertex_alpha_it;

	//const typename Alpha_shape_2<Dt>::Interval2* pInterval2;
	const Interval2* pInterval2;
	Vertex_handle v;
	Alpha_shape_vertices_list.clear();
	// write the regular vertices

	for (vertex_alpha_it = _interval_vertex_map.begin(); 
		vertex_alpha_it != _interval_vertex_map.end() &&
		(*vertex_alpha_it).first.first < get_alpha();
		++vertex_alpha_it) 
		{
		pInterval2 = &(*vertex_alpha_it).first;

		if((pInterval2->second >= get_alpha()
		|| pInterval2->second == Infinity)) 
		{
		// alpha must be larger than the min boundary
		// and alpha is smaller than the upper boundary
		// which might be infinity 
		// write the vertex
		v = (*vertex_alpha_it).second;
		CGAL_triangulation_assertion((classify(v) == REGULAR));
		Alpha_shape_vertices_list.push_back(v);
		}
		}
	 
	if (get_mode() == Alpha_shape_2<Dt>::GENERAL) 
		{
		// write the singular vertices
		for (; 
		vertex_alpha_it != _interval_vertex_map.end();
		++vertex_alpha_it) 
		{
		v = (*vertex_alpha_it).second;
		CGAL_triangulation_assertion((classify(v) == SINGULAR));

		Alpha_shape_vertices_list.push_back(v);
		}
		}
	use_vertex_cache = true;
  }

//-------------------------------------------------------------------------

template < class Dt >
void
Alpha_shape_2<Dt>::update_alpha_shape_edges_list() const 
{

  // Writes the edges of the alpha shape `A' for the current $\alpha$-value
  // to the container where 'out' refers to. Returns an output iterator 
  // which is the end of the constructed range.
  //typedef  typename Alpha_shape_2<Dt>::Interval_edge_map Interval_edge_map;
  typename Interval_edge_map::const_iterator edge_alpha_it;

  //const typename Alpha_shape_2<Dt>::Interval3* pInterval;
  const Interval3* pInterval;
  Alpha_shape_edges_list.clear();
  if (get_mode() == REGULARIZED) 
    {
      // it is much faster looking at the sorted intervals 
      // than looking at all sorted faces
      // alpha must be larger than the mid boundary
      // and alpha is smaller than the upper boundary
      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{
	  pInterval = &(*edge_alpha_it).first;
      
	  CGAL_triangulation_assertion(pInterval->second != Infinity);
	  // since this happens only for convex hull of dimension 2
	  // thus singular

	  if(pInterval->second < get_alpha() &&
	     (pInterval->third >= get_alpha()
	      || pInterval->third == Infinity)) 
	    {
	      // alpha must be larger than the mid boundary
	      // and alpha is smaller than the upper boundary
	      // which might be infinity 
	      // visualize the boundary
 CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
					(*edge_alpha_it).second.second)
			       == REGULAR));
	      Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
						    (*edge_alpha_it).second.second));
	    }
	}
    }
  else 
    {  // get_mode() == GENERAL -------------------------------------------
      // draw the edges
      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{
	  pInterval = &(*edge_alpha_it).first;
      
	  if (pInterval->first == UNDEFINED) 
	    {
	      CGAL_triangulation_assertion(pInterval->second != Infinity);
	      // since this happens only for convex hull of dimension 2
	      // thus singular
	
	      if(pInterval->second < get_alpha() &&
		 (pInterval->third >= get_alpha()
		  || pInterval->third == Infinity)) 
		{
		  // alpha must be larger than the mid boundary
		  // and alpha is smaller than the upper boundary
		  // which might be infinity 
		  // visualize the boundary
 CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
					(*edge_alpha_it).second.second) 
			       == REGULAR));
		  Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
							(*edge_alpha_it).second.second));
		}
	    }
	  else 
	    {
	
	      if(pInterval->third >= get_alpha()
		 || pInterval->third == Infinity) 
		{
		  // if alpha is smaller than the upper boundary
		  // which might be infinity 
		  // visualize the boundary
 CGAL_triangulation_assertion(((classify((*edge_alpha_it).second.first,
					 (*edge_alpha_it).second.second) 
				== REGULAR)
			       || (classify((*edge_alpha_it).second.first,
					    (*edge_alpha_it).second.second) 
				   == SINGULAR)));
		  Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
							(*edge_alpha_it).second.second));
		}
	    }
      
	}
    
    }
  use_edge_cache = true;
}

//-------------------------------------------------------------------------

template < class Dt >
typename Alpha_shape_2<Dt>::Classification_type  
Alpha_shape_2<Dt>::classify(const Face_handle& f, int i, 
			    const Coord_type& alpha) const
{
  // Classifies the edge `e' of the underlying Delaunay
  // triangulation with respect to `A'.

