1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// Copyright (c) 2000 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Cartesian_kernel/include/CGAL/Cartesian/Rotation_rep_2.h $
// $Id: Rotation_rep_2.h 32863 2006-08-01 08:18:19Z spion $
//
//
// Author(s) : Andreas Fabri, Herve Bronnimann
#ifndef CGAL_CARTESIAN_ROTATION_REP_2_H
#define CGAL_CARTESIAN_ROTATION_REP_2_H
#include <CGAL/rational_rotation.h>
CGAL_BEGIN_NAMESPACE
template < class R >
class Rotation_repC2: public Aff_transformation_rep_baseC2<R>
{
friend class Aff_transformation_repC2<R>;
friend class Translation_repC2<R>;
friend class Scaling_repC2<R>;
public:
typedef Aff_transformation_rep_baseC2<R> Aff_t_base;
typedef typename Aff_t_base::FT FT;
typedef typename Aff_t_base::Point_2 Point_2;
typedef typename Aff_t_base::Vector_2 Vector_2;
typedef typename Aff_t_base::Direction_2 Direction_2;
typedef typename Aff_t_base::Aff_transformation_2 Aff_transformation_2;
typedef Aff_transformation_repC2<R> Transformation;
typedef Translation_repC2<R> Translation;
typedef Rotation_repC2<R> Rotation;
typedef Scaling_repC2<R> Scaling;
Rotation_repC2() {}
Rotation_repC2(const FT &sinus, const FT &cosinus)
: sinus_(sinus), cosinus_(cosinus) {}
Rotation_repC2(const Direction_2 &d,
const FT &eps_num,
const FT &eps_den = FT(1))
{
FT sin_num;
FT cos_num;
FT denom;
rational_rotation_approximation(d.dx(),
d.dy(),
sin_num,
cos_num,
denom,
eps_num,
eps_den);
sinus_ = sin_num/denom;
cosinus_ = cos_num/denom;
}
Point_2 transform(const Point_2 &p) const
{
return Point_2(cosinus_ * p.x() - sinus_ * p.y(),
sinus_ * p.x() + cosinus_ * p.y());
}
Vector_2 transform(const Vector_2 &v) const
{
return Vector_2(cosinus_ * v.x() - sinus_ * v.y(),
sinus_ * v.x() + cosinus_ * v.y());
}
Direction_2 transform(const Direction_2 &d) const
{
return Direction_2(cosinus_ * d.dx() - sinus_ * d.dy(),
sinus_ * d.dx() + cosinus_ * d.dy());
}
Aff_transformation_2 inverse() const
{
return Aff_transformation_2(ROTATION, - sinus_, cosinus_, FT(1));
}
Aff_transformation_2 operator*(const Aff_t_base &t) const
{
return t.compose(*this);
}
Aff_transformation_2 compose(const Translation &t) const
{
return Aff_transformation_2(cosinus_,
-sinus_,
t.translationvector_.x(),
sinus_,
cosinus_,
t.translationvector_.y());
}
Aff_transformation_2 compose(const Rotation &t) const
{
return Aff_transformation_2(ROTATION,
t.sinus_*cosinus_ + t.cosinus_*sinus_,
t.cosinus_*cosinus_-t.sinus_*sinus_ );
}
Aff_transformation_2 compose(const Scaling &t) const
{
return Aff_transformation_2(t.scalefactor_*cosinus_,
t.scalefactor_*-sinus_,
t.scalefactor_*sinus_,
t.scalefactor_*cosinus_);
}
Aff_transformation_2 compose(const Transformation &t) const
{
return Aff_transformation_2(cosinus_*t.t11 + sinus_*t.t12,
-sinus_*t.t11 + cosinus_*t.t12,
t.t13,
cosinus_*t.t21 + sinus_*t.t22,
-sinus_*t.t21 + cosinus_*t.t22,
t.t23);
}
bool is_even() const
{
return true;
}
FT cartesian(int i, int j) const
{
switch (i)
{
case 0: switch (j)
{
case 0: return cosinus_;
case 1: return -sinus_;
case 2: return FT(0);
}
case 1: switch (j)
{
case 0: return sinus_;
case 1: return cosinus_;
case 2: return FT(0);
}
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
}
}
return FT(0);
}
std::ostream &print(std::ostream &os) const
{
os << "Aff_transformationC2(" << sinus_ << ", " << cosinus_ << ")";
return os;
}
private:
FT sinus_, cosinus_;
};
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_ROTATION_REP_2_H
|