1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
|
// Copyright (c) 2005 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Envelope_3/include/CGAL/Env_sphere_traits_3.h $
// $Id: Env_sphere_traits_3.h 51065 2009-08-05 12:44:39Z efif $
//
// Author(s) : Michal Meyerovitch <gorgymic@post.tau.ac.il>
// Baruch Zukerman <baruchzu@post.tau.ac.il>
// Ron Wein <wein@post.tau.ac.il>
// Efi Fogel <fogel@post.tau.ac.il>
#ifndef CGAL_ENV_SPHERE_TRAITS_3_H
#define CGAL_ENV_SPHERE_TRAITS_3_H
#include <CGAL/Object.h>
#include <CGAL/enum.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Sphere_3.h>
#include <CGAL/functions_on_signs.h>
#include <CGAL/Envelope_3/Envelope_base.h>
CGAL_BEGIN_NAMESPACE
template <class ConicTraits_2>
class Env_sphere_traits_3 : public ConicTraits_2
{
public:
typedef ConicTraits_2 Traits_2;
typedef Env_sphere_traits_3<Traits_2> Self;
typedef typename Traits_2::Point_2 Point_2;
typedef typename Traits_2::Curve_2 Curve_2;
typedef typename Traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef typename Traits_2::Rat_kernel Rat_kernel;
typedef typename Traits_2::Alg_kernel Alg_kernel;
typedef typename Traits_2::Nt_traits Nt_traits;
typedef typename Rat_kernel::FT Rational;
typedef typename Rat_kernel::Point_2 Rat_point_2;
typedef typename Rat_kernel::Segment_2 Rat_segment_2;
typedef typename Rat_kernel::Line_2 Rat_line_2;
typedef typename Rat_kernel::Circle_2 Rat_circle_2;
typedef typename Rat_kernel::Point_3 Rat_point_3;
typedef typename Alg_kernel::FT Algebraic;
typedef typename Alg_kernel::Point_2 Alg_point_2;
typedef typename Alg_kernel::Circle_2 Alg_circle_2;
typedef typename Rat_kernel::Sphere_3 Surface_3;
// here we refer to the lower part of the sphere only
typedef Surface_3 Xy_monotone_surface_3;
typedef unsigned int Multiplicity;
protected:
typedef std::pair<X_monotone_curve_2,
Multiplicity> Intersection_curve;
public:
class Make_xy_monotone_3 {
protected:
const Self & parent;
public:
Make_xy_monotone_3(const Self * p) : parent(*p)
{}
// create xy-monotone surfaces from a general surface
// return a past-the-end iterator
template <class OutputIterator>
OutputIterator operator()(const Surface_3& s,
bool is_lower,
OutputIterator o) const
{
// our half sphere is of same type as our full sphere since we always
// need only the lower/upper part of each sphere
parent.m_is_lower = is_lower;
*o++ = s;
return o;
}
};
/*! Get a Make_xy_monotone_3 functor object. */
Make_xy_monotone_3
make_xy_monotone_3_object() const
{
return Make_xy_monotone_3(this);
}
class Construct_projected_boundary_2
{
protected:
const Self & parent;
public:
Construct_projected_boundary_2(const Self * p) : parent(*p)
{}
// insert into the OutputIterator all the (2d) curves of the boundary of
// the vertical projection of the surface on the xy-plane
// the OutputIterator value type is X_monotone_curve_2
template <class OutputIterator>
OutputIterator
operator()(const Xy_monotone_surface_3& s, OutputIterator o) const
{
// the projected boundary in a circle, with a projected center,
// and same radius
Rat_point_2 proj_center = parent.project(s.center());
Rat_circle_2 circ(proj_center, s.squared_radius());
Curve_2 curve(circ);
Object objs[2];
CGAL_assertion_code(Object *p = )
parent.make_x_monotone_2_object()(curve, objs);
CGAL_assertion(p == objs + 2);
X_monotone_curve_2 cv1, cv2;
CGAL_assertion(assign(cv1, objs[0]));
CGAL_assertion(assign(cv2, objs[1]));
assign(cv1, objs[0]);
assign(cv2, objs[1]);
if(cv1.is_lower())
{
CGAL_assertion(cv2.is_upper());
*o++ = make_object(std::make_pair(cv1, ON_POSITIVE_SIDE));
*o++ = make_object(std::make_pair(cv2, ON_NEGATIVE_SIDE));
}
else
{
CGAL_assertion(cv2.is_lower());
*o++ = make_object(std::make_pair(cv1, ON_NEGATIVE_SIDE));
*o++ = make_object(std::make_pair(cv2, ON_POSITIVE_SIDE));
}
return o;
}
};
/*! Get a Construct_projected_boundary_2 functor object. */
Construct_projected_boundary_2
construct_projected_boundary_2_object() const
{
return Construct_projected_boundary_2(this);
}
class Construct_projected_intersections_2
{
protected:
const Self & parent;
public:
Construct_projected_intersections_2(const Self * p) : parent(*p)
{}
// insert into OutputIterator all the (2d) projections on the xy plane of
// the intersection objects between the 2 surfaces
// the data type of OutputIterator is Object
template <class OutputIterator>
OutputIterator
operator()(const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2,
OutputIterator o) const
{
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
const Rational sqr_r1 = s1.squared_radius(),
sqr_r2 = s2.squared_radius();
// // the spheres intersect iff d(p1, p2) <= (r1+r2)
// // squaring this twice, we get the condition
// // sqr_d^2 + (1-2*sqr_d)(sqr_r1 + sqr_r2) - 2*sqr_r1*sqr_r2 <= 0
// // with only rational numbers involved.
