File: Polyhedron_incremental_builder_3.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (909 lines) | stat: -rw-r--r-- 37,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
// Copyright (c) 1997  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Polyhedron/include/CGAL/Polyhedron_incremental_builder_3.h $
// $Id: Polyhedron_incremental_builder_3.h 57149 2010-06-28 12:39:16Z sloriot $
// 
//
// Author(s)     : Lutz Kettner  <kettner@mpi-sb.mpg.de>)

#ifndef CGAL_POLYHEDRON_INCREMENTAL_BUILDER_3_H
#define CGAL_POLYHEDRON_INCREMENTAL_BUILDER_3_H 1

#include <CGAL/basic.h>
#include <CGAL/Random_access_adaptor.h>
#include <CGAL/HalfedgeDS_decorator.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/IO/Verbose_ostream.h>
#include <vector>
#include <cstddef>

CGAL_BEGIN_NAMESPACE

template < class HalfedgeDS_>
class Polyhedron_incremental_builder_3 {
public:
    typedef HalfedgeDS_                     HDS; // internal
    typedef HalfedgeDS_                     HalfedgeDS;
    typedef typename HDS::Vertex            Vertex;
    typedef typename HDS::Halfedge          Halfedge;
    typedef typename HDS::Face              Face;
    typedef typename HDS::Vertex_handle     Vertex_handle;
    typedef typename HDS::Halfedge_handle   Halfedge_handle;
    typedef typename HDS::Face_handle       Face_handle;
    typedef typename HDS::Face_handle       Facet_handle;
    typedef typename Vertex::Base           VBase;
    typedef typename Halfedge::Base         HBase;
    typedef typename Vertex::Point          Point_3;
    typedef typename HDS::size_type         size_type;

protected:
    typedef typename HDS::Supports_vertex_halfedge  Supports_vertex_halfedge;
    typedef typename HDS::Supports_removal          Supports_removal;
    typedef typename HDS::Vertex_iterator           Vertex_iterator;
    typedef typename HDS::Halfedge_iterator         Halfedge_iterator;
    typedef Random_access_adaptor<Vertex_iterator>  Random_access_index;

    bool                      m_error;
    bool                      m_verbose;
    HDS&                      hds;
    size_type                 rollback_v;
    size_type                 rollback_f;
    size_type                 rollback_h;
    size_type                 new_vertices;
    size_type                 new_faces;
    size_type                 new_halfedges;
    Face_handle               current_face;
    Random_access_index       index_to_vertex_map;
    std::vector< Halfedge_handle>  vertex_to_edge_map;

    Halfedge_handle           g1;      // first halfedge, 0 denotes none.
    Halfedge_handle           gprime;
    Halfedge_handle           h1;      // current halfedge
    size_type                 w1;      // first vertex.
    size_type                 w2;      // second vertex.
    size_type                 v1;      // current vertex
    bool                      first_vertex;
    bool                      last_vertex;

    CGAL_assertion_code( int check_protocoll;)  // use to check protocoll.
    // states for checking: 0 = created, 1 = constructing, 2 = make face.

