File: function_objectsHd.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (472 lines) | stat: -rw-r--r-- 14,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Kernel_d/include/CGAL/Kernel_d/function_objectsHd.h $
// $Id: function_objectsHd.h 42940 2008-04-17 13:32:52Z spion $
// 
//
// Author(s)     : Michael Seel

//---------------------------------------------------------------------
// file generated by notangle from noweb/function_objectsHd.lw
// please debug or modify noweb file
// coding: K. Mehlhorn, M. Seel
//---------------------------------------------------------------------

#ifndef CGAL_FUNCTION_OBJECTSHD_H
#define CGAL_FUNCTION_OBJECTSHD_H

#include <CGAL/basic.h>
#include <CGAL/enum.h>

CGAL_BEGIN_NAMESPACE

template <class R>
struct Lift_to_paraboloidHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;

Point_d operator()(const Point_d& p) const
{ 
  int d = p.dimension();
  typename LA::Vector h(d+2);
  RT D = p.homogeneous(d);
  RT sum = 0;
  for (int i = 0; i<d; i++) {
    RT hi = p.homogeneous(i);
    h[i] = hi*D;
    sum += hi*hi;
  }
  h[d] = sum;
  h[d+1] = D*D;
  return Point_d(d+1,h.begin(),h.end());
}
};

template <class R>
struct Project_along_d_axisHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;

Point_d operator()(const Point_d& p) const
{ int d = p.dimension();
  return Point_d(d-1, p.homogeneous_begin(),p.homogeneous_end()-2,
                 p.homogeneous(d));
}
};

template <class R>
struct MidpointHd {
typedef typename R::Point_d Point_d;
Point_d operator()(const Point_d& p, const Point_d& q) const
{ return Point_d(p + (q-p)/2); }
};

template <class R>
struct Center_of_sphereHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;
template <class Forward_iterator>
Point_d operator()(Forward_iterator start, Forward_iterator end) const
{ CGAL_assertion(start!=end);
  int d = start->dimension();
  typename LA::Matrix M(d);
  typename LA::Vector b(d);
  Point_d pd = *start++;
  RT pdd  = pd.homogeneous(d);
  for (int i = 0; i < d; i++) { 
    // we set up the equation for p_i
    Point_d pi = *start++; 
    RT pid = pi.homogeneous(d);
    b[i] = 0;
    for (int j = 0; j < d; j++) {
      M(i,j) = RT(2) * pdd * pid * 
               (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid);
      b[i] += (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid) *
              (pi.homogeneous(j)*pdd + pd.homogeneous(j)*pid);
    }
  }
  RT D;
  typename LA::Vector x;
  LA::linear_solver(M,b,x,D);
  return Point_d(d,x.begin(),x.end(),D);
}

}; // Center_of_sphereHd


template <class R>
struct Squared_distanceHd {
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::FT FT;
FT operator()(const Point_d& p, const Point_d& q) const
{ Vector_d v = p-q; return v.squared_length(); }
};

template <class R>
struct Position_on_lineHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::RT RT;

bool operator()(const Point_d& p, const Point_d& s, const Point_d& t, 
     FT& l) const
{ int d = p.dimension(); 
  CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0), 
  "position_along_line: argument dimensions disagree.");
  CGAL_assertion_msg((s!=t), 
  "Position_on_line_d: line defining points are equal.");
  RT lnum = (p.homogeneous(0)*s.homogeneous(d) - 
             s.homogeneous(0)*p.homogeneous(d)) * t.homogeneous(d); 
  RT lden = (t.homogeneous(0)*s.homogeneous(d) - 
             s.homogeneous(0)*t.homogeneous(d)) * p.homogeneous(d); 
  RT num(lnum), den(lden), lnum_i, lden_i; 
  for (int i = 1; i < d; i++) {  
    lnum_i = (p.homogeneous(i)*s.homogeneous(d) - 
              s.homogeneous(i)*p.homogeneous(d)) * t.homogeneous(d); 
    lden_i = (t.homogeneous(i)*s.homogeneous(d) - 
              s.homogeneous(i)*t.homogeneous(d)) * p.homogeneous(d); 
    if (lnum*lden_i != lnum_i*lden) return false; 
    if (lden_i != 0) { den = lden_i; num = lnum_i; }
  }
  l = R::make_FT(num,den);
  return true; 
}
};