// // todo: check if it helps
// Rat_kernel ratk;
// Rational sqr_d = ratk.compute_squared_distance_3_object()(p1, p2);
// Sign do_inter = CGAL_NTS sign(sqr_d*sqr_d + (1-2*sqr_d)*(sqr_r1+sqr_r2)-2*sqr_r1*sqr_r2);
// if (do_inter == POSITIVE)
// return o;
Nt_traits nt_traits;
// we check if the centers of the 2 spheres have same z coordinate -
// in this case the potential projected intersection is a segment
// (or point)
if (CGAL_NTS compare(c1, c2) == EQUAL)
{
if (CGAL_NTS compare(b1, b2) == EQUAL)
{
if (CGAL_NTS compare(a1, a2) == EQUAL)
// the same center, we have no intersection
// (we don't return overlappings as intersections)
{
return o;
}
// here we have c1 == c2, b1 == b2
// the intersection lies on the plane
// m
// (1) x = --------
// 2(a1-a2)
// where m = (a1^2 - a2^2 + sqr_r2 - sqr_r1)
// which is orthogonal to the xy-plane
// we look at the intersection of this plane with the plane z = c1
// to get the projected segment of the spheres intersection
// we get the quadratic equation:
// A*y^2 + B*y + C = 0, where:
// A = 4(a1-a2)^2
// B = -8b1(a1-a2)^2
// C = m^2 - 4ma1(a1-a2) + 4(a1^2 + b1^2 - sqr_r1)(a1-a2)^2
// (we multiplied the equation by 4(a1-a2)^2 to get integer
// coefficients)
Rational a_diff = a1 - a2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1;
Rational m = sqr_a1 - sqr_a2 + sqr_r2 - sqr_r1;
Rational A = 4*sqr_a_diff;
Rational B = -8*b1*sqr_a_diff;
Rational C = 4*sqr_a_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*a1*a_diff;
Algebraic ys[2];
Algebraic *ys_end;
int n_ys;
ys_end = nt_traits.solve_quadratic_equation(A, B, C, ys);
n_ys = ys_end - ys;
if (n_ys == 0)
{
return o; // no intersection
}
// the x coordinate of the solution points
Algebraic xs = m / (2*a_diff);
if (n_ys == 1)
{
// intersection is a point
Point_2 inter_point(xs , ys[0]);
*o++ = make_object(inter_point);
return o;
}
CGAL_assertion(n_ys == 2);
// intersection is a segment, with non-rational endpoints
// so we construct a COLLINEAR conic (with equation as in (1))
// with 2 endpoints
Alg_point_2 end1(xs, ys[0]);
Alg_point_2 end2(xs, ys[1]);
// equation (1) is:
// 2(a1-a2)x - m = 0
Curve_2 res(0,0,0, 2*a_diff, 0, -m, COLLINEAR, end1, end2);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
else
{
// here we have c1 == c2, b1 != b2.
// the intersection lies on the plane
// -2(a1-a2)x + m
// (1) y = ----------------
// 2(b1-b2)
// where m = (a1^2 + b1^2 - a2^2 - b2^2 + sqr_r2 - sqr_r1)
// which is orthogonal to the xy-plane
// we look at the intersection of this plane with the plane z = c1
// to get the projected segment of the spheres intersection
// we get the quadratic equation:
// A*x^2 + B*x + C = 0
// where
// (a1-a2)^2 m(a1-a2) 2b1(a1-a2)
// A = 1 + --------- B = -2a1 - ---------- + ----------
// (b1-b2)^2 (b1-b2)^2 (b1-b2)
// and m^2 b1*m
// C = a1^2 + b1^2 - sqr_r1 + ---------- - -------
// 4(b1-b2)^2 (b1-b2)
// since we can solve only equations with integer coefficients we
// multiply everything by 4(b1 - b2)^2, and get:
// D*x^2 + E*x + F = 0 where
// D = 4(b1-b2)^2 + 4(a1-a2)^2
// E = -8a1(b1-b2)^2 - 4m(a1-a2) + 8b1(a1-a2)(b1-b2)
// F = 4(a1^2 + b1^2 - sqr_r1)(b1-b2)^2 + m^2 - 4mb1(b1-b2)
// TODO: in the new version coefficients can be rationals
Rational a_diff = a1 - a2;
Rational b_diff = b1 - b2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_b_diff = b_diff * b_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2;
Rational m = sqr_a1 + sqr_b1 - sqr_a2 - sqr_b2 + sqr_r2 - sqr_r1;
Rational D = 4*sqr_a_diff + 4*sqr_b_diff;
Rational E = -8*a1*sqr_b_diff - 4*m*a_diff + 8*b1*a_diff*b_diff;
Rational F = 4*sqr_b_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*b1*b_diff;
Algebraic xs[2];
Algebraic *xs_end;
int n_xs;
xs_end = nt_traits.solve_quadratic_equation(D, E, F, xs);
n_xs = xs_end - xs;
if (n_xs == 0)
{
return o; // no intersection
}
if (n_xs == 1)
{
// intersection is a point
Point_2 inter_point(xs[0], (-2*a_diff*xs[0] + m)/(2*b_diff) );
*o++ = make_object(inter_point);
return o;
}
CGAL_assertion(n_xs == 2);
// intersection is a segment, with non-rational endpoints
// so we construct a COLLINEAR conic (with equation as in (1))
// with 2 endpoints
Algebraic ys[2];
ys[0] = (-2*a_diff*xs[0] + m)/(2*b_diff);
ys[1] = (-2*a_diff*xs[1] + m)/(2*b_diff);
Alg_point_2 end1(xs[0], ys[0]);
Alg_point_2 end2(xs[1], ys[1]);
// equation (1) is:
// 2(a1-a2)x + 2(b1-b2)y - m = 0
Curve_2 res(0,0,0, 2*a_diff, 2*b_diff, -m, COLLINEAR, end1, end2);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
}
// now the potential intersection is (a part of) a circle,
// and the projection is (a part of) an ellipse
else
{
// here we have c1 != c2.