    // Implement the vertex_to_edge_map either with an array or
    // the halfedge pointer in the vertices (if supported).
    // ----------------------------------------------------
    void initialize_vertex_to_edge_map( size_type  n, bool mode, Tag_true) {
        vertex_to_edge_map.clear();
        vertex_to_edge_map.resize(n);
        if ( mode) {
            // go through all halfedges and keep a halfedge for each
            // vertex found in a hashmap.
            size_type i = 0;
            for ( Vertex_iterator vi = hds.vertices_begin();
                  vi != hds.vertices_end();
                  ++vi) {
                set_vertex_to_edge_map( i, vi->halfedge());
                ++i;
            }
        }
    }
    void initialize_vertex_to_edge_map( size_type n, bool mode, Tag_false){
        vertex_to_edge_map.clear();
        vertex_to_edge_map.resize(n);
        if ( mode) {
            // go through all halfedges and keep a halfedge for each
            // vertex found in a hashmap.
            typedef Unique_hash_map< Vertex_iterator, Halfedge_handle> V_map;
            Halfedge_handle hh;
            V_map v_map( hh, hds.size_of_vertices());
            for ( Halfedge_iterator hi = hds.halfedges_begin();
                  hi != hds.halfedges_end();
                  ++hi) {
                v_map[ hi->vertex()] = hi;
            }
            size_type i = 0;
            for ( Vertex_iterator vi = hds.vertices_begin();
                  vi != hds.vertices_end();
                  ++vi) {
                //set_vertex_to_edge_map( i, v_map[ index_to_vertex_map[i]]);
                set_vertex_to_edge_map( i, v_map[ vi]);
                ++i;
            }
        }
    }
    void initialize_vertex_to_edge_map( size_type n, bool mode) {
        initialize_vertex_to_edge_map(n, mode, Supports_vertex_halfedge());
    }
    void push_back_vertex_to_edge_map( Halfedge_handle h, Tag_true) {
        push_back_vertex_to_edge_map( h, Tag_false());
    }
    void push_back_vertex_to_edge_map( Halfedge_handle h, Tag_false) {
        vertex_to_edge_map.push_back(h);
    }
    void push_back_vertex_to_edge_map( Halfedge_handle h) {
        push_back_vertex_to_edge_map( h, Supports_vertex_halfedge());
    }
    Halfedge_handle get_vertex_to_edge_map( size_type i, Tag_true) {
        // Use the halfedge pointer within the vertex.
        //CGAL_assertion( index_to_vertex_map[i]->halfedge() == get_vertex_to_edge_map(i, Tag_false()));
        return index_to_vertex_map[i]->halfedge();
    }
    Halfedge_handle get_vertex_to_edge_map( size_type i, Tag_false) {
        // Use the self-managed array vertex_to_edge_map.
        return vertex_to_edge_map[i];
    }
    Halfedge_handle get_vertex_to_edge_map( size_type i) {
        return get_vertex_to_edge_map( i, Supports_vertex_halfedge());
    }
    void set_vertex_to_edge_map( size_type i, Halfedge_handle h, Tag_true) {
        set_vertex_to_edge_map( i, h, Tag_false());
        // Use the halfedge pointer within the vertex.
        index_to_vertex_map[i]->VBase::set_halfedge(h);
    }
    void set_vertex_to_edge_map( size_type i, Halfedge_handle h, Tag_false) {
        // Use the self-managed array vertex_to_edge_map.
        CGAL_assertion(i < vertex_to_edge_map.size());
        vertex_to_edge_map[i] = h;
    }
    void set_vertex_to_edge_map( size_type i, Halfedge_handle h) {
        set_vertex_to_edge_map( i, h, Supports_vertex_halfedge());
    }

// An Incremental Builder for Polyhedral Surfaces
// ----------------------------------------------
// DEFINITION
//
// Polyhedron_incremental_builder_3<HDS> is an auxiliary class that
// supports the incremental construction of polyhedral surfaces. This is
// for example convinient when constructing polyhedral surfaces from
// files. The incremental construction starts with a list of all point
// coordinates and concludes with a list of all facet polygons. Edges are
// not explicitly specified. They are derived from the incidence
// information provided from the facet polygons. These are given as a
// sequence of vertex indices. The correct protocol of method calls to
// build a polyhedral surface can be stated as regular expression:
//
// `begin_surface (add_vertex | (begin_facet add_vertex_to_facet*
//  end_facet))* end_surface '
//
// PARAMETERS
//
// `HDS' is the halfedge data structure used to represent the
// polyhedral surface that is to be constructed.
//
// CREATION
public:
    bool error() const { return m_error; }

    Polyhedron_incremental_builder_3( HDS& h, bool verbose = false)
        // stores a reference to the halfedge data structure `h' in the
        // internal state. The previous polyhedral surface in `h'
        // remains unchanged. The incremental builder adds the new
        // polyhedral surface to the old one.
      : m_error( false), m_verbose( verbose), hds(h) {
        CGAL_assertion_code(check_protocoll = 0;)
    }

    ~Polyhedron_incremental_builder_3() {
        CGAL_assertion( check_protocoll == 0);
    }

// OPERATIONS
    enum { RELATIVE_INDEXING = 0, ABSOLUTE_INDEXING = 1};


    void begin_surface( std::size_t v, std::size_t f, std::size_t h = 0,
                        int mode = RELATIVE_INDEXING);
        // starts the construction. v is the number of new
        // vertices to expect, f the number of new facets, and h the number of
        // new halfedges. If h is unspecified (`== 0') it is estimated using
        // Euler equations (plus 5% for the so far unkown holes and genus
        // of the object). These values are used to reserve space in the
        // polyhedron representation `HDS'. If the representation
        // supports insertion these values do not restrict the class of
        // readable polyhedrons. If the representation does not support
        // insertion the object must fit in the reserved sizes.
        //    If `mode' is set to ABSOLUTE_INDEXING the incremental builder
        // uses absolute indexing and the vertices of the old polyhedral 
        // surface can be used in new facets. Otherwise relative indexing is 
        // used starting with new indices for the new construction.