  // the version that uses a simplified version without crosslinks
  // is much slower
  if (is_infinite(f, i))
    return EXTERIOR;

  // we store only finite edges in _edge_interval_map
  Interval3 interval = find_interval(const_Edge(f, i));
  //  (*(_edge_interval_map.find(const_Edge(f, i)))).second;
 
  if (alpha <= interval.second) 
    {
      if (get_mode() == REGULARIZED ||
	  interval.first == UNDEFINED ||
	  alpha <= interval.first)
	return EXTERIOR;
      else // alpha > interval.first
	return SINGULAR;
    }
  else 
    {   // alpha > interval.second
      if (interval.third == Infinity ||
	  alpha <= interval.third)
	return REGULAR;
      else // alpha > interval.third
	return INTERIOR;
    }
   
}

//-------------------------------------------------------------------------

template < class Dt >
typename Alpha_shape_2<Dt>::Classification_type  
Alpha_shape_2<Dt>::classify(const Vertex_handle& v,
			    const Coord_type& alpha) const 
{
  // Classifies the vertex `v' of the underlying Delaunay
  // triangulation with respect to `A'.
  Interval2 interval = v->get_range();
 
  if (alpha <= interval.first) 
    {
      if (get_mode() == REGULARIZED) 
	return EXTERIOR;
      else // general => vertices are never exterior
	return SINGULAR;
    }
  else 
    {   // alpha > interval.first
      if (interval.second == Infinity ||
	  alpha <= interval.second)
	return REGULAR;
      else // alpha > interval.second
	return INTERIOR;
    }
}

//-------------------------------------------------------------------------

template < class Dt >
int
Alpha_shape_2<Dt>::number_of_solid_components(const Coord_type& alpha) const
{
  // Determine the number of connected solid components 
  typedef typename Marked_face_set::Data Data;
  Marked_face_set marked_face_set(false);
  Finite_faces_iterator face_it;
  int nb_solid_components = 0;
  
  if (number_of_vertices()==0)
    return 0;
  
  // only finite faces
  for( face_it = faces_begin(); 
       face_it != faces_end(); 
       ++face_it) 
    {
      Face_handle pFace = face_it;
      CGAL_triangulation_postcondition( pFace != NULL);
      
      if (classify(pFace, alpha) == INTERIOR){
	Data& data = marked_face_set[pFace];
	if(data == false)
	  {
	    // we traverse only interior faces
	    traverse(pFace, marked_face_set, alpha);
	    nb_solid_components++;  
	  }
      }
    }
  return nb_solid_components;
}

//-------------------------------------------------------------------------

template < class Dt >
void
Alpha_shape_2<Dt>::traverse(const Face_handle& pFace,
			    Marked_face_set& marked_face_set, 
			    const Coord_type alpha) const 
{
  typedef typename Marked_face_set::Data Data;
  std::list<Face_handle> faces;
  faces.push_back(pFace);
  Face_handle pNeighbor, fh;

  while(! faces.empty()){
    fh = faces.front();
    faces.pop_front();
    for (int i=0; i<3; i++)
      {
	pNeighbor = fh->neighbor(i);
	 CGAL_triangulation_assertion(pNeighbor != NULL);
	if (classify(pNeighbor, alpha) == INTERIOR){
	  Data& data = marked_face_set[pNeighbor];
	  if(data == false){
	    data = true;
	    faces.push_back(pNeighbor);
	  }
	}
      }
  }
}

//-------------------------------------------------------------------------

template < class Dt >
typename Alpha_shape_2<Dt>::Alpha_iterator
Alpha_shape_2<Dt>::find_optimal_alpha(int nb_components) 
{
  // find the minimum alpha that satisfies the properties
  // (1) nb_components solid components
  // (2) all data points on the boundary or in its interior
  Coord_type alpha = find_alpha_solid();
  // from this alpha on the alpha_solid satisfies property (2)
  
  Alpha_iterator first = alpha_lower_bound(alpha);

  if (number_of_solid_components(alpha) == nb_components) 
    {
      if ((first+1) < alpha_end())
	return (first+1);
      else
	return first;
    }

  // do binary search on the alpha values
  // number_of_solid_components() is a monotone function 
  // if we start with find_alpha_solid
  