// the intersection lies on the plane:
// -2(a1-a2)x -2(b1-b2)y + m
// (*) z = --------------------------
// 2(c1-c2)
// where m = a1^2 + b1^2 + c1^2 - a2^2 - b2^2 - c2^2 + sqr_r2 - sqr_r1
//
// (**) since we deal with only half sphere we are interested
// in the part below min(c1, c2) in the case of lower envelope
// and in the part above max(c1, c2) in the case of upper envelope
//
// substituting z in the sphere equation we get the ellipse equation:
// r*x^2 + s*y^2 + t*x*y + u*x + v*y + w = 0 where:
//
// (a1-a2)^2 (b1-b2)^2 2(a1-a2)(b1-b2)
// r = 1 + --------- s = 1 + --------- t = ---------------
// (c1-c2)^2 (c1-c2)^2 (c1-c2)^2
//
// 2c1(a1-a2) m(a1-a2)
// u = -2a1 + ---------- - ----------
// (c1-c2) (c1-c2)^2
//
// 2c1(b1-b2) m(b1-b2)
// v = -2b1 + ---------- - ---------- // here we have c1 != c2
// (c1-c2) (c1-c2)^2
//
// m*c1 m^2
// w = a1^2 + b1^2 + c1^2 - sqr_r1 - ------- + ----------
// (c1-c2) 4(c1-c2)^2
// since we can solve only equations with integer coefficients we
// multiply everything by 4(c1-c2)^2, and get:
// R*x^2 + S*y^2 + T*x*y + U*x + V*y + W = 0 where:
// R = 4(c1-c2)^2 + 4(a1-a2)^2
// S = 4(c1-c2)^2 + 4(b1-b2)^2
// T = 8(a1-a2)(b1-b2)
// U = -8a1(c1-c2)^2 + 8c1(a1-a2)(c1-c2) - 4m(a1-a2)
// V = -8b1(c1-c2)^2 + 8c1(b1-b2)(c1-c2) - 4m(b1-b2)
// W = 4(a1^2 + b1^2 + c1^2 - sqr_r1)(c1-c2)^2 - 4mc1(c1-c2) + m^2
// TODO: in the new version coefficients can be rationals
Rational a_diff = a1 - a2;
Rational b_diff = b1 - b2;
Rational c_diff = c1 - c2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_b_diff = b_diff * b_diff;
Rational sqr_c_diff = c_diff * c_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2;
Rational sqr_c1 = c1*c1, sqr_c2 = c2*c2;
Rational m = sqr_a1 + sqr_b1 + sqr_c1 -
sqr_a2 - sqr_b2 - sqr_c2 + sqr_r2 - sqr_r1;
Rational R = 4*sqr_c_diff + 4*sqr_a_diff;
Rational S = 4*sqr_c_diff + 4*sqr_b_diff;
Rational T = 8*a_diff*b_diff;
Rational U = -8*a1*sqr_c_diff + 8*c1*c_diff*a_diff - 4*m*a_diff;
Rational V = -8*b1*sqr_c_diff + 8*c1*c_diff*b_diff - 4*m*b_diff;
Rational W = 4*sqr_c_diff*(sqr_a1+sqr_b1+sqr_c1-sqr_r1) -
4*m*c1*c_diff + m*m;
// if the full spheres do not intersect, the equation we get has no
// real solution, so we should check it:
bool ellipse_is_point = false;
if (!parent.is_valid_conic_equation(R, S, T, U, V, W,
ellipse_is_point))
{
return o;
}
// we need only a part of the ellipse (as stated in (**)) so we
// construct the cutting line, which is:
// equation (*) <= min(c1,c2) -- for lower envelope
// equation (*) >= max(c1,c2) -- for upper envelope
Rational z_plane;
if (parent.m_is_lower)
z_plane = ((c1 < c2) ? c1 : c2);
else
z_plane = ((c1 > c2) ? c1 : c2);
// we get (for lower envelope)
// -2(a1-a2)x -2(b1-b2)y + m
// (*) z = -------------------------- <= z_plane
// 2(c1-c2)
// and since we need integer coefficients, and also need to be in the
// positive side of the line (i.e., our halfplane equation should be of
// type ax+by+c >= 0), we have:
// sign_c_diff* [2(a1-a2)x + 2(b1-b2)y - m + 2(c1-c2)*z_plane] >= 0
// for upper envelope, we should multiply the line equation by -1
int envelope_coef = 1;
if (!parent.m_is_lower)
envelope_coef = -1;
Sign sign_c_diff = CGAL_NTS sign(c_diff);
Rational la = envelope_coef*2*a_diff*sign_c_diff;
Rational lb = envelope_coef*2*b_diff*sign_c_diff;
Rational lc = envelope_coef*sign_c_diff*(2*c_diff*z_plane - m);
if (ellipse_is_point)
{
// as specified in the is_valid_conic_equation method, the
// intersection point is:
//
