File: Aff_transformationHd.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (254 lines) | stat: -rw-r--r-- 9,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Kernel_d/include/CGAL/Kernel_d/Aff_transformationHd.h $
// $Id: Aff_transformationHd.h 42940 2008-04-17 13:32:52Z spion $
// 
//
// Author(s)     : Michael Seel

#ifndef CGAL_AFF_TRANSFORMATIONHD_H
#define CGAL_AFF_TRANSFORMATIONHD_H

#include <CGAL/basic.h>
#include <CGAL/aff_transformation_tags.h>
#include <CGAL/rational_rotation.h>
#include <CGAL/Handle_for.h>

CGAL_BEGIN_NAMESPACE

template <class RT, class LA > class Aff_transformationHd;
template <class RT, class LA > class Aff_transformationHd_rep;

template <class RT, class LA>
class Aff_transformationHd_rep 
{
  friend class Aff_transformationHd<RT,LA>;
  typedef typename LA::Matrix Matrix;
  Matrix M_;
public:
  Aff_transformationHd_rep(int d) : M_(d+1) {}
  Aff_transformationHd_rep(const Matrix& M_init) : M_(M_init) {}
  ~Aff_transformationHd_rep() {}
}; 


/*{\Moptions outfile=Aff_transformation_d.man}*/ 
/*{\Manpage{Aff_transformation_d}{R}{Affine Transformations}{t}}*/
/*{\Msubst 
Hd<RT,LA>#_d<R>
Aff_transformationHd#Aff_transformation_d
Quotient<RT>#FT
}*/

template <class _RT, class _LA>
class Aff_transformationHd : 
  public Handle_for< Aff_transformationHd_rep<_RT,_LA> > { 

  typedef Aff_transformationHd_rep<_RT,_LA> Rep;
  typedef Handle_for<Rep> Base;
  typedef Aff_transformationHd<_RT,_LA> Self;

  using Base::ptr;

/*{\Mdefinition 
An instance of the data type |\Mname| is an affine transformation of
$d$-dimensional space. It is specified by a square matrix
$M$ of dimension $d + 1$. All entries in the last row of |M| except
the diagonal entry must be zero; the diagonal entry must be non-zero.
A point $p$ with homogeneous coordinates $(p[0], \ldots, p[d])$ can be
transformed into the point |p.transform(A)|, where |A| is an affine
transformation created from |M| by the constructors below. }*/

public: 
/*{\Mtypes 4}*/

typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename _LA::Matrix Matrix;
/*{\Mtypemember the matrix type.}*/
typedef typename _LA::Vector Vector;

/*{\Mcreation 3}*/

Aff_transformationHd(int d = 0) : Base( Rep(d) ) {}
/*{\Mcreate introduces a transformation in $d$-dimensional space.}*/

Aff_transformationHd(int d, Identity_transformation) : Base( Rep(d) )
/*{\Mcreate introduces the identity transformation in $d$-dimensional 
    space.}*/
{ for (int i = 0; i <= d; ++i) ptr()->M_(i,i) = RT(1); }

Aff_transformationHd(const Matrix& M) : Base( Rep(M) )
/*{\Mcreate introduces the transformation of $d$ - space specified by
matrix $M$. \precond |M| is a square matrix of dimension $d + 1$. }*/
{ CGAL_assertion_msg((M.row_dimension()==M.column_dimension()),
    "Aff_transformationHd::\
     construction: initialization matrix is not quadratic.");
}

template <typename Forward_iterator>
Aff_transformationHd(Scaling, Forward_iterator start, Forward_iterator end) :
  Base( Rep(std::distance(start,end)-1) )
/*{\Mcreate introduces the transformation of $d$-space specified by a
diagonal matrix with entries |set [start,end)| on the diagonal 
(a scaling of the space). \precond |set [start,end)| is a vector of 
dimension $d+1$.}*/
{ int i=0; while (start != end) { ptr()->M_(i,i) = *start++;++i; } }

Aff_transformationHd(Translation, const VectorHd<RT,LA>& v) :
  Base( Rep(v.dimension()) )
/*{\Mcreate introduces the translation by vector $v$.}*/ 
{ int d = v.dimension();
  for (int i = 0; i < d; ++i) {
    ptr()->M_(i,i) = v.homogeneous(d);
    ptr()->M_(i,d) = v.homogeneous(i);
  }
  ptr()->M_(d,d) = v.homogeneous(d);
}

Aff_transformationHd(int d, Scaling, const RT& num, const RT& den) 
  : Base( Rep(d) ) 
/*{\Mcreate returns a scaling by a scale factor |num/den|.}*/
{ Matrix& M = ptr()->M_;
  for (int i = 0; i < d; ++i) M(i,i) = num;
  M(d,d) = den;
}