    Vertex_handle add_vertex( const Point_3& p) {
        // adds p to the vertex list.
        CGAL_assertion( check_protocoll == 1);
        if ( hds.size_of_vertices() >= hds.capacity_of_vertices()) {
            Verbose_ostream verr( m_verbose);
            verr << " " << std::endl;
            verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::"
                 << std::endl;
            verr << "add_vertex(): capacity error: more than " << new_vertices
                 << " vertices added." << std::endl;
            m_error = true;
            return Vertex_handle();
        }
        HalfedgeDS_decorator<HDS> decorator(hds);
        Vertex_handle v = decorator.vertices_push_back( Vertex(p));
        index_to_vertex_map.push_back( v);
        decorator.set_vertex_halfedge( v, Halfedge_handle());
        push_back_vertex_to_edge_map( Halfedge_handle());
        ++new_vertices;
        return v;
    }

    // returns handle for the vertex of index i
    Vertex_handle vertex( std::size_t i) {
        if ( i < new_vertices)
            return index_to_vertex_map[i];
        return Vertex_handle();
    }

    Facet_handle begin_facet() {
        // starts a facet.
        if ( m_error)
            return Facet_handle();
        CGAL_assertion( check_protocoll == 1);
        CGAL_assertion_code( check_protocoll = 2;)
        if ( hds.size_of_faces() >= hds.capacity_of_faces()) {
            Verbose_ostream verr( m_verbose);
            verr << " " << std::endl;
            verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::"
                 << std::endl;
            verr << "begin_facet(): capacity error: more than " << new_vertices
                 << " facets added." << std::endl;
            m_error = true;
            return Facet_handle();
        }
        // initialize all status variables.
        first_vertex = true;  // denotes 'no vertex yet'
        g1 =  Halfedge_handle();  // denotes 'no halfedge yet'
        last_vertex = false;

        HalfedgeDS_decorator<HDS> decorator(hds);
        current_face = decorator.faces_push_back( Face());
        return current_face;
    }

    void add_vertex_to_facet( std::size_t i);
        // adds a vertex with index i to the current facet. The first
        // point added with `add_vertex()' has the index 0.

    Halfedge_handle end_facet() {
        // ends a facet.
        if ( m_error)
            return Halfedge_handle();
        CGAL_assertion( check_protocoll == 2);
        CGAL_assertion( ! first_vertex);
        // cleanup all static status variables
        add_vertex_to_facet( w1);
        if ( m_error)
            return Halfedge_handle();
        last_vertex = true;
        add_vertex_to_facet( w2);
        if ( m_error)
            return Halfedge_handle();
        CGAL_assertion( check_protocoll == 2);
        CGAL_assertion_code( check_protocoll = 1;)
        HalfedgeDS_items_decorator<HDS> decorator;
        Halfedge_handle h = get_vertex_to_edge_map(w1);
        decorator.set_face_halfedge( current_face, h);
        ++new_faces;
        return h;
    }

    template <class InputIterator>
    Halfedge_handle add_facet( InputIterator first, InputIterator beyond) {
        // synonym for begin_facet(), a call to add_vertex_to_facet() for each iterator
        // value type, and end_facet().
        begin_facet();
        for ( ; ! m_error && first != beyond; ++first)
            add_vertex_to_facet( *first);
        if ( m_error)
            return Halfedge_handle();
        return end_facet();
    }

    template <class InputIterator>
    bool test_facet( InputIterator first, InputIterator beyond) {
        // tests if the facet described by the vertex indices in the 
        // range [first,beyond) can be inserted without creating a 
        // a non-manifold (and therefore invalid) situation.
        // First, create a copy of the indices and close it cyclically
        std::vector< std::size_t> indices( first, beyond);
        if ( indices.size() < 3)
            return false;
        indices.push_back( indices[0]);
        return test_facet_indices( indices);
    }

    bool test_facet_indices( std::vector< std::size_t> indices);

    void end_surface();
        // ends the construction.

