1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
// Copyright (c) 1998, 2001, 2003, 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Periodic_3_triangulation_3/include/CGAL/Periodic_3_triangulation_hierarchy_3.h $
// $Id: Periodic_3_triangulation_hierarchy_3.h 55889 2010-05-04 12:47:00Z mcaroli $
//
// Author(s) : Olivier Devillers <Olivier.Devillers@sophia.inria.fr>
// Sylvain Pion
// Manuel Caroli <Manuel.Caroli@sophia.inria.fr>
#ifndef CGAL_PERIODIC_3_TRIANGULATION_HIERARCHY_3_H
#define CGAL_PERIODIC_3_TRIANGULATION_HIERARCHY_3_H
#include <CGAL/basic.h>
#include <CGAL/Triangulation_hierarchy_vertex_base_3.h>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/geometric_distribution.hpp>
#include <boost/random/variate_generator.hpp>
CGAL_BEGIN_NAMESPACE
template < class PTr >
class Periodic_3_triangulation_hierarchy_3
: public PTr
{
// parameterization of the hierarchy
// maximal number of points is 30^5 = 24 millions !
enum { ratio = 30 };
enum { minsize = 20};
enum { maxlevel = 5};
public:
typedef PTr PTr_Base;
typedef typename PTr_Base::Geom_traits Geom_traits;
typedef typename PTr_Base::Point Point;
typedef typename PTr_Base::Iso_cuboid Iso_cuboid;
typedef typename PTr_Base::size_type size_type;
typedef typename PTr_Base::Vertex_handle Vertex_handle;
typedef typename PTr_Base::Cell_handle Cell_handle;
typedef typename PTr_Base::Vertex_iterator Vertex_iterator;
typedef typename PTr_Base::Vertex Vertex;
typedef typename PTr_Base::Locate_type Locate_type;
typedef typename PTr_Base::Cell_iterator Cell_iterator;
typedef typename PTr_Base::Facet_iterator Facet_iterator;
typedef typename PTr_Base::Edge_iterator Edge_iterator;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using PTr_Base::number_of_vertices;
using PTr_Base::geom_traits;
using PTr_Base::is_virtual;
#endif
private:
// here is the stack of triangulations which form the hierarchy
PTr_Base* hierarchy[maxlevel];
boost::rand48 random;
int level_mult_cover;
public:
Periodic_3_triangulation_hierarchy_3(
const Iso_cuboid& domain = Iso_cuboid(0,0,0,1,1,1),
const Geom_traits& traits = Geom_traits());
Periodic_3_triangulation_hierarchy_3(
const Periodic_3_triangulation_hierarchy_3& tr);
template < typename InputIterator >
Periodic_3_triangulation_hierarchy_3(InputIterator first, InputIterator last,
const Iso_cuboid& domain = Iso_cuboid(0,0,0,1,1,1),
const Geom_traits& traits = Geom_traits())
: PTr_Base(domain,traits), level_mult_cover(0)
{
hierarchy[0] = this;
for(int i=1; i<maxlevel; ++i)
hierarchy[i] = new PTr_Base(domain,traits);
insert(first, last);
}
Periodic_3_triangulation_hierarchy_3 & operator=(
const Periodic_3_triangulation_hierarchy_3& tr)
{
Periodic_3_triangulation_hierarchy_3 tmp(tr);
swap(tmp);
return *this;
}
~Periodic_3_triangulation_hierarchy_3();
void swap(Periodic_3_triangulation_hierarchy_3 &tr);
void clear();
// CHECKING
bool is_valid(bool verbose = false, int level = 0) const;
// INSERT REMOVE
Vertex_handle insert(const Point &p, Cell_handle start = Cell_handle ());
Vertex_handle insert(const Point &p, Locate_type lt, Cell_handle loc,
int li, int lj);
template < class InputIterator >
int insert(InputIterator first, InputIterator last, bool = false)
{
int n = number_of_vertices();
std::vector<Point> points (first, last);
std::random_shuffle (points.begin(), points.end());
spatial_sort (points.begin(), points.end(), geom_traits());
// hints[i] is the cell of the previously inserted point in level i.
// Thanks to spatial sort, they are better hints than what the hierarchy
// would give us.