Aff_transformationHd(int d, Rotation,  
  const RT& sin_num, const RT& cos_num, const RT& den, 
  int e1 = 0, int e2 = 1) : Base( Rep(d) ) 
/*{\Mcreate returns a planar rotation with sine and cosine values
|sin_num/den| and |cos_num/den| in the plane spanned by
the base vectors $b_{e1}$ and $b_{e2}$ in $d$-space. Thus
the default use delivers a planar rotation in the $x$-$y$
plane. \precond $|sin_num|^2 + |cos_num|^2 = |den|^2$
and $0 \leq e_1 < e_2 < d$}*/
{
  CGAL_assertion_msg((sin_num*sin_num + cos_num*cos_num == den*den),
    "planar_rotation: rotation parameters disobey precondition.");
  CGAL_assertion_msg((0<=e1 && e1<=e2 && e2<d),
    "planar_rotation: base vector indices wrong.");
  Matrix& M = ptr()->M_;
  for (int i=0; i<d; i++) M(i,i) = 1;
  M(e1,e1) = cos_num; M(e1,e2) = -sin_num;
  M(e2,e1) = sin_num; M(e2,e2) = cos_num;
  M(d,d) = den;
}

Aff_transformationHd(int d, Rotation, const DirectionHd<RT,LA>& dir, 
  const RT& eps_num, const RT& eps_den, int e1 = 0, int e2 = 1)
/*{\Mcreate returns a planar rotation within the plane spanned by
the base vectors $b_{e1}$ and $b_{e2}$ in $d$-space.  The rotation
parameters are given by the $2$-dimensional direction |dir|, such that
the difference between the sines and cosines of the rotation given by
|dir| and the approximated rotation are at most |num/den| each.\\
\precond |dir.dimension()==2|, |!dir.is_degenerate()| and |num < den|
is positive and $0 \leq e_1 < e_2 < d$ }*/
  : Base( Rep(d) )  
{
  CGAL_assertion(dir.dimension()==2);
  Matrix& M = ptr()->M_;
  for (int i=0; i<d; i++) M(i,i) = RT(1);
  RT sin_num, cos_num, denom;
  rational_rotation_approximation(dir.dx(), dir.dy(),
                                  sin_num, cos_num, denom,
                                  eps_num, eps_den);

  M(e1,e1) = cos_num; M(e1,e2) = -sin_num;
  M(e2,e1) = sin_num; M(e2,e2) = cos_num;
  M(d,d) = denom;
}

/*{\Moperations 5 3}*/

int dimension() const 
{ return ptr()->M_.row_dimension()-1; }
/*{\Mop the dimension of the underlying space }*/

const Matrix& matrix() const { return ptr()->M_; }
/*{\Mop returns the transformation matrix }*/

Vector operator()(const Vector& iv) const
// transforms the ivector by a matrix multiplication
{ return matrix()*iv; }

bool is_odd() const
/*{\Mop returns true iff |\Mvar| is odd.}*/
{ return LA::sign_of_determinant(matrix())<0; }

Aff_transformationHd<RT,LA> inverse() const
/*{\Mop returns the inverse transformation.
\precond |\Mvar.matrix()| is invertible.}*/
{ Aff_transformationHd<RT,LA> Inv; RT D; 
  Vector dummy;
  if ( !LA::inverse(matrix(),Inv.ptr()->M_,D,dummy) ) 
  CGAL_error_msg("Aff_transformationHd::inverse: not invertible.");
  if ( D < 0 ) Inv.ptr()->M_ = -Inv.ptr()->M_;
  return Inv;
}
  
Aff_transformationHd<RT,LA>  
operator*(const Aff_transformationHd<RT,LA>& s) const
/*{\Mbinop composition of transformations. Note that transformations
are not necessarily commutative. |t*s| is the transformation
which transforms first by |t| and then by |s|.}*/
{ CGAL_assertion_msg((dimension()==s.dimension()),
  "Aff_transformationHd::operator*: dimensions disagree.");
  return Aff_transformationHd<RT,LA>(matrix()*s.matrix()); 
}

bool operator==(const Aff_transformationHd<RT,LA>& a1) const
{ if ( this->identical(a1) ) return true;
  return ( matrix() == a1.matrix() );
}
bool operator!=(const Aff_transformationHd<RT,LA>& a1) const
{ return !operator==(a1); }

}; // Aff_transformationHd

template <class RT, class LA>
std::ostream& operator<<(
  std::ostream& os, const Aff_transformationHd<RT,LA>& t) 
{ os << t.matrix(); return os; }

template <class RT, class LA>
std::istream& operator>>(
  std::istream& is, Aff_transformationHd<RT,LA>& t)
{ typename LA::Matrix M(t.dimension());
  is >> M; t = Aff_transformationHd<RT,LA>(M); 
  return is;
}

/*{\Mimplementation 
Affine Transformations are implemented by matrices of integers as an
item type.  All operations like creation, initialization, input and
output on a transformation $t$ take time $O(|t.dimension()|^2)$. |dimension()|
takes constant time.  The operations for inversion and composition
have the cubic costs of the used matrix operations. The space
requirement is $O(|t.dimension()|^2)$. }*/

// ----------------------------- end of file ----------------------------


CGAL_END_NAMESPACE
#endif // CGAL_AFF_TRANSFORMATIONHD_H