1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
// Copyright (c) 2002-2004,2007 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Number_types/include/CGAL/CORE_Expr.h $
// $Id: CORE_Expr.h 45636 2008-09-18 15:35:55Z hemmer $
//
//
// Author(s) : Sylvain Pion, Michael Hemmer
#ifndef CGAL_CORE_EXPR_H
#define CGAL_CORE_EXPR_H
#include <CGAL/number_type_basic.h>
#include <CGAL/CORE_coercion_traits.h>
#include <CGAL/CORE/Expr.h>
#include <utility>
CGAL_BEGIN_NAMESPACE
template <> class Algebraic_structure_traits< CORE::Expr >
: public Algebraic_structure_traits_base< CORE::Expr,
Field_with_root_of_tag > {
public:
typedef Tag_true Is_exact;
typedef Tag_true Is_numerical_sensitive;
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CORE::sqrt( x );
}
};
class Kth_root
: public std::binary_function<int, Type, Type> {
public:
Type operator()( int k,
const Type& x) const {
CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
// CORE::radical isn't implemented for negative values of x, so we
// have to handle this case separately
if( x < 0 && k%2 != 0)
return -CORE::radical( -x, k );
return CORE::radical( x, k );
}
};
class Root_of {
public:
// typedef CORE::BigRat Boundary;
typedef Type result_type;
public:
// constructs the kth roots of the polynomial
// given by the iterator range, starting from 0.
template< class ForwardIterator >
Type operator()( int k,
ForwardIterator begin,
ForwardIterator end) const {
std::vector<Type> coeffs;
for(ForwardIterator it = begin; it != end; it++){
coeffs.push_back(*it);
}
CORE::Polynomial<Type> polynomial(coeffs);
return Type(polynomial,k);
}
// TODO: Need to be fixed: polynomial<CORE::Expr>.eval() cannot return
// CORE::BigFloat, so this does not compile.
/* template <class ForwardIterator>
Type operator()( CORE::BigRat lower,
CORE::BigRat upper,
ForwardIterator begin,
ForwardIterator end) const {
std::vector<Type> coeffs;
for(ForwardIterator it = begin; it != end; it++){
coeffs.push_back(*it);
}
CORE::Polynomial<Type> polynomial(coeffs);
CORE::BigFloat lower_bf, upper_bf;
CORE::BigFloat eval_at_lower(0), eval_at_upper(0);
CORE::extLong r(16),a(16);
while((eval_at_lower.isZeroIn() ||
eval_at_upper.isZeroIn())){
//std::cout << "while"<<std::endl;
r*=2;
a*=2;
lower_bf.approx(lower,r,a);
upper_bf.approx(upper,r,a);
// The most expensive precond I've ever seen :)),
// since the coefficients of the polynomial are CORE::Expr
// TODO: be sure that lower_bf, upper_bf contain exactly one root
//NiX_expensive_precond(
// CORE::Sturm(polynomial).numberOfRoots(lower_bf,upper_bf)==1);
eval_at_lower = polynomial.eval(lower_bf);
eval_at_upper = polynomial.eval(upper_bf);
}
CORE::BFInterval interval(lower_bf,upper_bf);
return Type(polynomial,interval);
}; */
};
};
template <> class Real_embeddable_traits< CORE::Expr >
: public INTERN_RET::Real_embeddable_traits_base< CORE::Expr , CGAL::Tag_true > {
public:
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CORE::abs( x );
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CORE::sign( x );
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return (Comparison_result) CORE::cmp( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
x.approx(53,1024);
return x.doubleValue();
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
std::pair<double,double> result;
x.approx(53,1024);
x.doubleInterval(result.first, result.second);
CGAL_expensive_assertion(result.first <= x);
CGAL_expensive_assertion(result.second >= x);
return result;
}
};
};
CGAL_END_NAMESPACE
//since types are included by CORE_coercion_traits.h:
#include <CGAL/CORE_Expr.h>
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#include <CGAL/CORE_BigFloat.h>
#endif // CGAL_CORE_EXPR_H
|