File: Regular_triangulation_2.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (2078 lines) | stat: -rw-r--r-- 62,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
// Copyright (c) 1997  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Triangulation_2/include/CGAL/Regular_triangulation_2.h $
// $Id: Regular_triangulation_2.h 53845 2010-01-27 16:43:40Z lrineau $
// 
//
// Author(s)     : Frederic Fichel, Mariette Yvinec, Julia Floetotto

#ifndef CGAL_REGULAR_TRIANGULATION_2_H
#define CGAL_REGULAR_TRIANGULATION_2_H

#include <CGAL/Triangulation_2.h>
#include <CGAL/Regular_triangulation_face_base_2.h>
#include <CGAL/Regular_triangulation_vertex_base_2.h>
#include <CGAL/utility.h>

CGAL_BEGIN_NAMESPACE 

template < typename K_ >
struct Weighted_point_mapper_2 
  :   public K_ 
{
  typedef typename K_::Weighted_point_2 Point_2;

  Weighted_point_mapper_2() {}
  Weighted_point_mapper_2(const K_& k) : K_(k) {}
};

template < class Gt, 
           class Tds  = Triangulation_data_structure_2 <
                        Regular_triangulation_vertex_base_2<Gt>,
		        Regular_triangulation_face_base_2<Gt> > >
class Regular_triangulation_2 
  : public Triangulation_2<Weighted_point_mapper_2<Gt>,Tds>
{
  typedef Regular_triangulation_2<Gt, Tds>                         Self;
  typedef Triangulation_2<Weighted_point_mapper_2<Gt>,Tds>         Base;
public:
  typedef Tds                                  Triangulation_data_structure;
  typedef Gt                                   Geom_traits;
  typedef typename Gt::Point_2                 Bare_point;
  typedef typename Gt::Weighted_point_2        Weighted_point;
  typedef typename Gt::Weight                  Weight;

  typedef typename Base::size_type             size_type;
  typedef typename Base::Face_handle           Face_handle;
  typedef typename Base::Vertex_handle         Vertex_handle;
  typedef typename Base::Vertex                Vertex;
  typedef typename Base::Edge                  Edge;
  typedef typename Base::Locate_type           Locate_type;
  typedef typename Base::Face_circulator       Face_circulator;
  typedef typename Base::Edge_circulator       Edge_circulator;
  typedef typename Base::Vertex_circulator     Vertex_circulator;
  typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
  typedef typename Base::All_edges_iterator    All_edges_iterator;
  typedef typename Base::Finite_faces_iterator Finite_faces_iterator;
  typedef typename Base::All_faces_iterator    All_faces_iterator;
  typedef typename Base::Face::Vertex_list     Vertex_list;
  typedef typename Vertex_list::iterator       Vertex_list_iterator;

#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
  using Base::cw;
  using Base::ccw;
  using Base::dimension;
  using Base::geom_traits;
  using Base::infinite_vertex;
  using Base::create_face;
  using Base::number_of_faces;
  using Base::all_faces_begin;
  using Base::all_faces_end;
  using Base::all_edges_begin;
  using Base::all_edges_end;
  using Base::finite_faces_begin;
  using Base::finite_faces_end;
  using Base::finite_edges_begin;
  using Base::finite_edges_end;
  using Base::OUTSIDE_AFFINE_HULL;
  using Base::VERTEX;
  using Base::FACE;
  using Base::EDGE;
  using Base::OUTSIDE_CONVEX_HULL;
  using Base::orientation;
#endif

private:
  typedef std::list<Face_handle>      Faces_around_stack; 

  class Hidden_tester {
  public:
    bool operator()(const typename Base::All_vertices_iterator&  it){
      return it->is_hidden();
     }
    bool operator()(const typename Base::Finite_vertices_iterator&  it){
      return it->is_hidden();
    }
  };

  class Unhidden_tester {
  public:
    bool operator()(const typename Base::Finite_vertices_iterator&  it){
      return ! it->is_hidden();
    }
  };

  typedef typename Base::All_vertices_iterator     All_vib;
  typedef typename Base::Finite_vertices_iterator  Finite_vib;

public:
  // We derive in order to add a conversion to handle.
  class All_vertices_iterator :
    public Filter_iterator<All_vib, Hidden_tester> {
    typedef Filter_iterator<All_vib, Hidden_tester> Base;
    typedef All_vertices_iterator                     Self;
     public:
    All_vertices_iterator() : Base() {}
    All_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); } 
  };