Rational px = S*(4*U - T*V)/(T*T - 4*S*R);
px = px / 2;
Rational py = -(T*px + V)/(2*S);
// should check if the point is in the non-negative side of the
// line
if (CGAL_NTS sign(la*px + lb*py +lc) != NEGATIVE)
{
*o++ = make_object(Point_2(px, py));
}
return o;
}
// if (a1==a2) and (b1==b2) (*) is a plane parallel to the xy-plane
// and either all ellipse (which should be a circle) is the
// intersection - in which case lc >= 0
// or there is no intersection at all between the 2 half spheres -
// in which case lc < 0
if (CGAL_NTS compare(a_diff, 0) == EQUAL &&
CGAL_NTS compare(b_diff, 0) == EQUAL)
{
Sign sign_lc = CGAL_NTS sign(lc);
if (sign_lc != NEGATIVE)
{
Curve_2 res(R, S, T, U, V, W);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
return o;
}
// find the intersection of the line
// la * x + lb * y + lc = 0
// with the conic
// R*x^2 + S*y^2 + T*xy + U*x + V*y + W = 0
Alg_point_2 source, target, pmid;
int n_inter_points;
if (CGAL_NTS compare(lb, 0) != EQUAL)
{
// Find the x-coordinates of the intersection points of the conic
// curve and the line y = -(la*x + lc) / lb:
// we get a quadratic equation Ax^2 + Bx + C = 0
// where A = lb*lb*R + la*(la*S - lb*T)
// B = 2*la*lc*S - lb*(lc*T + la*V - lb*U)
// C = S*lc*lc + lb*(lb*W - lc*V)
Rational A = lb*lb*R + la*(la*S - lb*T),
B = 2*la*lc*S - lb*(lc*T + la*V - lb*U),
C = S*lc*lc + lb*(lb*W - lc*V);
Algebraic inter_xs[2];
Algebraic *inter_xs_end;
inter_xs_end = nt_traits.solve_quadratic_equation(A, B, C, inter_xs);
n_inter_points = inter_xs_end - inter_xs;
if (n_inter_points > 0)
source = Alg_point_2(inter_xs[0],
-(la*inter_xs[0] + lc) / Algebraic(lb));
if (n_inter_points == 2)
{
target = Alg_point_2(inter_xs[1],
-(la*inter_xs[1] + lc) / Algebraic(lb));
// Get the conic points whose x-coordinate are in the middle of the
// two endpoints.
// since inter_xs[0] and inter_xs[1] are the roots of a quadratic
// equation Ax^2 + Bx + C = 0, their sum is -B/A which is rational
Algebraic x_mid = Algebraic(Rational(-B/(2*A)));
//Algebraic x_mid = (inter_xs[0] + inter_xs[1]) / 2;
Alg_point_2 x_mid_point(x_mid, 0);
CGAL_precondition_code(int x_mid_n_y_points;);
Alg_point_2 x_mid_y_points[2];
Curve_2 inter_cv(R, S, T, U, V, W);
CGAL_precondition_code(x_mid_n_y_points = )
inter_cv.points_at_x(x_mid_point, x_mid_y_points);
CGAL_precondition(x_mid_n_y_points > 0);
Algebraic y1 = x_mid_y_points[0].y(), y2 = x_mid_y_points[1].y();
if (CGAL_NTS compare (
Algebraic(la)*x_mid + Algebraic(lb)*y1 + Algebraic(lc),
0) == LARGER)
{
pmid = Alg_point_2(x_mid, y1);
}
else
{
CGAL_assertion(CGAL_NTS compare
(Algebraic(la)*x_mid + Algebraic(lb)*y2 + Algebraic(lc),
0) == LARGER);
pmid = Alg_point_2(x_mid, y2);
}
}
}
else
{ // lb == 0
CGAL_assertion(CGAL_NTS compare(la, 0) != EQUAL);
// Find the intersection of the vertical line x = -lc / la:
Rational inter_x = -lc/la;
// we should solve the quadratic equation A*y^2 + B*y + C = 0
// where A = S
// B = T*inter_x + V
// C = R*inter_x^2 + U*inter_x + W
Rational A = S,
B = T*inter_x + V,
C = R*inter_x*inter_x + U*inter_x + W;
Algebraic inter_points[2];
Algebraic *inter_points_end;
inter_points_end =
nt_traits.solve_quadratic_equation(A, B, C, inter_points);
n_inter_points = inter_points_end - inter_points;
if (n_inter_points > 0)
source = Alg_point_2(Algebraic(inter_x), inter_points[0]);
if (n_inter_points == 2)
{
target = Alg_point_2(Algebraic(inter_x), inter_points[1]);
// Get the conic points whose y-coordinate are in the middle of the
// two endpoints.