    bool check_unconnected_vertices();
        // returns `true' if unconnected vertices are detected. If `verb'
        // is set to `true' debug information about the unconnected
        // vertices is printed.

    bool remove_unconnected_vertices( Tag_true);
    bool remove_unconnected_vertices( Tag_false) {
        return ! check_unconnected_vertices();
    }
    bool remove_unconnected_vertices() {
        // returns `true' if all unconnected vertices could be removed
        // succesfully.
        return remove_unconnected_vertices( Supports_removal());
    }

    void rollback();

protected:
    Halfedge_handle lookup_hole( std::size_t w) {
        CGAL_assertion( w < new_vertices);
        return lookup_hole( get_vertex_to_edge_map( w));
    }

    size_type find_vertex( Vertex_handle v) {
        // Returns 0 if v == NULL.
        if ( v == Vertex_handle() )
            return 0;
        size_type n = 0;
        typename HDS::Vertex_iterator it = hds.vertices_begin();
        while ( it != v) {
            CGAL_assertion( it != hds.vertices_end());
            ++n;
            ++it;
        }
        n = n - rollback_v;
        return n;
    }

    size_type find_facet( Face_handle f) {
        // Returns 0 if f == NULL.
        if ( f == Face_handle())
            return 0;
        size_type n = 0;
        typename HDS::Face_iterator it = hds.faces_begin();
        while ( it != f) {
            CGAL_assertion( it != hds.faces_end());
            ++n;
            ++it;
        }
        n = n - rollback_f;
        return n;
    }

    Halfedge_handle lookup_halfedge( size_type w, size_type v) {
        // Pre: 0 <= w,v < new_vertices
        // Case a: It exists an halfedge g from w to v:
        //     g must be a border halfedge and the facet of g->opposite()
        //     must be set and different from the current facet.
        //     Set the facet of g to the current facet. Return the
        //     halfedge pointing to g.
        // Case b: It exists no halfedge from w to v:
        //     Create a new pair of halfedges g and g->opposite().
        //     Set the facet of g to the current facet and g->opposite()
        //     to a border halfedge. Assign the vertex references.
        //     Set g->opposite()->next() to g. Return g->opposite().
        typedef typename HDS::Supports_halfedge_vertex 
            Supports_halfedge_vertex;
        Assert_compile_time_tag( Supports_halfedge_vertex(), Tag_true());
        CGAL_assertion( w < new_vertices);
        CGAL_assertion( v < new_vertices);
        CGAL_assertion( ! last_vertex);
        HalfedgeDS_items_decorator<HDS> decorator;
        Halfedge_handle e = get_vertex_to_edge_map( w);
        if ( e != Halfedge_handle()) {
            CGAL_assertion( e->vertex() == index_to_vertex_map[w]);
            // check that the facet has no self intersections
            if ( current_face != Face_handle()
                 && current_face == decorator.get_face(e)) {
                Verbose_ostream verr( m_verbose);
                verr << " " << std::endl;
                verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::"
                     << std::endl;
                verr << "lookup_halfedge(): input error: facet "
                     << new_faces << " has a self intersection at vertex "
                     << w << "." << std::endl;
                m_error = true;
                return Halfedge_handle();
            }
            Halfedge_handle start_edge( e);
            do {
                if ( e->next()->vertex() == index_to_vertex_map[v]) {
                    if ( ! e->next()->is_border()) {
                        Verbose_ostream verr( m_verbose);
                        verr << " " << std::endl;
                        verr << "CGAL::Polyhedron_incremental_builder_3"
                                "<HDS>::" << std::endl;
                        verr << "lookup_halfedge(): input error: facet "
                             << new_faces << " shares a halfedge from "
                                "vertex " <<  w << " to vertex " << v
                             << " with";
                        if (  m_verbose && current_face != Face_handle())
                            verr << " facet "
                                 << find_facet( decorator.get_face(e->next()))
                                 << '.' << std::endl;
                        else
                            verr << " another facet." << std::endl;
                        m_error = true;
                        return Halfedge_handle();
                    }
                    CGAL_assertion( ! e->next()->opposite()->is_border());
                    if ( current_face != Face_handle() && current_face ==
                         decorator.get_face( e->next()->opposite())) {
                        Verbose_ostream verr( m_verbose);
                        verr << " " << std::endl;
                        verr << "CGAL::Polyhedron_incremental_builder_3"
                                "<HDS>::" << std::endl;
                        verr << "lookup_halfedge(): input error: facet "
                             << new_faces << " has a self intersection "
                                "at the halfedge from vertex " << w
                             << " to vertex " << v << "." << std::endl;
                        m_error = true;
                        return Halfedge_handle();
                    }
                    decorator.set_face( e->next(), current_face);
                    return e;
                }
                e = e->next()->opposite();
            } while ( e != start_edge);
        }
        // create a new halfedge
        if ( hds.size_of_halfedges() >= hds.capacity_of_halfedges()) {
            Verbose_ostream verr( m_verbose);
            verr << " " << std::endl;
            verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::"
                 << std::endl;
            verr << "lookup_halfedge(): capacity error: more than "
                 << new_halfedges << " halfedges added while creating facet"
                 << new_faces << '.' << std::endl;
            m_error = true;
            return Halfedge_handle();
        }
        e = hds.edges_push_back( Halfedge(), Halfedge());
        new_halfedges++;
        new_halfedges++;
        decorator.set_face( e, current_face);
        e->HBase::set_vertex( index_to_vertex_map[v]);
        e->HBase::set_next( Halfedge_handle());
        decorator.set_prev( e, e->opposite());
        e = e->opposite();
        e->HBase::set_vertex( index_to_vertex_map[w]);
        e->HBase::set_next( e->opposite());
        return e;
    }