  class Finite_vertices_iterator :
    public Filter_iterator<Finite_vib, Hidden_tester> {
    typedef Filter_iterator<Finite_vib, Hidden_tester> Base; 
    typedef Finite_vertices_iterator                          Self;
  public:
    Finite_vertices_iterator() : Base() {}
    Finite_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); }
 };

  class Hidden_vertices_iterator :
    public Filter_iterator<Finite_vib, Unhidden_tester> {
    typedef Filter_iterator<Finite_vib, Unhidden_tester> Base; 
    typedef Hidden_vertices_iterator                     Self;
  public:
    Hidden_vertices_iterator() : Base() {}
    Hidden_vertices_iterator(const Base &b) : Base(b) {}
    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
    operator Vertex_handle() const { return Base::base(); }
 };

 //for backward compatibility
  typedef Finite_faces_iterator                Face_iterator;
  typedef Finite_edges_iterator                Edge_iterator;
  typedef Finite_vertices_iterator             Vertex_iterator;

 //Tag to distinguish Delaunay from Regular triangulations
  typedef Tag_true  Weighted_tag;

private:
  size_type _hidden_vertices;

public:
  Regular_triangulation_2(const Gt& gt=Gt()) 
    : Base(Weighted_point_mapper_2<Gt>(gt)), _hidden_vertices(0) {}

  Regular_triangulation_2(const Regular_triangulation_2 &rt);
  
  Regular_triangulation_2 & operator=(const Regular_triangulation_2 &tr);

  size_type number_of_vertices() const {
    return Base::number_of_vertices() - _hidden_vertices;
  }
 
  size_type number_of_hidden_vertices() const {
    return _hidden_vertices;
  }

  // CHECK - QUERY

  Oriented_side power_test(const Weighted_point &p,
			   const Weighted_point &q,
			   const Weighted_point &r,
			   const Weighted_point &s) const;
  Oriented_side power_test(const Weighted_point &p,
			   const Weighted_point &q,
			   const Weighted_point &r) const;
  Oriented_side power_test(const Weighted_point &p,
			   const Weighted_point &r) const;
  Oriented_side power_test(const Face_handle &f, 
			   const Weighted_point &p) const;
  Oriented_side power_test(const Face_handle& f, int i,
			   const Weighted_point &p) const;
 
  
  bool is_valid(bool verbose = false, int level = 0) const;
  bool test_conflict(const Weighted_point  &p, Face_handle fh) const;
  void show_face(Face_handle fh) const;
  void show_all() const;	
  
   //  //template member functions, declared and defined at the end 
  //  template <class OutputItFaces, class OutputItBoundaryEdges, 
  //                                       class OutputItHiddenVertices> 
  //   Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
  //   get_conflicts_and_boundary_and_hidden_vertices (const
  //   Weighted_point  &p, 
  // 						  OutputItFaces fit, 
  // 						  OutputItBoundaryEdges eit,
  // 						  OutputItHiddenVertices vit,  
  // 						  Face_handle start = 
  //                                                 Face_handle()) const;
  // template <class OutputItFaces, class OutputItBoundaryEdges> 
  // std::pair<OutputItFaces,OutputItBoundaryEdges>
  // get_conflicts_and_boundary(const Weighted_point  &p, 
  // 		                OutputItFaces fit, 
  // 		                OutputItBoundaryEdges eit,
  // 		                Face_handle start) const;
  // template <class OutputItFaces>
  // OutputItFaces
  // get_conflicts (const Weighted_point  &p, 
  //                OutputItFaces fit, 
  // 		    Face_handle start ) const;
  // template <class OutputItBoundaryEdges>
  // OutputItBoundaryEdges
  // get_boundary_of_conflicts(const Weighted_point  &p, 
  // 			       OutputItBoundaryEdges eit, 
  // 			       Face_handle start ) const;
  //   template <class OutputItBoundaryEdges, class OutputItHiddenVertices> 
  //   std::pair<OutputItBoundaryEdges, OutputItHiddenVertices> 
  //   get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point  &p, 
  // 						OutputItBoundaryEdges eit, 
  // 						OutputItHiddenVertices vit,
  // 						Face_handle start=
  //                                                Face_handle()) const;
  //   template <class OutputItHiddenVertices> 
  //   OutputItHiddenVertices
  //   get_hidden_vertices(const Weighted_point  &p, 
  // 			   OutputItHiddenVertices vit,
  // 			   Face_handle start= 
  //                       Face_handle()) const;
  