// since inter_points[0] & inter_points[1] are roots of quadratic
// equation, their sum is -B/A, and mid_y is -B/2A
Algebraic y_mid = Algebraic(Rational(-B/(2*A)));
Alg_point_2 y_mid_point(0, y_mid);
Alg_point_2 y_mid_x_points[2];
Curve_2 inter_cv(R, S, T, U, V, W);
CGAL_precondition_code(int y_mid_n_x_points =)
inter_cv.points_at_y(y_mid_point, y_mid_x_points);
CGAL_precondition(y_mid_n_x_points > 0);
Algebraic x1 = y_mid_x_points[0].x(), x2 = y_mid_x_points[1].x();
if (CGAL_NTS compare(
Algebraic(la)*x1 + Algebraic(lb)*y_mid + Algebraic(lc),
0) == LARGER)
{
pmid = Alg_point_2(x1, y_mid);
}
else
{
CGAL_assertion(CGAL_NTS compare (
Algebraic(la)*x2 + Algebraic(lb)*y_mid + Algebraic(lc),
0) == LARGER);
pmid = Alg_point_2(x2, y_mid);
}
}
}
if (n_inter_points < 2)
{
// we should check whether the ellipse is in the positive side of the
// line - in which case we return the full ellipse
// or not - in which case there is no intersection if
// n_inter_points = 0, and a point intersection (equal to source)
// if n_inter_points = 1
// for this, we find a point inside the ellipse and substitute
// its coordinates in the line equation
Curve_2 inter_cv(R, S, T, U, V, W);
Alg_point_2 vtan_ps[2];
CGAL_assertion_code(int n_vtan_ps =)
inter_cv.vertical_tangency_points(vtan_ps);
CGAL_assertion(n_vtan_ps == 2);
Algebraic lval = Algebraic(la)*vtan_ps[0].x() +
Algebraic(lb)*vtan_ps[0].y() + Algebraic(lc);
Sign lval_sign = CGAL_NTS sign(lval);
if (lval_sign == POSITIVE)
{
// the full ellipse is in the positive side
parent.add_curve_to_output(inter_cv, o);
//*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL));
return o;
}
else if (lval_sign == NEGATIVE)
{
// the full ellipse is in the negative side, except maybe the point
// source in the case n_inter_points = 1 (which lies on the line)
if (n_inter_points == 1)
*o++ = make_object(Point_2(source));
return o;
}
CGAL_assertion(lval_sign == ZERO);
// in this case lval_sign lies on the line, so it must be that
// n_inter_points == 1 and source = vtan_ps[0]
CGAL_assertion(n_inter_points == 1 && source == vtan_ps[0]);
// so we try the other vertical tangency point
lval = Algebraic(la)*vtan_ps[1].x() +
Algebraic(lb)*vtan_ps[1].y() + Algebraic(lc);
lval_sign = CGAL_NTS sign(lval);
CGAL_assertion(lval_sign != ZERO);
if (lval_sign == POSITIVE)
parent.add_curve_to_output(inter_cv, o);
//*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL));
else
*o++ = make_object(Point_2(source));
return o;
}
CGAL_assertion(n_inter_points == 2);
// find the correct orientation of the conic between the 2 endpoints
// it should lie on the positive side of line
// If the mid-point forms a left-turn with the source and the target
// points, the orientation is positive (going counterclockwise).
// Otherwise, it is negative (going clockwise).
static Alg_kernel k;
typename Alg_kernel::Orientation_2 orient_f = k.orientation_2_object();
Orientation orient;
if (orient_f(source, pmid, target) == LEFT_TURN)
orient = CGAL::COUNTERCLOCKWISE;
else
orient = CGAL::CLOCKWISE;
Curve_2 res(R, S, T, U, V, W, orient, source, target);
CGAL_assertion(res.is_valid());
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
return o;
}
};
/*! Get a Construct_projected_intersections_2 functor object. */
Construct_projected_intersections_2
construct_projected_intersections_2_object() const
{
return Construct_projected_intersections_2(this);
}
class Compare_z_at_xy_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_3(const Self * p) : parent(*p)
{}
// check which of the surfaces is closer to the envelope at the xy
// coordinates of point (i.e. lower if computing the lower envelope, or
// upper if computing the upper envelope)
// precondition: the surfaces are defined in point
Comparison_result operator()(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result c2 = compare_in_point_second_method(p, s1, s2);
CGAL_expensive_assertion_code(
Comparison_result c1 = compare_in_point_first_method(p, s1, s2);
);
CGAL_expensive_assertion(c1 == c2);
return c2;
}
// check which of the surfaces is closer to the envelope at the xy
// coordinates of cv (i.e. lower if computing the lower envelope, or upper
// if computing the upper envelope)
// precondition: the surfaces are defined in all points of cv, and the
// answer is the same for each of these points
Comparison_result operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
// we compute a middle point on cv and use the previous function
Point_2 mid = parent.construct_middle_point(cv);
Comparison_result res =
parent.compare_z_at_xy_3_object()(mid, s1, s2);
return res;
}
protected:
// first method of compare in point, calculates the z value of both
// surfaces, and compares them
Comparison_result
compare_in_point_first_method(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
// find the z coordinates of surface 1 over p
Algebraic z1 = parent.compute_envelope_z_in_point(p, s1);
// find the z coordinates of surface 2 over p
Algebraic z2 = parent.compute_envelope_z_in_point(p, s2);
Sign res = CGAL_NTS sign(z1 - z2);
if (parent.m_is_lower)
return res;
else
