File: CORE_BigFloat.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (500 lines) | stat: -rw-r--r-- 17,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Number_types/include/CGAL/CORE_BigFloat.h $
// $Id: CORE_BigFloat.h 51456 2009-08-24 17:10:04Z spion $
//
//
// Author(s)     : Michael Hemmer   <hemmer@mpi-inf.mpg.de>
//============================================================================

#ifndef CGAL_CORE_BIGFLOAT_H
#define CGAL_CORE_BIGFLOAT_H

#include <CGAL/basic.h>
#include <CGAL/number_type_basic.h>
#include <CGAL/CORE/BigFloat.h>
#include <CGAL/CORE_coercion_traits.h>
#include <CGAL/Interval_traits.h> 
#include <CGAL/Bigfloat_interval_traits.h> 

CGAL_BEGIN_NAMESPACE

// ######### Interval_traits 

template<> 
class Interval_traits<CORE::BigFloat> 
    : public internal::Interval_traits_base<CORE::BigFloat>{

public: 
    
    typedef Interval_traits<CORE::BigFloat> Self; 
    typedef CORE::BigFloat Interval;
    typedef CORE::BigFloat Bound;
    typedef CGAL::Tag_true Is_interval; 
 
    struct Lower :public std::unary_function<Interval,Bound>{
        Bound operator() ( Interval x ) const {   
            CORE::BigFloat result = ::CORE::BigFloat(x.m()-x.err(),0,x.exp());
            CGAL_postcondition(result <= x);
            return result; 
        }
    };
    
    struct Upper :public std::unary_function<Interval,Bound>{
        Bound operator() ( Interval x ) const {     
            CORE::BigFloat result = ::CORE::BigFloat(x.m()+x.err(),0,x.exp());
            CGAL_postcondition(result >= x);
            return result; 
        }
    };

    struct Width :public std::unary_function<Interval,Bound>{
         
        Bound operator() ( Interval x ) const {    
            unsigned long err = 2*x.err();
            return Bound(CORE::BigInt(err),0,x.exp());
        }
    };

    struct Median :public std::unary_function<Interval,Bound>{
         
        Bound operator() ( Interval x ) const {   
            return Bound(x.m(),0,x.exp());
        }
    };

    struct Norm :public std::unary_function<Interval,Bound>{
        Bound operator() ( Interval x ) const {
          BOOST_USING_STD_MAX();
          return max BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(x).abs(),Lower()(x).abs());
        }
    };
    
    struct Zero_in :public std::unary_function<Interval,bool>{
        bool operator() ( Interval x ) const {      
            return x.isZeroIn(); 
        }
    };

    struct In :public std::binary_function<Bound,Interval,bool>{  
        bool operator()( Bound x, const Interval& a ) const {    
            CGAL_precondition(CGAL::singleton(x));
            return (Lower()(a) <= x && x <= Upper()(a));
        }
    };

    struct Equal :public std::binary_function<Interval,Interval,bool>{  
        bool operator()( const Interval& a, const Interval& b ) const { 
            return (Upper()(a) == Upper()(b) &&  Lower()(a) == Lower()(b));
        }
    };
    
    struct Subset :public std::binary_function<Interval,Interval,bool>{  
        bool operator()( const Interval& a, const Interval& b ) const {   
            return Lower()(b) <= Lower()(a) && Upper()(a) <= Upper()(b);
        }
    };
    
    struct Proper_subset :public std::binary_function<Interval,Interval,bool>{ 
        bool operator()( const Interval& a, const Interval& b ) const { 
            return Subset()(a,b) && (!Equal()(a,b));
        }
    };
    
    struct Intersection :public std::binary_function<Interval,Interval,Interval>{ 
      Interval operator()( const Interval& a, const Interval& b ) const {
            BOOST_USING_STD_MAX();
            BOOST_USING_STD_MIN();
            // std::cout <<"a= (" << a.m() << "+-" << a.err() << ")*2^" << a.exp() << std::endl;
            Bound l(max BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),Lower()(b)));
            Bound u(min BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),Upper()(b)));