  // DUAL
  Bare_point dual (Face_handle f) const;
  Object dual(const Edge &e) const ;
  Object dual(const Edge_circulator& ec) const;
  Object dual(const Finite_edges_iterator& ei) const;
  Bare_point weighted_circumcenter(Face_handle f) const; 
  Bare_point weighted_circumcenter(const Weighted_point& p0, 
			      const Weighted_point& p1, 
			      const Weighted_point& p2) const;

  // Insertion, Deletion and Flip
  Vertex_handle push_back(const Weighted_point &p);
  Vertex_handle insert(const Weighted_point &p, 
		       Face_handle f = Face_handle() );
  Vertex_handle insert(const Weighted_point &p,
	 	       Locate_type  lt,
		       Face_handle loc, int li );
  Vertex_handle insert_in_face(const Weighted_point &p, Face_handle f);
  Vertex_handle insert_in_edge(const Weighted_point &p, Face_handle f, int i);
  void flip(Face_handle f, int i);
  void remove_degree_3(Vertex_handle v, 
		       Face_handle f = Face_handle());
  void remove(Vertex_handle v);

  All_vertices_iterator all_vertices_begin () const;
  All_vertices_iterator all_vertices_end () const;

  Finite_vertices_iterator finite_vertices_begin () const;
  Finite_vertices_iterator finite_vertices_end () const;
  Vertex_handle finite_vertex() const;

  Hidden_vertices_iterator hidden_vertices_begin () const;
  Hidden_vertices_iterator hidden_vertices_end () const;

  //  Vertex_handle file_input(std::istream& is);
  // void file_output(std::ostream& os) const;

public:
  void clear();
  void copy_triangulation(const Self& tr);
private:
  void copy_triangulation_();
  Vertex_handle reinsert(Vertex_handle v, Face_handle start);
  void regularize(Vertex_handle v);
  void remove_hidden(Vertex_handle v);
  void remove_2D(Vertex_handle v);
  void fill_hole_regular(std::list<Edge> & hole);
  void set_face(Vertex_list& vl, const Face_handle& fh);
  void update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2, 
				const Face_handle& f3);
  void update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2);
  void update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
				const Face_handle& f3);

  Vertex_handle hide_new_vertex(Face_handle f, const Weighted_point& p);
  void hide_remove_degree_3(Face_handle fh, Vertex_handle vh);
  void hide_vertex(Face_handle f, Vertex_handle v);
   void exchange_incidences(Vertex_handle va, Vertex_handle vb);
  void exchange_hidden(Vertex_handle va, Vertex_handle vb);

  void stack_flip(Vertex_handle v, Faces_around_stack &faces_around);
  void stack_flip_4_2(Face_handle f, int i, int j, 
		      Faces_around_stack &faces_around);
  void stack_flip_3_1(Face_handle f, int i, int j,
		      Faces_around_stack &faces_around);
  void stack_flip_2_2(Face_handle f, int i, 
		      Faces_around_stack &faces_around);
  void stack_flip_dim1(Face_handle f, int i,
		       Faces_around_stack &faces_around);
  bool is_valid_face(Face_handle fh) const;
  bool is_valid_vertex(Vertex_handle fh) const;
		       


public:
  template < class InputIterator >
  int
  insert(InputIterator first, InputIterator last)
  {
      int n = number_of_vertices();

      std::vector<Weighted_point> points (first, last);
      spatial_sort (points.begin(), points.end(), geom_traits());

      Face_handle hint;
      for (typename std::vector<Weighted_point>::const_iterator p = points.begin(),
		      end = points.end();
              p != end; ++p)
          hint = insert (*p, hint)->face();