return -res;
}
// second method of compare in point
// p = (x1, y1)
// s1: (x-a1)^2 + (y-b1)^2 + (z-c1)^2 = r1^2
// s2: (x-a2)^2 + (y-b2)^2 + (z-c2)^2 = r2^2
// (both lower parts or upper parts)
// then in point p we get:
// s1(p): (z-c1)^2 = r1^2 - (x1-a1)^2 - (y1-b1)^2 = A1
// s2(p): (z-c2)^2 = r2^2 - (x1-a2)^2 - (y1-b2)^2 = A2
// so we get z - ci = +- sqrt(Ai) where -sqrt(Ai) is for the lower part
// and +sqrt(Ai) is for the upper part
// we now need to compute the sign of:
// c1 - sqrt(A1) - (c2 - sqrt(A2)) - for lower envelope
// c1 + sqrt(A1) - (c2 + sqrt(A2)) - for upper envelope
Comparison_result
compare_in_point_second_method(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
const Rational sqr_r1 = s1.squared_radius(),
sqr_r2 = s2.squared_radius();
const Algebraic x1 = p.x(), y1 = p.y();
Rational c_diff = c1 - c2;
Algebraic x_diff1 = x1 - a1, y_diff1 = y1 - b1;
Algebraic x_diff2 = x1 - a2, y_diff2 = y1 - b2;
Algebraic A1 = sqr_r1 - x_diff1*x_diff1 - y_diff1*y_diff1;
Algebraic A2 = sqr_r2 - x_diff2*x_diff2 - y_diff2*y_diff2;
if (CGAL_NTS sign(A1) == NEGATIVE)
std::cout << "A1 = " << A1 << std::endl;
if (CGAL_NTS sign(A2) == NEGATIVE)
std::cout << "A2 = " << A2 << std::endl;
Sign res;
// sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f is a CGAL method which
// computes the sign of quantity: a + b * sqrt(e) + c * sqrt(f)
res = CGAL::sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f(Algebraic(c_diff),
Algebraic(-1),
Algebraic(1),
A1,
A2);
return res;
}
};
/*! Get a Compare_z_at_xy_3 functor object. */
Compare_z_at_xy_3
compare_z_at_xy_3_object() const
{
return Compare_z_at_xy_3(this);
}
class Compare_z_at_xy_above_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_above_3(const Self * p) : parent(*p)
{}
// check which of the surfaces is closer to the envelope on the points above
// the curve cv (i.e. lower if computing the lower envelope, or upper if
// computing the upper envelope)
// precondition: the surfaces are defined above cv
// the choise between s1 and s2 for the envelope is the same
// for every point in the infinitesimal region above cv
// the surfaces are EQUAL over the curve cv
Comparison_result
operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result res = parent.compare_on_side(cv, s1, s2, false);
return res;
}
};
/*! Get a Compare_z_at_xy_above_3 functor object. */
Compare_z_at_xy_above_3
compare_z_at_xy_above_3_object() const
{
return Compare_z_at_xy_above_3(this);
}
class Compare_z_at_xy_below_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_below_3(const Self * p) : parent(*p)
{}
Comparison_result
operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result res = parent.compare_on_side(cv, s1, s2, true);
return res;
}
};
/*! Get a Compare_z_at_xy_below_3 functor object. */
Compare_z_at_xy_below_3
compare_z_at_xy_below_3_object() const
{
return Compare_z_at_xy_below_3(this);
}
/***************************************************************************/
// public method needed for testing
// checks if point is in the xy-range of surf
class Is_defined_over
{
protected:
const Self & parent;
public:
Is_defined_over(const Self * p) : parent(*p)
{}
// checks if point is in the xy-range of surf
bool operator()(const Point_2& p, const Xy_monotone_surface_3& s) const
{
// project the surface on the plane
Rat_point_2 proj_center = parent.project(s.center());
Rat_circle_2 boundary(proj_center, s.squared_radius());
Nt_traits nt_traits;
Alg_kernel k;
Alg_point_2 aproj_center(proj_center.x(), proj_center.y());
Alg_circle_2 aboundary(aproj_center, nt_traits.convert(s.squared_radius()));
// check if the projected point is inside the projected boundary
return (!k.has_on_unbounded_side_2_object()(aboundary, p));
}
};
/*! Get a Is_defined_over functor object. */
Is_defined_over is_defined_over_object() const
{
return Is_defined_over(this);
}
/***************************************************************************/
// helper methods
// compare the surfaces over the side (as specified in the compare_on_right
// parameter) of the curve, assuming they are defined there
Comparison_result compare_on_side(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2,
bool compare_on_right) const
{
// cv(x,y) : r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// let p be the leftmost endpoint of cv, p=(x0, y0)
// the tangence of cv at p is a line. on the infinitesimal region
// near p the relation between the surfaces to the right of cv is
// the same as the relation between the tangences of the surfaces
// in p to the right of this line (unless the tangence of the surface
// is vertical)
// we take a point in the internal of the curve, not an endpoint
// since we assume that such point represents better what is going
// on all internal curve points
Point_2 cv_point = construct_middle_point(cv);
Algebraic x0 = cv_point.x(), y0 = cv_point.y();
// d(cv)/dx : 2r*x + 2s*y*dy/dx + t*y + t*x*dy/dx +u + v*dy/dx = 0
// in point p=(x0,y0) we get
// dy m
// -- = y' = - where m = -2rx0 -ty0 - u
// dx n n = 2sy0 + tx0 + v
// if n != 0 (if n = 0 we have a vertical line).