            if(u < l ) throw Exception_intersection_is_empty();
            return Construct()(l,u);
        }
    };
 

    struct Overlap :public std::binary_function<Interval,Interval,bool>{
        bool operator() ( Interval x, Interval y ) const {       
            Self::Zero_in Zero_in;
            bool result = Zero_in(x-y);
            return result;
        }
    };
   
    struct Hull :public std::binary_function<Interval,Interval,Interval>{

/* for debugging
        void print_bf(CORE::BigFloat bf, std::string s) const {

            std::cout << s << ".m()=" << bf.m() << ","
                      << s << ".err()=" << bf.err() << ","
                      << s << ".exp()=" << bf.exp() << ","
                      << "td=" << bf << std::endl;
        }
*/

        Interval operator() ( Interval x, Interval y ) const {
            BOOST_USING_STD_MAX();
            BOOST_USING_STD_MIN();
#if 0
            // this is not possible since CORE::centerize has a bug.
            Interval result = CORE::centerize(x,y);
#else 

            //print_bf(x,"x");
            //print_bf(y,"y");
            
             CORE::BigFloat result;
             
            // Unfortunately, CORE::centerize(x,y) has bugs. 
            if ((x.m() == y.m()) && (x.err() == y.err()) && (x.exp() == y.exp())) { 
                return x;
            }
                         
            CORE::BigFloat lower = min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y));
            CORE::BigFloat upper = max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y));

            CORE::BigFloat mid = (lower + upper)/2;
             
            //print_bf(lower,"lower");
            //print_bf(upper,"upper");
            //print_bf(mid,"mid");

            // Now we have to compute the error. The problem is that .err() is just a long
            CORE::BigFloat err = (upper - lower)/CORE::BigFloat(2);
                   
            //print_bf(err,"err");

            //std::cout << "lower    " << lower << std::endl;
            //std::cout << "upper    " << upper << std::endl;
            //std::cout << "mid      " << mid << std::endl;
            //std::cout << "err I    " << err << std::endl;
            
            // shift such that err.m()+err.err() fits into long 
            int digits_long = std::numeric_limits<long>::digits;
            if(::CORE::bitLength(err.m()+err.err()) >= digits_long){
                long shift = ::CORE::bitLength(err.m()) - digits_long + 1 ; 
                //std::cout << "shift " << shift<< std::endl;
                long new_err = ((err.m()+err.err()) >> shift).longValue()+1; 
                err = CORE::BigFloat(0,new_err,0) * CORE::BigFloat::exp2(err.exp()*14+shift);
            }else{           
                err = CORE::BigFloat(0,err.m().longValue()+err.err(),err.exp());
            }
            //print_bf(err,"new_err");

            // TODO: This is a workaround for a bug in operator+ 
            // of CORE::Bigfloat. If the exponent difference is too big,
            // this might cause problems, since the error is a long
            if(mid.exp() > err.exp()) {
                long mid_err = mid.err();
                CORE::BigInt mid_m = mid.m();
                mid_err = mid_err << (mid.exp()-err.exp())*14;
                mid_m = mid_m << (mid.exp()-err.exp())*14;
                mid = CORE::BigFloat(mid_m,mid_err,err.exp());
                //print_bf(mid,"corr_mid");
            }
            
            //print_bf(result,"result");        

            result = mid + err;  
             
#endif 

            CGAL_postcondition( 
                    CGAL::lower(result) 
                    <=  min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y)));
            CGAL_postcondition( 
                    CGAL::upper(result) 
                    >= max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y)));

            

            return result ;
        }
    };

    struct Singleton :public std::unary_function<Interval,bool> {
        bool operator() ( Interval x ) const {       
            return (x.err() == 0); 
        }
    };

    struct Construct :public std::binary_function<Bound,Bound,Interval>{
        Interval operator()( const Bound& l,const Bound& r) const {
            CGAL_precondition( l < r ); 
            return Hull()(l,r);
        }
    };
};