  Alpha_iterator last = alpha_end();
  Alpha_iterator middle;
  
  std::ptrdiff_t len = last - first - 1;
  std::ptrdiff_t half;

  while (len > 0) 
    {
      half = len / 2;
      middle = first + half;

#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
      std::cout << "first : " << *first << " last : " << *(first+len)
		<< " mid : " << *middle 
		<< " nb comps : " << number_of_solid_components(*middle) 
		<< std::endl;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2

      if (number_of_solid_components(*middle) > nb_components) 
	{
	  first = middle + 1;
	  len = len - half - 1; 
	} 
      else 
	{ // number_of_solid_components(*middle) <= nb_components
	  len = half;
	}
    }
  if ((first+1) < alpha_end())
    return (first+1);
  else
    return first;
}

//-------------------------------------------------------------------------

template < class Dt >
typename Alpha_shape_2<Dt>::Coord_type 
Alpha_shape_2<Dt>::find_alpha_solid() const 
{
  // compute the minumum alpha such that all data points 
  // are either on the boundary or in the interior
  // not necessarily connected
  // starting point for searching 
  // takes O(#alpha_shape) time
  Coord_type alpha_solid = 0;

  Finite_vertices_iterator vertex_it;
  // only finite vertices
  for( vertex_it = finite_vertices_begin(); 
       vertex_it != finite_vertices_end();
       ++vertex_it) 
    {
      Coord_type alpha_min_v = (--_interval_face_map.end())->first;

      Face_circulator face_circ = this->incident_faces(vertex_it);
      Face_circulator  done = face_circ;
      do 
	{
	  Face_handle f = face_circ;
	  if (! is_infinite(f))
	    alpha_min_v = CGAL::min BOOST_PREVENT_MACRO_SUBSTITUTION(find_interval(f),
							       alpha_min_v);
	}
      while (++face_circ != done);
      alpha_solid = CGAL::max BOOST_PREVENT_MACRO_SUBSTITUTION (alpha_min_v, alpha_solid);

    }
  return alpha_solid;
}

//-------------------------------------------------------------------------

template < class Dt >
std::ostream& 
Alpha_shape_2<Dt>::op_ostream(std::ostream& os) const
{
  
  typedef typename Alpha_shape_2<Dt>::Interval_vertex_map 
    Interval_vertex_map ;
  typename Interval_vertex_map::const_iterator vertex_alpha_it;

  const typename Alpha_shape_2<Dt>::Interval2* pInterval2;

  Unique_hash_map< Vertex_handle , int > V;

  int number_of_vertices = 0;
      
  typedef typename Alpha_shape_2<Dt>::Interval_edge_map 
    Interval_edge_map;
  typename Interval_edge_map::const_iterator edge_alpha_it;

  const typename Alpha_shape_2<Dt>::Interval3* pInterval;

  if (get_mode() == Alpha_shape_2<Dt>::REGULARIZED) 
    {

      typename Alpha_shape_2<Dt>::Vertex_handle v;
      for (vertex_alpha_it = _interval_vertex_map.begin(); 
	   vertex_alpha_it != _interval_vertex_map.end() &&
	     (*vertex_alpha_it).first.first < get_alpha();
	   ++vertex_alpha_it) 
	{

	  pInterval2 = &(*vertex_alpha_it).first;

#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
	  typename Alpha_shape_2<Dt>::Coord_type alpha =
	    get_alpha();
	  typename Alpha_shape_2<Dt>::Coord_type alpha_mid = 
	    pInterval2->first;
	  typename Alpha_shape_2<Dt>::Coord_type alpha_max = 
	    pInterval2->second;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2

	  if((pInterval2->second >= get_alpha()
	      || pInterval2->second == Infinity)) 
	    {
	      // alpha must be larger than the min boundary
	      // and alpha is smaller than the upper boundary
	      // which might be infinity 
	      // write the vertex

	      v = (*vertex_alpha_it).second;
 CGAL_triangulation_assertion((classify(v) == 
			       Alpha_shape_2<Dt>::REGULAR));
	      // if we used Edelsbrunner and Muecke's definition
	      // regular means incident to a higher-dimensional face
	      // we would write too many vertices

	      V[v] = number_of_vertices++;
	      os << v->point() << std::endl;
	    }
	}
      // the vertices are oriented counterclockwise

      typename Alpha_shape_2<Dt>::Face_handle f;
      int i;

      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{

	  pInterval = &(*edge_alpha_it).first;