Cell_handle hints[maxlevel];
for (typename std::vector<Point>::const_iterator p = points.begin(),
end = points.end(); p != end; ++p) {
int vertex_level = random_level();
Vertex_handle v = hierarchy[0]->insert (*p, hints[0]);
hints[0] = v->cell();
Vertex_handle prev = v;
for (int level = 1; level <= vertex_level; ++level) {
v = hierarchy[level]->insert (*p, hints[level]);
hints[level] = v->cell();
v->set_down (prev);
if (hierarchy[level]->number_of_sheets()[0] != 1) {
std::vector<Vertex_handle> vtc
= hierarchy[level]->periodic_copies(v);
for (unsigned int i=0 ; i<vtc.size() ; i++) vtc[i]->set_down(prev);
}
prev->set_up (v);
prev = v;
}
}
return number_of_vertices() - n;
}
void remove(Vertex_handle v);
Vertex_handle move_point(Vertex_handle v, const Point & p);
//LOCATE
Cell_handle locate(const Point& p, Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle ()) const;
Cell_handle locate(const Point& p, Cell_handle start = Cell_handle ()) const;
Vertex_handle
nearest_vertex(const Point& p, Cell_handle start = Cell_handle()) const;
private:
struct locs {
Cell_handle pos;
int li, lj;
Locate_type lt;
};
void locate(const Point& p, Locate_type& lt, int& li, int& lj,
locs pos[maxlevel], Cell_handle start = Cell_handle ()) const;
int random_level();
// added to make the test program of usual triangulations work
// undocumented
public:
};
template <class PTr >
Periodic_3_triangulation_hierarchy_3<PTr>::
Periodic_3_triangulation_hierarchy_3(
const Iso_cuboid& domain, const Geom_traits& traits)
: PTr_Base(domain, traits), level_mult_cover(0)
{
hierarchy[0] = this;
for(int i=1;i<maxlevel;++i)
hierarchy[i] = new PTr_Base(domain,traits);
}
// copy constructor duplicates vertices and cells
template <class PTr>
Periodic_3_triangulation_hierarchy_3<PTr>::
Periodic_3_triangulation_hierarchy_3(
const Periodic_3_triangulation_hierarchy_3<PTr> &tr)
: PTr_Base(tr), level_mult_cover(tr.level_mult_cover)
{
hierarchy[0] = this;
for(int i=1; i<maxlevel; ++i)
hierarchy[i] = new PTr_Base(*tr.hierarchy[i]);
// up and down have been copied in straightforward way
// compute a map at lower level
std::map< Vertex_handle, Vertex_handle > V;
for( Vertex_iterator it=hierarchy[0]->vertices_begin();
it != hierarchy[0]->vertices_end(); ++it) {
if (hierarchy[0]->is_virtual(it)) continue;
if (it->up() != Vertex_handle())
V[ it->up()->down() ] = it;
}
for(int j=1; j<maxlevel; ++j) {
for( Vertex_iterator it=hierarchy[j]->vertices_begin();
it != hierarchy[j]->vertices_end(); ++it) {
if (hierarchy[j]->is_virtual(it)) {
// down pointer goes in original instead in copied triangulation
it->set_down(V[it->down()]);
// make reverse link
it->down()->set_up( it );
// make map for next level
if (it->up() != Vertex_handle())
V[ it->up()->down() ] = it;
}
}
}
}
template <class PTr>
void
Periodic_3_triangulation_hierarchy_3<PTr>::
swap(Periodic_3_triangulation_hierarchy_3<PTr> &tr)
{
PTr_Base::swap(tr);
for(int i=1; i<maxlevel; ++i)
std::swap(hierarchy[i], tr.hierarchy[i]);
}
template <class PTr>
Periodic_3_triangulation_hierarchy_3<PTr>::
~Periodic_3_triangulation_hierarchy_3()
{
clear();
for(int i=1; i<maxlevel; ++i)
delete hierarchy[i];
}
template <class PTr>
void
Periodic_3_triangulation_hierarchy_3<PTr>::
clear()
{
for(int i=0;i<maxlevel;++i)
hierarchy[i]->clear();
}
template <class PTr>
bool
Periodic_3_triangulation_hierarchy_3<PTr>::
is_valid(bool verbose, int level) const
{
bool result = true;
// verify correctness of triangulation at all levels
for(int i=0; i<maxlevel; ++i)
result = result && hierarchy[i]->is_valid(verbose, level);
// verify that lower level has no down pointers
for( Vertex_iterator it = hierarchy[0]->vertices_begin();
it != hierarchy[0]->vertices_end(); ++it)
if (!hierarchy[0]->is_virtual(it))
result = result && (it->down() == Vertex_handle());
// verify that other levels has down pointer and reciprocal link is fine
for(int j=1; j<maxlevel; ++j)
for( Vertex_iterator it = hierarchy[j]->vertices_begin();
it != hierarchy[j]->vertices_end(); ++it)
if (!hierarchy[j]->is_virtual(it))
result = result && &*(it) == &*(it->down()->up());
// verify that other levels has down pointer and reciprocal link is fine
for(int k=0; k<maxlevel-1; ++k)
for( Vertex_iterator it = hierarchy[k]->vertices_begin();
it != hierarchy[k]->vertices_end(); ++it)
if (!hierarchy[k]->is_virtual(it))
result = result && ( it->up() == Vertex_handle() ||
&*it == &*(it->up())->down() );
return result;
}
template <class PTr>
typename Periodic_3_triangulation_hierarchy_3<PTr>::Vertex_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
insert(const Point &p, Cell_handle start)
{
int vertex_level = random_level();
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, start);
// insert at level 0
Vertex_handle vertex = hierarchy[0]->insert(p,
positions[0].lt,
positions[0].pos,
positions[0].li,