    Halfedge_handle lookup_hole( Halfedge_handle e) {
        // Halfedge e points to a vertex w. Walk around w to find a hole
        // in the facet structure. Report an error if none exist. Return
        // the halfedge at this hole that points to the vertex w.
        CGAL_assertion( e != Halfedge_handle());
        HalfedgeDS_items_decorator<HDS> decorator;
        Halfedge_handle start_edge( e);
        do {
            if ( e->next()->is_border()) {
                return e;
            }
            e = e->next()->opposite();
        } while ( e != start_edge);

        Verbose_ostream verr( m_verbose);
        verr << " " << std::endl;
        verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::" << std::endl;
        verr << "lookup_hole(): input error: at vertex "
             << find_vertex( e->vertex())
             << " a closed surface already exists and facet "
             << new_faces << " is nonetheless adjacent." << std::endl;
        if (  m_verbose && current_face != Face_handle()) {
            verr << "             The closed cycle of facets is:";
            do {
                if ( ! e->is_border())
                    verr << " " << find_facet( decorator.get_face(e));
                e = e->next()->opposite();
            } while ( e != start_edge);
            verr << '.' << std::endl;
        }
        m_error = true;
        return Halfedge_handle();
    }
};

template < class HDS>
void
Polyhedron_incremental_builder_3<HDS>::
rollback() {
    CGAL_assertion( rollback_v <= hds.size_of_vertices());
    CGAL_assertion( rollback_h <= hds.size_of_halfedges());
    CGAL_assertion( rollback_f <= hds.size_of_faces());
    if ( rollback_v == 0 && rollback_h == 0 && rollback_f == 0) {
        hds.clear();
    } else {
        while ( rollback_v != hds.size_of_vertices())
            hds.vertices_pop_back();
        CGAL_assertion((( hds.size_of_halfedges() - rollback_h) & 1) == 0);
        while ( rollback_h != hds.size_of_halfedges())
            hds.edges_pop_back();
        while ( rollback_f != hds.size_of_faces())
            hds.faces_pop_back();
    }
    m_error = false;
    CGAL_assertion_code( check_protocoll = 0;)
}