//
// So the tangence equation (in p) is:
// n = 0: x = x0
// n != 0: y - y0 = y'(x-x0) ==> -y'x + y + (y'x0 - y0) = 0
// and in general we have:
// -m*x + n*y + (m*x0 -n*y0) = 0 (with integer coordinates)
const Rational r = cv.r(), s = cv.s(), t = cv.t(),
u = cv.u(), v = cv.v(), w = cv.w();
Algebraic m = -1 * (2*r*x0 + t*y0 + u);
Algebraic n = 2*s*y0 + t*x0 + v;
// line coefficients: A3, B3, C3
Algebraic A3 = -1*m, B3 = n, C3 = m*x0 - n*y0;
// the tangences of the spheres (in point (x0,y0,z0)):
Algebraic z0 = compute_envelope_z_in_point(cv_point, s1);
// we assume the surfaces are equal over cv:
CGAL_expensive_precondition_code(
Algebraic z0_2 = compute_envelope_z_in_point(cv_point, s2);
)
// this test can be very time consuming ...
CGAL_expensive_precondition(CGAL_NTS compare(z0, z0_2) == EQUAL);
// the sphere i : fi(x,y,z) = (x-ai)^2 + (y-bi)^2 + (z-ci)^2 - ri^2 = 0
// dfi / dx = 2(x-ai) + 2(z-ci)*dz/dx = 0
// dfi / dy = 2(y-bi) + 2(z-ci)*dz/dy = 0
// if z = ci the tangent plane is vertical - if only one of the tangent
// planes is vertical, them its sphere wins (i.e. is on envelope).
// we assume not both are tangent, since this means that they are the
// same sphere
// if z != ci the tangent plane is:
// z-z0 = dz/dx (x-x0) + dz/dy (y-y0)
// ==>
// (x0-ai)(x-x0) + (y0-bi)(y-y0) + (z0-ci)(z-z0) = 0
// Ai*x + Bi*y + Ci*z + Di = 0
// where Ai = (x0-ai)
// Bi = (y0-bi)
// Ci = (z0-ci)
// Di = -(x0-ai)x0 - (y0-bi)y0 - (z0-ci)z0
//
// and we solve the problem as for triangles
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
Algebraic A1 = x0 - a1, B1 = y0 - b1, C1 = z0 - c1;
Algebraic A2 = x0 - a2, B2 = y0 - b2, C2 = z0 - c2;
if (C1 != 0 && C2 != 0)
{
Sign sign1 = CGAL_NTS sign((A2*A3+B2*B3)/C2-(A1*A3+B1*B3)/C1);
// to make sure the direction is correct, we take a second point on the
// line: for vertical line we take (x0, y0+1)
// otherwise we take (x0+1, y0+ m/n)
Algebraic x1, y1;
if (n == 0)
{
x1 = x0;
y1 = y0+1;
}
else
{
x1 = x0+1;
y1 = y0 + (m/n);
}
Sign sign2 = CGAL_NTS sign(-B3*x1+A3*y1-(-B3*x0+A3*y0));
// the answer negates according to the side of the line we ask of
Sign sign3 = (compare_on_right ? (CGAL_NTS sign(1)) :
(CGAL_NTS sign(-1)));
return sign1 * sign2 * sign3;
}
else if (C1 != 0 && C2 == 0)
{
// sphere 2 is on the envelope (both lower & upper)
return LARGER;
}
else if (C1 == 0 && C2 != 0)
{
// sphere 1 is on the envelope (both lower & upper)
return SMALLER;
}
else
CGAL_error();
return EQUAL;
}
Rat_point_2 project(const Rat_point_3& p) const
{
return Rat_point_2(p.x(), p.y());
}
// compute the z coordinate of the surface s in point p on the envelope
// (i.e. take lower point if lower envelope, upper otherwise)
// precondition: s is defined at p
Algebraic compute_envelope_z_in_point(const Point_2& p,
const Xy_monotone_surface_3& s) const
{
Algebraic res;
// the point coordinates
const Algebraic x1 = p.x(), y1 = p.y();
// the surface equations
Rat_point_3 center = s.center();
const Rational a = center.x(), b = center.y(), c = center.z();
const Rational sqr_r = s.squared_radius();
// we substitute x1 and y1 in the equation of s
// (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
// and get a quadratic equation of z:
// z^2 - 2cz + [(x1-a)^2 + (y1-b)^2 + c^2 - r^2] = 0
Algebraic x_diff = x1 - a, y_diff = y1 - b;
// the coefficients are:
Algebraic A = 1,
B = -2*c,
C = x_diff*x_diff + y_diff*y_diff + c*c - sqr_r;
Algebraic zs[2];
Algebraic *zs_end;
int n_zs;
Nt_traits nt_traits;
zs_end = nt_traits.solve_quadratic_equation(A, B, C, zs);
n_zs = zs_end - zs;
CGAL_precondition(n_zs > 0);
if (n_zs == 1)
// only one point is defined at p, this is the result
return zs[0];
CGAL_assertion(n_zs == 2);
Comparison_result comp = CGAL_NTS compare(zs[0], zs[1]);
if (m_is_lower)
res = ((comp == SMALLER) ? zs[0] : zs[1]);
else
res = ((comp == LARGER) ? zs[0] : zs[1]);
return res;
}
// construct the point in the middle of cv
Point_2 construct_middle_point(const X_monotone_curve_2& cv) const
{
// get the x-value of the middle point
Alg_kernel k;
Alg_point_2 mid_x = k.construct_midpoint_2_object()(cv.source(),
cv.target());
// TODO_NEW_DESIGN - this is not implemented in X_monotone_curve_2, but maybe we want it there?
