1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Number_types/include/CGAL/CORE_BigInt.h $
// $Id: CORE_BigInt.h 51456 2009-08-24 17:10:04Z spion $
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
#ifndef CGAL_CORE_BIGINT_H
#define CGAL_CORE_BIGINT_H
#include <CGAL/number_type_basic.h>
#include <CGAL/CORE_coercion_traits.h>
#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>
CGAL_BEGIN_NAMESPACE
template<>
struct Root_of_traits<CORE::BigInt>: public internal::Root_of_traits_helper<CORE::BigInt,
Euclidean_ring_tag>{
typedef CORE::BigRat RootOf_1;
typedef CORE::BigRat Root_of_1;
};
//
// Algebraic structure traits
//
template <> class Algebraic_structure_traits< CORE::BigInt >
: public Algebraic_structure_traits_base< CORE::BigInt,
Euclidean_ring_tag > {
public:
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
typedef INTERN_AST::Is_square_per_sqrt< Type >
Is_square;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
class Sqrt
: public std::unary_function< Type, Type > {
public:
//! computes the largest NT not larger than the square root of \a a.
Type operator()( const Type& x) const {
Type result;
mpz_sqrt(result.get_mp(), x.get_mp());
return result;
}
};
class Gcd
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
if ( x == Type(0) && y == Type(0) )
return Type(0);
Type result;
mpz_gcd(result.get_mp(), x.get_mp(), y.get_mp());
return result;
}
};
};
//
// Real embeddable traits
//
template <> class Real_embeddable_traits< CORE::BigInt >
: public INTERN_RET::Real_embeddable_traits_base< CORE::BigInt , CGAL::Tag_true > {
public:
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CORE::abs( x );
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CORE::sign( x );
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return CGAL::sign(::CORE::cmp(x,y));
}
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
// this call is required to get reasonable values for the double
// approximation
return x.doubleValue();
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x_ ) const {
CORE::Expr x(x_);
std::pair<double,double> result;
x.doubleInterval(result.first, result.second);
CGAL_expensive_assertion(result.first <= x);
CGAL_expensive_assertion(result.second >= x);
return result;
}
};
};
/*! \ingroup NiX_Modular_traits_spec
* \brief a model of concept ModularTraits,
* specialization of NiX::Modular_traits.
*/
template<>
class Modular_traits< ::CORE::BigInt > {
typedef Residue RES;
public:
typedef ::CORE::BigInt NT;
typedef CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(const NT& a){
NT tmp = a % NT(RES::get_current_prime());
// TODO: reactivate this assertion
// it fails with core_v1.6x_20040329
// NiX_assert(tmp.isInt());
int mi(tmp.longValue());
if (mi < 0) mi += RES::get_current_prime();
return Residue_type(mi);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
template<>
struct Needs_parens_as_product<CORE::BigInt>{
bool operator()(const CORE::BigInt& x){
return CGAL_NTS is_negative(x);
}
};
// Benchmark_rep specialization
template<>
class Benchmark_rep< CORE::BigInt > {
const CORE::BigInt& t;
public:
//! initialize with a const reference to \a t.
Benchmark_rep( const CORE::BigInt& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
out << t;
return out;
}
static std::string get_benchmark_name() {
return "Integer";
}
};
CGAL_END_NAMESPACE
//since types are included by CORE_coercion_traits.h:
#include <CGAL/CORE_Expr.h>
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#include <CGAL/CORE_BigFloat.h>
#endif // CGAL_CORE_BIGINT_H
|