template < class HDS>  CGAL_MEDIUM_INLINE
void
Polyhedron_incremental_builder_3<HDS>::
begin_surface( std::size_t v, std::size_t f, std::size_t h, int mode) {
    CGAL_assertion( check_protocoll == 0);
    CGAL_assertion_code( check_protocoll = 1;)
    CGAL_assertion( ! m_error);
    if ( mode == RELATIVE_INDEXING) {
        new_vertices  = 0;
        new_faces     = 0;
        new_halfedges = 0;
        rollback_v    = hds.size_of_vertices();
        rollback_f    = hds.size_of_faces();
        rollback_h    = hds.size_of_halfedges();
    } else {
        new_vertices  = hds.size_of_vertices();
        new_faces     = hds.size_of_faces();
        new_halfedges = hds.size_of_halfedges();
        rollback_v    = 0;
        rollback_f    = 0;
        rollback_h    = 0;
    }
    if ( h == 0) {
        // Use the Eulerian equation for connected planar graphs. We do
        // not know the number of facets that are holes and we do not
        // know the genus of the surface. So we add 12 and a factor of
        // 5 percent.
        h = int((v + f - 2 + 12) * 2.1);
    }
    hds.reserve( hds.size_of_vertices()  + v,
                 hds.size_of_halfedges() + h,
                 hds.size_of_faces()     + f);
    if ( mode == RELATIVE_INDEXING) {
        index_to_vertex_map = Random_access_index( hds.vertices_end());
        index_to_vertex_map.reserve(v);
        initialize_vertex_to_edge_map( v, false);
    } else {
        index_to_vertex_map = Random_access_index( hds.vertices_begin(),
                                                   hds.vertices_end());
        index_to_vertex_map.reserve( hds.size_of_vertices() + v);
        initialize_vertex_to_edge_map( hds.size_of_vertices() + v, true);
    }
}

template < class HDS>
void
Polyhedron_incremental_builder_3<HDS>::
add_vertex_to_facet( std::size_t v2) {
    if ( m_error)
        return;
    CGAL_assertion( check_protocoll == 2);
    if ( v2 >= new_vertices) {
        Verbose_ostream verr( m_verbose);
        verr << " " << std::endl;
        verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::"
             << std::endl;
        verr << "add_vertex_to_facet(): vertex index " << v2
             << " is out-of-range [0," << new_vertices-1 << "]."
             << std::endl;
        m_error = true;
        return;
    }
    HalfedgeDS_items_decorator<HDS> decorator;

    if ( first_vertex) {
        CGAL_assertion( ! last_vertex);
        w1 = v2;
        first_vertex = false;
        return;
    }
    if ( g1 == Halfedge_handle()) {
        CGAL_assertion( ! last_vertex);
        gprime  = lookup_halfedge( w1, v2);
        if ( m_error)
            return;
        h1 = g1 = gprime->next();
        v1 = w2 = v2;
        return;
    }
    // g1, h1, v1, w1, w2 are set. Insert halfedge.
    // Lookup v1-->v2
    Halfedge_handle hprime;
    if ( last_vertex)
        hprime = gprime;
    else {
        hprime = lookup_halfedge( v1, v2);
        if ( m_error)
            return;
    }
    Halfedge_handle h2 = hprime->next();
    CGAL_assertion( ! last_vertex || h2 == g1);
    Halfedge_handle prev = h1->next();
    h1->HBase::set_next( h2);
    decorator.set_prev( h2, h1);

    if ( get_vertex_to_edge_map( v1) == Halfedge_handle()) {  // case 1:
        h2->opposite()->HBase::set_next( h1->opposite());
        decorator.set_prev( h1->opposite(), h2->opposite());
    } else {                                                  // case 2:
        bool b1 = h1->opposite()->is_border();
        bool b2 = h2->opposite()->is_border();
        if ( b1 && b2) {
            Halfedge_handle hole = lookup_hole( v1);
            if ( m_error)
                return;
            CGAL_assertion( hole != Halfedge_handle());
            h2->opposite()->HBase::set_next( hole->next());
            decorator.set_prev( hole->next(), h2->opposite());
            hole->HBase::set_next( h1->opposite());
            decorator.set_prev( h1->opposite(), hole);
        } else if ( b2) {                                     // case 2.b:
            CGAL_assertion( prev->is_border());
            h2->opposite()->HBase::set_next( prev);
            decorator.set_prev( prev, h2->opposite());
        } else if ( b1) {                                     // case 2.c:
            CGAL_assertion( hprime->is_border());
            hprime->HBase::set_next( h1->opposite());
            decorator.set_prev( h1->opposite(), hprime);
        } else if ( h2->opposite()->next() == h1->opposite()) {// case 2.d:
            // f1 == f2
            CGAL_assertion( decorator.get_face( h1->opposite()) ==
                       decorator.get_face( h2->opposite()));
        } else {                                              // case 2.e:
            if ( prev == h2) {                                // case _i:
                // nothing to be done, hole is closed.
            } else {                                          // case _ii:
                CGAL_assertion( prev->is_border());
                CGAL_assertion( hprime->is_border());
                hprime->HBase::set_next( prev);
                decorator.set_prev( prev, hprime);
                // Check whether the halfedges around v1 are connected.
                // It is sufficient to check it for h1 to prev.
                // Assert loop termination:
                CGAL_assertion_code( std::size_t k = 0;)
                // Look for a hole in the facet complex starting at h1.
                Halfedge_handle hole;
                Halfedge_handle e = h1;
                do {
                    if ( e->is_border())
                        hole = e;
                    e = e->next()->opposite();
                    CGAL_assertion( k++ < hds.size_of_halfedges());
                } while ( e->next() != prev && e != h1);
                if ( e == h1) {
                    // disconnected facet complexes
                    if ( hole != Halfedge_handle()) {
                        // The complex can be connected with
                        // the hole at hprime.
                        hprime->HBase::set_next( hole->next());
                        decorator.set_prev( hole->next(), hprime);
                        hole->HBase::set_next( prev);
                        decorator.set_prev( prev, hole);
                    } else {
                        Verbose_ostream verr( m_verbose);
                        verr << " " << std::endl;
                        verr << "CGAL::Polyhedron_incremental_builder_3<"
                                "HDS>::" << std::endl;
                        verr << "add_vertex_to_facet(): input error: "
                                "disconnected facet complexes at vertex "
                             << v1 << ":" << std::endl;