	  CGAL_triangulation_assertion(pInterval->second != Infinity);
	  // since this happens only for convex hull of dimension 1
	  // thus singular

	  if(pInterval->second < get_alpha() &&
	     (pInterval->third >= get_alpha()
	      || pInterval->third == Infinity)) 
	    {
	      // alpha must be larger than the mid boundary
	      // and alpha is smaller than the upper boundary
	      // which might be infinity 
	      // visualize the boundary


	      f = (*edge_alpha_it).second.first;
	      i = (*edge_alpha_it).second.second;

	      // assure that all vertices are in ccw order
	      if (classify(f) == Alpha_shape_2<Dt>::EXTERIOR) 
		{
            
		  // take the reverse face
		  typename Alpha_shape_2<Dt>::Face_handle 
		    pNeighbor = f->neighbor(i);
		  i = pNeighbor->index(f);
		  f = pNeighbor;
		}
	  
 CGAL_triangulation_assertion((classify(f) == 
			       Alpha_shape_2<Dt>::INTERIOR));

 CGAL_triangulation_assertion((classify(f, i) == 
			       Alpha_shape_2<Dt>::REGULAR));

	      os << V[f->vertex(f->ccw(i))] << ' ' 
		 << V[f->vertex(f->cw(i))] << std::endl;
	    }
	}
    }
  else 
    { // get_mode() == GENERAL -----------------------------------------

      typename Alpha_shape_2<Dt>::Vertex_handle v;
     
      // write the regular vertices

      for (vertex_alpha_it = _interval_vertex_map.begin(); 
	   vertex_alpha_it != _interval_vertex_map.end() &&
	     (*vertex_alpha_it).first.first < get_alpha();
	   ++vertex_alpha_it) 
	{

	  pInterval2 = &(*vertex_alpha_it).first;

	  if((pInterval2->second >= get_alpha()
	      || pInterval2->second == Infinity)) 
	    {
	      // alpha must be larger than the min boundary
	      // and alpha is smaller than the upper boundary
	      // which might be infinity 
	      // write the vertex

	      v = (*vertex_alpha_it).second;
 CGAL_triangulation_assertion((classify(v) == 
			       Alpha_shape_2<Dt>::REGULAR));
	      V[v] = number_of_vertices++;
	      os << v->point() << std::endl;
	    }
	}
 
      // write the singular vertices
      for (; 
	   vertex_alpha_it != _interval_vertex_map.end();
	   ++vertex_alpha_it) 
	{

	  v = (*vertex_alpha_it).second;
 CGAL_triangulation_assertion((classify(v) ==
			       Alpha_shape_2<Dt>::SINGULAR));

	  V[v] = number_of_vertices++;
	  os << v->point() << std::endl;
	}
 
      // the vertices are oriented counterclockwise

      typename Alpha_shape_2<Dt>::Face_handle f;
      int i;

      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{

	  pInterval = &(*edge_alpha_it).first;

#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
	  typename Alpha_shape_2<Dt>::Coord_type alpha =
	    get_alpha();
	  typename Alpha_shape_2<Dt>::Coord_type alpha_min = 
	    pInterval->first;
	  typename Alpha_shape_2<Dt>::Coord_type alpha_mid = 
	    pInterval->second;
	  typename Alpha_shape_2<Dt>::Coord_type alpha_max = 
	    pInterval->third;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2
	  
	  if(pInterval->third >= get_alpha()
	     || pInterval->third == Infinity) 
	    {
	      // if alpha is smaller than the upper boundary
	      // which might be infinity 
	      // visualize the boundary

	      f = (*edge_alpha_it).second.first;
	      i = (*edge_alpha_it).second.second;


	      // write the regular edges
	      if (pInterval->second != Infinity &&
		  pInterval->second < get_alpha()) 
		{

 CGAL_triangulation_assertion((classify(f, i) == 
			       Alpha_shape_2<Dt>::REGULAR));
		  // assure that all vertices are in ccw order
		  if (classify(f) == Alpha_shape_2<Dt>::EXTERIOR) 
		    {
 
		      // take the reverse face
		      typename Alpha_shape_2<Dt>::Face_handle 
			pNeighbor = f->neighbor(i);
		      
		      i = pNeighbor->index(f);
		      f = pNeighbor;
		    }
	  
 CGAL_triangulation_assertion((classify(f) == 
			       Alpha_shape_2<Dt>::INTERIOR));

		  os << V[f->vertex(f->ccw(i))] << ' ' 
		     << V[f->vertex(f->cw(i))] << std::endl;
		  