template <class R>
struct Barycentric_coordinatesHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last, 
  const Point_d& p, OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
  int n = std::distance(first,last); 
  int d = p.dimension();
  typename R::Affine_rank_d affine_rank;
  CGAL_assertion(affine_rank(first,last)==d);
  typename LA::Matrix M(first,last);
  typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()), x;
  RT D;
  LA::linear_solver(M,b,x,D);  
  for (int i=0; i< x.dimension(); ++result, ++i) {
    *result= R::make_FT(x[i],D); 
  }
  return result;
}
};


template <class R>
struct OrientationHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;

template <class ForwardIterator>
Orientation operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,Orientation_d);
  int d = std::distance(first,last); 
  // range contains d points of dimension d-1
  CGAL_assertion_msg(first->dimension() == d-1,
  "Orientation_d: needs first->dimension() + 1 many points.");
  typename LA::Matrix M(d); // quadratic
  for (int i = 0; i < d; ++first,++i) {
    for (int j = 0; j < d; ++j) 
      M(i,j) = first->homogeneous(j); 
  }
  int row_correction = ( (d % 2 == 0) ? -1 : +1 );
  // we invert the sign if the row number is even i.e. d is odd
  return Orientation(row_correction * LA::sign_of_determinant(M));
}
};

template <class R>
struct Side_of_oriented_sphereHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
Oriented_side operator()(ForwardIterator first, ForwardIterator last, 
                         const Point_d& x)
{ 
  TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
  int d = std::distance(first,last); // |A| contains |d| points
  CGAL_assertion_msg((d-1 == first->dimension()), 
  "Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
  typename LA::Matrix M(d + 1); 
  for (int i = 0; i < d; ++first, ++i) { 
    RT Sum = 0;
    RT hd = first->homogeneous(d-1); 
    M(i,0) = hd*hd; 
    for (int j = 0; j < d; j++) { 
      RT hj = first->homogeneous(j); 
      M(i,j + 1) = hj * hd; 
      Sum += hj*hj; 
    }
    M(i,d) = Sum; 
  }
  RT Sum = 0; 
  RT hd = x.homogeneous(d-1); 
  M(d,0) = hd*hd; 
  for (int j = 0; j < d; j++) { 
    RT hj = x.homogeneous(j); 
    M(d,j + 1) = hj * hd; 
    Sum += hj*hj; 
  }
  M(d,d) = Sum; 
  return CGAL::Sign(- LA::sign_of_determinant(M));
}
};

template <class R>
struct Side_of_bounded_sphereHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
Bounded_side operator()(ForwardIterator first, ForwardIterator last, 
                        const Point_d& p)
{
  TUPLE_DIM_CHECK(first,last,region_of_sphere);
  typename R::Orientation_d _orientation;
  Orientation o = _orientation(first,last);
  CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
  A must be full dimensional.");
  typename R::Side_of_oriented_sphere_d _side_of_oriented_sphere;
  Oriented_side oside = _side_of_oriented_sphere(first,last,p);
  if (o == POSITIVE) {
    switch (oside) {
        case ON_POSITIVE_SIDE    :   return ON_BOUNDED_SIDE;
        case ON_ORIENTED_BOUNDARY:   return ON_BOUNDARY;
        case ON_NEGATIVE_SIDE    :   return ON_UNBOUNDED_SIDE;
    }       
  } else {
    switch (oside) {
        case ON_POSITIVE_SIDE    :   return ON_UNBOUNDED_SIDE;
        case ON_ORIENTED_BOUNDARY:   return ON_BOUNDARY;
        case ON_NEGATIVE_SIDE    :   return ON_BOUNDED_SIDE;
    }     
  }
  return ON_BOUNDARY; // never reached
}
};


template <class R>
struct Contained_in_simplexHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
bool operator()(ForwardIterator first, ForwardIterator last,
                const Point_d& p) 
{
  TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
  int k = std::distance(first,last); // |A| contains |k| points
  int d = first->dimension(); 
  CGAL_assertion_code(
    typename R::Affinely_independent_d check_independence; )
  CGAL_assertion_msg(check_independence(first,last),
    "Contained_in_simplex_d: A not affinely independent.");
  CGAL_assertion(d==p.dimension());

  typename LA::Matrix M(d + 1,k); 
  typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()); 
  for (int j = 0; j < k; ++first, ++j) {
    for (int i = 0; i <= d; ++i)  
      M(i,j) = first->homogeneous(i); 
  }