                        if ( m_verbose && current_face != Face_handle()) {
                            verr << "           involved facets are:";
                            do {
                                if ( ! e->is_border())
                                    verr << " " << find_facet(
                                                decorator.get_face(e));
                                e = e->next()->opposite();
                            } while ( e != h1);
                            verr << " (closed cycle) and";
                            e = hprime;
                            do {
                                if ( ! e->is_border())
                                    verr << " " << find_facet(
                                                decorator.get_face(e));
                            } while ( e != hprime);
                            verr << "." << std::endl;
                        }
                        m_error = true;
                        return;
                    }
                }
            }
        }
    }
    if ( h1->vertex() == index_to_vertex_map[v1])
        set_vertex_to_edge_map( v1, h1);
    CGAL_assertion( h1->vertex() == index_to_vertex_map[v1]);
    h1 = h2;
    v1 = v2;
}

template < class HDS>
bool
Polyhedron_incremental_builder_3<HDS>::
test_facet_indices( std::vector< std::size_t> indices) {
    typedef typename HDS::Supports_halfedge_vertex Supports_halfedge_vertex;
    Assert_compile_time_tag( Supports_halfedge_vertex(), Tag_true());
    // tests if the facet described by the vertex indices can be inserted 
    // without creating a a non-manifold (and therefore invalid) situation.
    // indices are cyclically closed once.
    std::size_t n = indices.size() - 1;
    // Test if a vertex is not twice in the indices
    for ( std::size_t i = 0; i < n; ++i) {
        CGAL_precondition( indices[i] < new_vertices);
        // check if vertex indices[i] is already in the sequence [0..i-1]
        for ( std::size_t k = 0; k+1 < i; ++k) {
            if ( indices[k] == indices[i])
                return false;
        }
    }
    // Test non-manifold halfedges
    for ( std::size_t i = 0; i < n; ++i) {
        // halfedge goes from vertex indices[i] to indices[i+1]
        // we know already that the halfedge is only once in the sequence
        // (otherwise the end-vertices would be twice in the sequence too)
        // check if halfedge is already in the HDS and is not border halfedge
        Halfedge_handle v = get_vertex_to_edge_map(indices[i]);
        Vertex_handle   w = index_to_vertex_map[indices[i+1]];
        if ( v != Halfedge_handle()
             && get_vertex_to_edge_map(indices[i+1]) != Halfedge_handle()) {
            // cycle through halfedge-loop and find edge to indices[i+1]
            Halfedge_handle vstart = v;
            do {
                v = v->next()->opposite();
            } while ( v->next()->vertex() != w && v != vstart);
            if ( v->next()->vertex() == w && ! v->next()->is_border())
                return false;
        }
    }
    // test non-manifold vertices
    for ( std::size_t i = 0; i < n; ++i) {
        // since we don't allow duplicates in indices[..] and we 
        // tested for non-manifold halfedges already, we just need to check
        // if the vertex indices[i] is not a closed manifold yet.
        Halfedge_handle v = get_vertex_to_edge_map(indices[i]);
        if ( v != Halfedge_handle()) {
            Halfedge_handle vstart = v;
            do {
                v = v->next()->opposite();
            } while ( ! v->is_border() && v != vstart);
            if ( ! v->is_border())
                return false;
        }
    }
    