// ########### Bigfloat_interval_traits 


template<typename BFI> long get_significant_bits(BFI bfi);

CORE::BigFloat 
inline 
round(const CORE::BigFloat& x, long rel_prec = CORE::defRelPrec.toLong() ){
    CGAL_postcondition(rel_prec >= 0);   

    // since there is not rel prec defined if Zero_in(x)
    if (x.isZeroIn()) return x; 
    if (CGAL::get_significant_bits(x) <= rel_prec) return x;
   
// if 1 
//    CORE::BigFloat xr;
//    xr.approx(x,rel_prec,1024);
//    typedef CORE::BigFloat BF; 
// else       
    typedef CORE::BigFloat BF; 
    typedef CORE::BigFloat BFI; 
    typedef CORE::BigInt Integer;
    BF xr;
   
    CORE::BigInt m = x.m();
    long         err = x.err();
    long         exp = x.exp(); 
   
    long shift = ::CORE::bitLength(m) - rel_prec - 1;
    if( shift > 0 ){    Integer new_m   = m >> shift ; 
        if(err == 0){        xr = BF(new_m,1,0)*BF::exp2(exp*14+shift);
        }else{        xr = BF(new_m,2,0)*BF::exp2(exp*14+shift);
        }
    }else{    // noting to do
        xr = x; 
    }
// endif     

    CGAL_postcondition(CGAL::get_significant_bits(xr) - rel_prec >= 0); 
    CGAL_postcondition(CGAL::get_significant_bits(xr) - rel_prec <= 32);   
    CGAL_postcondition(BF(xr.m()-xr.err(),0,xr.exp()) <= BF(x.m()-x.err(),0,x.exp()));
    CGAL_postcondition(BF(xr.m()+xr.err(),0,xr.exp()) >= BF(x.m()+x.err(),0,x.exp()));
    return xr;     
}

template<> class Bigfloat_interval_traits<CORE::BigFloat> 
:public Interval_traits<CORE::BigFloat>
{
public:
    typedef CORE::BigFloat NT;
    typedef CORE::BigFloat BF;

    typedef Bigfloat_interval_traits<NT> Self;

    // How about retuning 
    struct Get_significant_bits {
        // type for the \c AdaptableUnaryFunction concept.
        typedef NT  argument_type;
        // type for the \c AdaptableUnaryFunction concept.
        typedef long  result_type;

        long operator()( NT x) const {       
            if(x.err() == 0 ) {            
                return ::CORE::bitLength(x.m()); 
            }
            else {            
                return ::CORE::bitLength(x.m()) - ::CORE::bitLength(x.err());
            }  
        }
    };
       
    struct Set_precision {
        // type for the \c AdaptableUnaryFunction concept.
        typedef long  argument_type;
        // type for the \c AdaptableUnaryFunction concept.
        typedef long  result_type;  
     
        long operator() ( long prec ) const {    
            long result =  ::CORE::defRelPrec.toLong();
            ::CORE::defRelPrec = prec; 
            ::CORE::defBFdivRelPrec = prec;
            return result; 
        }
    };
     
    struct Get_precision {
        // type for the \c AdaptableGenerator concept.
        typedef long  result_type;  
     
        long operator() () const {
            return  ::CORE::defRelPrec.toLong(); 
        }
    };
};




//
// Algebraic structure traits
//
template <> class Algebraic_structure_traits< CORE::BigFloat >
  : public Algebraic_structure_traits_base< CORE::BigFloat,
                                            Field_with_kth_root_tag >  {
  public:
    typedef Tag_false          Is_exact;
    typedef Tag_true           Is_numerical_sensitive;

    class Sqrt
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            // What I want is a sqrt computed with ::CORE::defRelPrec bits.
            // And not ::CORE::defBFsqrtAbsPrec as CORE does. 
            