  RT D; 
  typename LA::Vector lambda; 
  if ( LA::linear_solver(M,b,lambda,D) ) { 
    int s = CGAL_NTS sign(D); 
    for (int j = 0; j < k; j++) { 
      int t = CGAL_NTS sign(lambda[j]); 
      if (s * t < 0) return false; 
    }
    return true;
  }
  return false; 
}
};

template <class R>
struct Contained_in_affine_hullHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
bool operator()(ForwardIterator first, ForwardIterator last,
                const Point_d& p) 
{
  TUPLE_DIM_CHECK(first,last,Contained_in_affine_hull_d);
  int k = std::distance(first,last); // |A| contains |k| points
  int d = first->dimension(); 
  typename LA::Matrix M(d + 1,k); 
  typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()); 
  for (int j = 0; j < k; ++first, ++j) 
    for (int i = 0; i <= d; ++i) 
      M(i,j) = first->homogeneous(i); 
  return LA::is_solvable(M,b); 
}
};


template <class R>
struct Affine_rankHd { 
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
int operator()(ForwardIterator first, ForwardIterator last) 
{
  TUPLE_DIM_CHECK(first,last,Affine_rank_d);
  int k = std::distance(first,last); // |A| contains |k| points
  if (k == 0) return -1; 
  if (k == 1) return 0; 
  int d = first->dimension(); 
  typename LA::Matrix M(d,--k);
  Point_d p0 = *first; ++first; // first points to second
  for (int j = 0; j < k; ++first, ++j) {
    Vector_d v = *first - p0;
    for (int i = 0; i < d; i++) 
      M(i,j) = v.homogeneous(i); 
  }
  return LA::rank(M); 
}
};

template <class R>
struct Affinely_independentHd { 
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;

template <class ForwardIterator> 
bool operator()(ForwardIterator first, ForwardIterator last) 
{ typename R::Affine_rank_d rank; 
  int n = std::distance(first,last);
  return rank(first,last) == n-1;
}
};


template <class R>
struct Compare_lexicographicallyHd {
typedef typename R::Point_d Point_d;
typedef typename R::Point_d PointD; //MSVC hack
Comparison_result operator()(const Point_d& p1, const Point_d& p2)
{ return PointD::cmp(p1,p2); }
};

template <class R>
struct Contained_in_linear_hullHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
typedef typename R::Vector_d Vector_d;

template<class ForwardIterator>
bool operator()(
  ForwardIterator first, ForwardIterator last, const Vector_d& x) 
{ TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
  int k = std::distance(first,last); // |A| contains |k| vectors
  int d = first->dimension(); 
  typename LA::Matrix M(d,k); 
  typename LA::Vector b(d); 
  for (int i = 0; i < d; i++) { 
     b[i] = x.homogeneous(i); 
     for (int j = 0; j < k; j++) 
       M(i,j) = (first+j)->homogeneous(i); 
  }
  return LA::is_solvable(M,b); 
}
};

template <class R>
struct Linear_rankHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
int operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,linear_rank);
  int k = std::distance(first,last); // k vectors
  int d = first->dimension(); 
  typename LA::Matrix M(d,k); 
  for (int i = 0; i < d  ; i++)
     for (int j = 0; j < k; j++)  
       M(i,j) = (first + j)->homogeneous(i); 
  return LA::rank(M); 
}
};

template <class R>
struct Linearly_independentHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last)
{ typename R::Linear_rank_d rank;
  return rank(first,last) == std::distance(first,last);
}
};


template <class R>
struct Linear_baseHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
typedef typename R::Vector_d Vector_d;
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
  OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,linear_base);
  int k = std::distance(first,last); // k vectors
  int d = first->dimension(); 
  typename LA::Matrix M(d,k); 
  for (int j = 0; j < k; j++) 
    for (int i = 0; i < d; i++)
      M(i,j) = (first+j)->homogeneous(i); 

  std::vector<int> indcols; 
  int r = LA::independent_columns(M,indcols); 

  for (int l=0; l < r; l++) {
    typename LA::Vector v = M.column(indcols[l]);
    *result++ = Vector_d(d,v.begin(),v.end(),1);
  }
  return result; 
}
};

CGAL_END_NAMESPACE

#endif // CGAL_FUNCTION_OBJECTSHD_H