// if (cv.is_segment())
// return mid_x;
if (cv.is_vertical())
return Point_2(mid_x);
return Point_2(cv.point_at_x(mid_x));
}
// for the test
Point_2 construct_middle_point(const Point_2& p1, const Point_2& p2) const
{
Alg_kernel k;
return Point_2(k.construct_midpoint_2_object()(p1, p2));
}
// check if the equation
// r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// has real solutions
// is_point is set to true if the equation represents just one point
template <class NT>
bool is_valid_conic_equation(const NT& r, const NT& s, const NT& t,
const NT& u, const NT& v, const NT& w,
bool &is_point) const
{
// initialize is_point to false, and will change it when we detect
// that the equation represents a point
is_point = false;
// (*) r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// we fix x, and get a 1-variable quadratic equation:
// (**) s*y^2 + (tx + v)*y + (rx^2 + ux + w) = 0
// (*) has real solution (x,y) iff there exists x such that (**) has a
// solution y, i.e. discriminant(**) >= 0
// discriminant(**) = f(x) = (tx + v)^2 -4s(rx^2 + ux + w)
// = (t^2 - 4sr)*x^2 + (stv - 4su)*x + (v^2 - 4sw)
// = A*x^2 + B*x + C >= 0
// where A = t^2 - 4sr
// B = stv - 4su
// C = v^2 - 4sw
// so we should check if there exists x such that f(x) >= 0
// if A > 0 we have a smiling parabula, and a positive answer
// (the conic equation in this case represents hyperbola or 2
// intersecting lines)
Sign sign_A = CGAL_NTS sign(t*t - 4*s*r);
if (sign_A == POSITIVE)
return true;
// if A < 0 we have a sad parabula, so we should check if it crosses the
// x-axis, i.e. if the equation f(x) = 0 has a real solution x.
// this means that discriminant(f(x)) >= 0
// discriminant(f(x)) = B^2 - 4AC
// = (2tv-4su)^2 - 4(t^2-4sr)(v^2-4sw)
// = s(-tvu + su^2 + wt^2 + rv^2 - 4srw)
if (sign_A == NEGATIVE)
{
// (in this case the conic equation represents ellipse, circle, point
// or no curve)
Sign sign_s = CGAL_NTS sign(s);
Sign sign_eq = CGAL_NTS sign(-t*v*u + s*u*u + w*t*t + r*v*v - 4*s*r*w);
// if sign_eq = 0 then discriminant(f(x))=0, and so we have only one x
// solution for f(x), say x0. since we get f(x0)=0 and f(x)<0 forall
// x!=x0, we have only one solution for (**). So the equation represents
// a point with coordinates x0=-B/2A, y0=-(tx0 + v)/2s
if (sign_eq == ZERO)
is_point = true;
Sign sign_disc = CGAL_NTS sign(int(sign_s * sign_eq));
return (sign_disc != NEGATIVE);
}
// if A = 0 we get (***) f(x) = (stv - 4su)*x + (v^2 - 4sw) = B*x + C
// if B != 0 we get a line equation, which always has x
// such that f(x) >= 0
// if B = 0 then f(x) = v^2 - 4sw = C and should check its sign
CGAL_assertion(sign_A == ZERO);
// (in this case the conic equation represents parabola, 2 parallel lines,
// 1 line or no curve)
Sign sign_B = CGAL_NTS sign(s*(t*v - 4*u));
if (sign_B != ZERO)
return true;
Sign sign_C = CGAL_NTS sign(v*v - 4*s*w);
return (sign_C != NEGATIVE);
}
// for the test:
Point_2 vertical_ray_shoot_2(const Point_2& pt,
const X_monotone_curve_2& cv) const
{
if (cv.is_vertical())
{
Alg_kernel k;
if (!k.less_y_2_object()(cv.left(), pt))
return cv.left();
else
{
CGAL_assertion(k.less_y_2_object()(cv.right(), pt));
return cv.right();
}
}
else
return cv.point_at_x(pt);
}
template <class OutputIterator>
OutputIterator add_curve_to_output(const Curve_2& c, OutputIterator oi) const
{
Object objs[2];
Object* p_obj = this->make_x_monotone_2_object()(c, objs);
for(Object* o = objs; o != p_obj; ++o)
{
X_monotone_curve_2 cv;
if(assign(cv, *o))
{
*oi++ = make_object(Intersection_curve(cv, 1));
}
else
{
Point_2 pt;
CGAL_assertion(assign(pt, *o));
assign(pt, *o);
*oi++ = make_object(pt);
}
}
return oi;
}
/*! Default constructor. */
Env_sphere_traits_3() : m_is_lower(true)
{}
protected:
mutable bool m_is_lower;
};
/*!
* Compare two spheres: first compare their center points in an
* xyz-lexicographic order, then by their radii.
*/
template <class Kernel>
bool operator< (const CGAL::Sphere_3<Kernel> & a,
const CGAL::Sphere_3<Kernel> & b)
{
Kernel k;
Comparison_result res = k.compare_xyz_3_object()(a.center(), b.center());
if (res == EQUAL)
{
res = CGAL::compare (a.squared_radius(), b.squared_radius());
}
return (res == SMALLER);
}
/*!
* Compare two spheres for equality.
*/
template <class Kernel>
bool operator== (const typename Kernel::Sphere_3& a,
const typename Kernel::Sphere_3& b)
{
Kernel k;
if (! k.equal_3_object() (a.center(), b.center()))
return (false);
return (CGAL::compare (a.squared_radius(), b.squared_radius()) == EQUAL);
}
CGAL_END_NAMESPACE
#endif // ENVELOPE_SPHERES_TRAITS_3_H
|