positions[0].lj);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
vertex->set_down(previous);// link with level above
if (hierarchy[level]->number_of_sheets()[0] != 1) {
std::vector<Vertex_handle> vtc
= hierarchy[level]->periodic_copies(vertex);
for (unsigned int i=0 ; i<vtc.size() ; i++) vtc[i]->set_down(previous);
}
previous->set_up(vertex);
previous=vertex;
level++;
}
return first;
}
template <class PTr>
typename Periodic_3_triangulation_hierarchy_3<PTr>::Vertex_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
insert(const Point &p, Locate_type lt, Cell_handle loc, int li, int lj)
{
int vertex_level = random_level();
// insert at level 0
Vertex_handle vertex = hierarchy[0]->insert(p,lt,loc,li,lj);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
if (vertex_level > 0) {
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, loc);
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
vertex->set_down(previous);// link with level above
if (hierarchy[level]->number_of_sheets()[0] != 1) {
std::vector<Vertex_handle> vtc
= hierarchy[level]->periodic_copies(vertex);
for (unsigned int i=0 ; i<vtc.size() ; i++) vtc[i]->set_down(previous);
}
previous->set_up(vertex);
previous=vertex;
level++;
}
}
return first;
}
template <class PTr>
void
Periodic_3_triangulation_hierarchy_3<PTr>::
remove(Vertex_handle v)
{
CGAL_triangulation_precondition(v != Vertex_handle());
CGAL_expensive_precondition(is_vertex(v));
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
hierarchy[l]->remove(v);
if (u == Vertex_handle())
break;
v = u;
}
}
template < class PTr >
typename Periodic_3_triangulation_hierarchy_3<PTr>::Vertex_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
move_point(Vertex_handle v, const Point & p)
{
CGAL_triangulation_precondition(v != Vertex_handle());
Vertex_handle old, ret;
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
CGAL_triangulation_assertion(hierarchy[l]->is_valid());
Vertex_handle w = hierarchy[l]->move_point(v, p);
if (l == 0) {
ret = w;
}
else {
old->set_up(w);
w->set_down(old);
if (hierarchy[l]->number_of_sheets()[0] != 1) {
std::vector<Vertex_handle> vtc = hierarchy[l]->periodic_copies(w);
for (unsigned int i=0 ; i<vtc.size() ; i++) vtc[i]->set_down(old);
}
}
if (u == Vertex_handle())
break;
old = w;
v = u;
}
return ret;
}
template <class PTr>
inline
typename Periodic_3_triangulation_hierarchy_3<PTr>::Cell_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
locate(const Point& p, Locate_type& lt, int& li, int& lj, Cell_handle start) const
{
if (start != Cell_handle ()) return PTr_Base::locate (p, lt, li, lj, start);
locs positions[maxlevel];
locate(p, lt, li, lj, positions);
return positions[0].pos;
}
template <class PTr>
inline
typename Periodic_3_triangulation_hierarchy_3<PTr>::Cell_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
locate(const Point& p, Cell_handle start) const
{
if (start != Cell_handle ()) return PTr_Base::locate (p, start);
Locate_type lt;
int li, lj;
return locate(p, lt, li, lj);
}
template <class PTr>
void
Periodic_3_triangulation_hierarchy_3<PTr>::
locate(const Point& p, Locate_type& lt, int& li, int& lj,
locs pos[maxlevel], Cell_handle start) const
{
int level = maxlevel;
// find the highest level with enough vertices
while (hierarchy[--level]->number_of_vertices() < (size_type) minsize) {
if ( ! level)
break; // do not go below 0
}
for (int i=level+1; i<maxlevel; ++i)
pos[i].pos = Cell_handle();
Cell_handle position = Cell_handle();
while(level > 0) {
// locate at that level from "position"
// result is stored in "position" for the next level
pos[level].pos = position = hierarchy[level]->locate(p,
pos[level].lt,
pos[level].li,
pos[level].lj,
position);
// find the nearest vertex.
Vertex_handle nearest =
hierarchy[level]->nearest_vertex_in_cell(position,p);
// go at the same vertex on level below
nearest = nearest->down();
position = nearest->cell(); // incident cell
--level;
}
if (start != Cell_handle ()) position = start;
pos[0].pos = hierarchy[0]->locate(p, lt, li, lj, position); // at level 0
pos[0].lt = lt;
pos[0].li = li;
pos[0].lj = lj;
}
template <class PTr>
typename Periodic_3_triangulation_hierarchy_3<PTr>::Vertex_handle
Periodic_3_triangulation_hierarchy_3<PTr>::
nearest_vertex(const Point& p, Cell_handle start) const
{
return PTr_Base::nearest_vertex(p, start != Cell_handle() ? start
: locate(p));
}
template <class PTr>
int
Periodic_3_triangulation_hierarchy_3<PTr>::
random_level()
{
if ( level_mult_cover < maxlevel
&& hierarchy[level_mult_cover]->number_of_sheets() == make_array(1,1,1) )
++level_mult_cover;
boost::geometric_distribution<> proba(1.0/ratio);
boost::variate_generator<boost::rand48&, boost::geometric_distribution<> >
die(random, proba);
return std::min(die()-1, level_mult_cover);
}
CGAL_END_NAMESPACE
#endif // CGAL_PERIODIC_3_TRIANGULATION_HIERARCHY_3_H
|