      return number_of_vertices() - n;
  }

  template < class Stream>
  Stream& draw_dual(Stream & ps) const
    {
      Finite_edges_iterator eit = finite_edges_begin();
      for (; eit != finite_edges_end(); ++eit) {
	Object o = dual(eit);
	typename Geom_traits::Line_2  l;
	typename Geom_traits::Ray_2   r;
	typename Geom_traits::Segment_2 s;
	if (CGAL::assign(s,o)) ps << s;
	if (CGAL::assign(r,o)) ps << r;
	if (CGAL::assign(l,o)) ps << l;
      }
      return ps;
    }
   template <class OutputItFaces, class OutputItBoundaryEdges, 
     class OutputItHiddenVertices> 
   Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
   get_conflicts_and_boundary_and_hidden_vertices(const Weighted_point  &p, 
						  OutputItFaces fit, 
						  OutputItBoundaryEdges eit,
						  OutputItHiddenVertices vit,
						  Face_handle start = 
						  Face_handle()) const
    {
      CGAL_triangulation_precondition( dimension() == 2);
      int li;
      Locate_type lt;
      Face_handle fh = locate(p,lt,li, start);
      switch(lt) {
      case OUTSIDE_AFFINE_HULL:
	return make_triple(fit, eit, vit);
      case VERTEX:
      case FACE:
      case EDGE:
      case OUTSIDE_CONVEX_HULL:
	//test whether p is not in conflict 
	// with the first face: 
	// this includes the cases that p is located 
	// on a vertex and either equal or no conflict
	if (!test_conflict(p,fh))
	  return make_triple(fit, eit, vit);
	
	// region includes all faces in conflict so far detected
	// stack includes the faces in the region whose neighbors
	// have not yet been looked at
	std::set<Face_handle> region;
	std::stack<Edge> st; 
	
	//collection of all boundary_vertices:
	std::set< Vertex_handle> boundary_vertices;
	//collection of potential_intern_vertices = vertices incident
	// to an edge incident to two faces in conflict and met 
	// twice during the "walk":
	std::set< Vertex_handle> potential_intern_vertices;
	
	*fit++ = fh; //put fh in OutputItFaces
	region.insert(fh);
	st.push(Edge(fh,2));
	st.push(Edge(fh,1));	
	st.push(Edge(fh,0));

	while (! st.empty()){
	  Edge e = st.top();
 	  st.pop();
	  Face_handle fh = e.first;
	  Face_handle fn = fh->neighbor(e.second);
	  int i = fn->index(fh);
	  if( region.find(fn) == region.end() ){
	    if (test_conflict(p,fn))
	      {
		region.insert(fn);
		st.push(Edge(fn, cw(i)));
		st.push(Edge(fn,ccw(i)));
		*fit++ = fn;
	      }
	    else{ 
	      e = Edge(fn,i);
	      *eit++ = e;
	      if(!is_infinite(fn->vertex(cw(i))))
		boundary_vertices.insert(fn->vertex(cw(i)));
	       if(!is_infinite(fn->vertex(ccw(i))))
		 boundary_vertices.insert(fn->vertex(ccw(i)));
	    }
	  }
	  else {
	    //insert the vertices of the last edge into the set of 
	    // potential intern vertices:
	    potential_intern_vertices.insert(fn->vertex(ccw(i)));
	    potential_intern_vertices.insert(fn->vertex(cw(i)));
	  }
	}
	if(!potential_intern_vertices.empty()){
	  //determine the hidden vertices:
	  std::set_difference (potential_intern_vertices.begin(), 
			  potential_intern_vertices.end(),
			  boundary_vertices.begin(),
			  boundary_vertices.end(),
			  vit); 
	}
	return  make_triple(fit, eit, vit);
      }
      CGAL_triangulation_assertion(false);
      return make_triple(fit, eit, vit);
    }
  
  template <class OutputItFaces, class OutputItBoundaryEdges> 
  std::pair<OutputItFaces,OutputItBoundaryEdges>
  get_conflicts_and_boundary (const Weighted_point  &p, 
			      OutputItFaces fit, 
			      OutputItBoundaryEdges eit,
			      Face_handle start = Face_handle()) const
    {
      Triple<OutputItFaces,OutputItBoundaryEdges,Emptyset_iterator>
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p, fit, eit,
       						       Emptyset_iterator(), 
       						       start);
      return std::make_pair(pp.first, pp.second);
    }
  template <class OutputItFaces, class OutputItHiddenVertices> 
  std::pair<OutputItFaces, OutputItHiddenVertices> 
  get_conflicts_and_hidden_vertices(const Weighted_point  &p, 
				    OutputItFaces fit, 
				    OutputItHiddenVertices vit,
				    Face_handle start = 
				    Face_handle()) const
    {
      Triple<OutputItFaces, Emptyset_iterator,OutputItHiddenVertices> 
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p,fit,
						       Emptyset_iterator(), 
						       vit,
						       start);
      return std::make_pair(pp.first,pp.third);
    }