    //Test if all halfedges of the new face 
    //are possibly consecutive border halfedges in the HDS.
    //Possibly because it may be not directly encoded in the HDS
    //(using next() function ). This situation can occur when one or
    //more facets share only a vertex: For example, the new facet we try to add
    //would make the vertex indices[i] a manifold but this should be forbidden
    //if a facet only incident to that vertex has already been inserted.
    //We check this for each vertex of the sequence.
    for ( std::size_t i = 0; i < n; ++i) {
      std::size_t prev_index=indices[ (i-1+n)%n];
      std::size_t next_index=indices[ (i+1)%n];
      Vertex_handle   previous_vertex = index_to_vertex_map[ prev_index ];
      Vertex_handle   next_vertex     = index_to_vertex_map[ next_index ];
      
      Halfedge_handle v = get_vertex_to_edge_map(indices[i]);
      
      if ( v == Halfedge_handle() || 
           get_vertex_to_edge_map(prev_index) == Halfedge_handle() ||
           get_vertex_to_edge_map(next_index) == Halfedge_handle()
         ) continue;
      
      Halfedge_handle start=v;
      //halfedges pointing to/running out from vertex indices[i]
      //and that need to be possibly consecutive
      Halfedge_handle previous=Halfedge_handle(),next=Halfedge_handle();
      
      //look for a halfedge incident to vertex indices[i]
      //and which opposite is incident to previous_vertex
      do{
        if (v->opposite()->vertex()==previous_vertex){
          previous=v;
          CGAL_precondition(previous->is_border());
          break;
        }
        v = v->next()->opposite();
      }
      while (v!=start);
      
      if (previous!=Halfedge_handle()){
        v=v->next()->opposite();
        //previous and next are already consecutive in the HDS
        if (v->opposite()->vertex()==next_vertex) continue;
        
        //look for a border halfedge which opposite is
        //incident to next_vertex: set next halfedge
        do
        {
          if (v->opposite()->vertex()==next_vertex){
            next=v->opposite();
            break;
          }
          v=v->next()->opposite();
        }
        while(v!=previous);
        if (next==Halfedge_handle()) continue;
        
        //check if no constraint prevents
        //previous and next to be adjacent: 
        do{
          v=v->next()->opposite();
          if ( v->opposite()->is_border() ) break;
        }
        while (v!=previous);
        if (v==previous) return false;
        start=v;
      }
    }
    
    return true;
}


template < class HDS>  CGAL_MEDIUM_INLINE
void
Polyhedron_incremental_builder_3<HDS>::
end_surface() {
    if ( m_error)
        return;
    CGAL_assertion( check_protocoll == 1);
    CGAL_assertion_code( check_protocoll = 0;)
}

template < class HDS>
bool
Polyhedron_incremental_builder_3<HDS>::
check_unconnected_vertices() {
    if ( m_error)
        return false;
    bool unconnected = false;
    Verbose_ostream verr( m_verbose);
    for ( std::size_t i = 0; i < new_vertices; i++) {
        if ( get_vertex_to_edge_map( i) == Halfedge_handle()) {
            verr << "CGAL::Polyhedron_incremental_builder_3<HDS>::\n"
                 << "check_unconnected_vertices( verb = true): "
                 << "vertex " << i << " is unconnected." << std::endl;
            unconnected = true;
        }
    }
    return unconnected;
}

template < class HDS>
bool
Polyhedron_incremental_builder_3<HDS>::
remove_unconnected_vertices( Tag_true) {
    if ( m_error)
        return true;
    for( std::size_t i = 0; i < new_vertices; i++) {
        if( get_vertex_to_edge_map( i) == Halfedge_handle()) {
            hds.vertices_erase( index_to_vertex_map[i]);
        }
    }
    return true;
}

CGAL_END_NAMESPACE

#endif // CGAL_POLYHEDRON_INCREMENTAL_BUILDER_3_H //
// EOF //