            CGAL_precondition(::CORE::defRelPrec.toLong() > 0);
            CGAL_precondition(x > 0);
            
            Type a = CGAL::round(x, ::CORE::defRelPrec.toLong()*2);
            CGAL_postcondition(a > 0); 

            Type tmp1 = 
                CORE::BigFloat(a.m(),0,0).sqrt(::CORE::defRelPrec.toLong());
            Type err  =  
                Type(0,long(std::sqrt(double(a.err()))),0) 
                * CORE::BigFloat::exp2(a.exp()*7);
            Type result = tmp1*CORE::BigFloat::exp2(a.exp()*7) + err;
           
            CGAL_postcondition(result >= 0);
            CGAL_postcondition(CGAL::lower(result*result) <= CGAL::lower(x));
            CGAL_postcondition(CGAL::upper(result*result) >= CGAL::upper(x));

            return result;
        }
    };

    class Kth_root
      : public std::binary_function<int, Type, Type> {
      public:
        Type operator()( int k,
                                        const Type& x) const {
            CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
            // CORE::radical isn't implemented for negative values of x, so we
            //  have to handle this case separately
            if( x < 0 && k%2 != 0) {
              return Type(-CORE::radical( -x, k ) );
            }

            return Type( CORE::radical( x, k ) );
        }
    };
};

//
// Real embeddable traits
//
template <> class Real_embeddable_traits< CORE::BigFloat >
  : public INTERN_RET::Real_embeddable_traits_base< CORE::BigFloat , CGAL::Tag_true  > {
  public:
    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            Type result; 
          
            if(x.isZeroIn()){
                CORE::BigInt m; 
                if(x.m() < 0 ){
                    m = -(x.m()-x.err());
                }else{
                    m =  x.m()+x.err();
                }
                if(m % 2 == 1) m += 1;
                
                Type upper(m,0,x.exp());
                result = CORE::centerize(CORE::BigFloat(0),upper);
                
                CGAL_postcondition(result.m()-result.err() <= 0); 
                if(result.m()-result.err() != 0){
                    result = this->operator()(result);
                }
                CGAL_postcondition(result.m()-result.err() == 0); 
            }else{
                result = CORE::abs(x);
            }
            CGAL_postcondition(result.m()-result.err() >= 0); 
            CGAL_postcondition(Type(result.m()+result.err(),0,result.exp()) 
                         >= Type(x.m()+x.err(),0,x.exp()));       
            return result;
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& x ) const {
            ::CGAL::Sign result =  sign( x.sign());
            return result; 
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                            const Type& y ) const {
          return (Comparison_result) sign( (x-y).sign());
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type, 
                Comparison_result )
    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
          // this call is required to get reasonable values for the double
          // approximation
          return x.doubleValue();
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
    public:
        std::pair<double, double> operator()( const Type& x ) const {
                        
            double lb,ub;
           
            Type x_lower = CGAL::lower(CGAL::round(CGAL::lower(x),52));
            Type x_upper = CGAL::upper(CGAL::round(CGAL::upper(x),52));
            
            // since matissa has 52 bits only, conversion to double is exact 
            lb = x_lower.doubleValue();
            CGAL_postcondition(lb == x_lower);
            ub = x_upper.doubleValue();
            CGAL_postcondition(ub == x_upper);             
            
            std::pair<double, double> result(lb,ub);
            CGAL_postcondition( result.first <=  CORE::Expr(CGAL::lower(x)));
            CGAL_postcondition( result.second >=  CORE::Expr(CGAL::upper(x)));
            return result;      
        }
    };
};

CGAL_END_NAMESPACE

//since types are included by CORE_coercion_traits.h:
#include <CGAL/CORE_Expr.h>
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#include <CGAL/CORE_BigFloat.h>

#endif // CGAL_CORE_BIGFLOAT_H