		}
	      else 
		{ // pInterval->second == Infinity || 
		  //                           pInterval->second >= get_alpha())  
		  // pInterval->second == Infinity happens only for convex hull
		  // of dimension 1 thus singular

		  // write the singular edges
		  if (pInterval->first != UNDEFINED) 
		    {
 CGAL_triangulation_assertion((classify(f, i) == 
			       Alpha_shape_2<Dt>::SINGULAR));
		      os << V[f->vertex(f->ccw(i))] << ' ' 
			 << V[f->vertex(f->cw(i))] << std::endl;
	
		    }	
		}
	    }
	}
    }
  
  return os;
}

//-------------------------------------------------------------------

template < class Dt >
std::ostream& 
operator<<(std::ostream& os, const Alpha_shape_2<Dt>& A)
{
  return A.op_ostream(os);
}



//-------------------------------------------------------------------

template < class Dt >
std::list<typename Alpha_shape_2<Dt>::Point> 
Alpha_shape_2<Dt>::Output () 
{
  typename Interval_edge_map::const_iterator edge_alpha_it;

  const Interval3* pInterval;
  std::list<Point> L;


  if (get_mode() == REGULARIZED) 
    {

      // it is much faster looking at the sorted intervals 
      // than looking at all sorted faces
      // alpha must be larger than the mid boundary
      // and alpha is smaller than the upper boundary
      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{
      
	  pInterval = &(*edge_alpha_it).first;

	  if (pInterval->second != Infinity)
	    {
	      // since this happens only for convex hull of dimension 1
	      // thus singular
	
	      if(pInterval->second < get_alpha() &&
		 (pInterval->third >= get_alpha()
		  || pInterval->third == Infinity)) 
		{
		  // alpha must be larger than the mid boundary
		  // and alpha is smaller than the upper boundary
		  // which might be infinity 
		  // visualize the boundary
	  
 CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
					(*edge_alpha_it).second.second) ==
			       REGULAR));
	  
		  // if we used Edelsbrunner and Muecke's definition
		  // regular means incident to a higher-dimensional face
		  // thus we would write to many vertices
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .source());
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .target());
		}
	    }
	}
    }
  else 
    {  // get_mode() == GENERAL
      // draw the edges
      for (edge_alpha_it = _interval_edge_map.begin(); 
	   edge_alpha_it != _interval_edge_map.end() &&
	     (*edge_alpha_it).first.first < get_alpha();
	   ++edge_alpha_it) 
	{

	  pInterval = &(*edge_alpha_it).first;
	
	  if (pInterval->first == UNDEFINED) 
	    {

 CGAL_triangulation_assertion(pInterval->second != Infinity);
	      // since this happens only for convex hull of dimension 1
	      // thus singular

	      if(pInterval->second < get_alpha() &&
		 (pInterval->third >= get_alpha()
		  || pInterval->third == Infinity)) 
		{
		  // alpha must be larger than the mid boundary
		  // and alpha is smaller than the upper boundary
		  // which might be infinity 
		  // visualize the boundary
		
 CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
					(*edge_alpha_it).second.second) ==
			       REGULAR));
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .source());
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .target());
		}
	    }
	  else 
	    {

	      if(pInterval->third >= get_alpha()
		 || pInterval->third == Infinity) 
		{
		  // if alpha is smaller than the upper boundary
		  // which might be infinity 
		  // visualize the boundary
		
 CGAL_triangulation_assertion(((classify((*edge_alpha_it).second.first,
					 (*edge_alpha_it).second.second) ==
				REGULAR) || 
			       (classify((*edge_alpha_it).second.first,
					 (*edge_alpha_it).second.second) ==
				SINGULAR)));
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .source());
		  L.push_back((segment((*edge_alpha_it).second.first,
				       (*edge_alpha_it).second.second))
			      .target());
		}
	    }

	}
    }
  return L;
}

template < class Dt >
void 
Alpha_shape_2<Dt>::print_edge_map() {
  for (typename Interval_edge_map::iterator iemapit= _interval_edge_map.begin();
	 iemapit != _interval_edge_map.end(); ++iemapit) {
    Interval3 interval = (*iemapit).first;
    Edge    edge = (*iemapit).second;
    Point p1 = edge.first->vertex(cw(edge.second))->point();
    Point p2 = edge.first->vertex(ccw(edge.second))->point();
      std::cout << "[ (" <<	p1 << ") - (" << p2 << ") ] :            " 
		<< interval.first << " " 
		<< interval.second << " " << interval.third << std::endl;
    }
}



CGAL_END_NAMESPACE


#endif //CGAL_ALPHA_SHAPE_2_H