   template <class OutputItBoundaryEdges, class OutputItHiddenVertices> 
  std::pair<OutputItBoundaryEdges, OutputItHiddenVertices> 
  get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point  &p, 
						OutputItBoundaryEdges eit, 
						OutputItHiddenVertices vit,
						Face_handle start = 
						Face_handle()) const
    {
      Triple<Emptyset_iterator,OutputItBoundaryEdges,
	OutputItHiddenVertices> 
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p,
						       Emptyset_iterator(), 
						       eit,vit,
						       start);
      return std::make_pair(pp.second,pp.third);
    }

  template <class OutputItFaces> 
  OutputItFaces
  get_conflicts (const Weighted_point  &p, 
		 OutputItFaces fit, 
		 Face_handle start= Face_handle()) const
    {
      Triple<OutputItFaces,Emptyset_iterator,Emptyset_iterator>
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p, fit, 
						       Emptyset_iterator(),
						       Emptyset_iterator(), 
						       start);
      return pp.first;
    }
  
  template <class OutputItBoundaryEdges> 
  OutputItBoundaryEdges
  get_boundary_of_conflicts(const Weighted_point  &p, 
			    OutputItBoundaryEdges eit, 
			    Face_handle start= Face_handle()) const
    {    
      Triple<Emptyset_iterator, OutputItBoundaryEdges,Emptyset_iterator>
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p,
						       Emptyset_iterator(),
						       eit,
						       Emptyset_iterator(), 
						       start);
      return pp.second;
    }
  template <class OutputItHiddenVertices> 
  OutputItHiddenVertices 
  get_hidden_vertices(const Weighted_point  &p, OutputItHiddenVertices vit,
		      Face_handle start= Face_handle()) const
    {
      Triple<Emptyset_iterator,Emptyset_iterator,
	OutputItHiddenVertices> 
	pp = 
	get_conflicts_and_boundary_and_hidden_vertices(p,Emptyset_iterator(), 
						       Emptyset_iterator(),vit,
						       start);
      return pp.third;
    }

  // nearest power vertex query
  Vertex_handle nearest_power_vertex(const Bare_point& p) const;
};

template < class Gt, class Tds >
inline bool
Regular_triangulation_2<Gt,Tds>::
test_conflict(const Weighted_point  &p, Face_handle fh) const
{
  return(power_test(fh,p) == ON_POSITIVE_SIDE);
}   

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
clear()
{
  Base::clear();
  _hidden_vertices = 0;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation_()
{
  // the list of vertices have been copied member for member and are
  // not good
  // clear them and next
  // scan the hidden vertices to retablish the list in faces
  typename Tds::Face_iterator 
                       baseit= this->_tds.face_iterator_base_begin();
  for( ; baseit !=  this->_tds.face_iterator_base_end(); baseit++){
    baseit->vertex_list().clear();
  }
  Hidden_vertices_iterator hvit = hidden_vertices_begin();
  for( ; hvit !=  hidden_vertices_end() ; ++hvit){
    hvit->face()->vertex_list().push_back(hvit);
  }
  CGAL_triangulation_postcondition(is_valid());
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation(const Self &tr )
{
  Base::copy_triangulation(tr);
  _hidden_vertices = tr._hidden_vertices;
  copy_triangulation_();
}

template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::
Regular_triangulation_2(const Self &tr)
  : Base(tr), _hidden_vertices(tr._hidden_vertices)
{
  copy_triangulation_();
}

template <class Gt, class Tds >
Regular_triangulation_2<Gt,Tds> &
Regular_triangulation_2<Gt, Tds>::
operator=(const Self &tr)
{
  copy_triangulation(tr);
  return *this;
}

template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle &f, const Weighted_point &p) const
{
  // p is supposed to be a finite point
  // if f is a finite face, 
  // return  ON_NEGATIVE_SIDE if p is above f 
  // (p has to be hidden)
  if (dimension() == 1) return power_test(f->vertex(0)->point(),
					  f->vertex(1)->point(),p);
  int i;
  if ( ! f->has_vertex(infinite_vertex(), i) )
    return power_test(f->vertex(0)->point(),
		      f->vertex(1)->point(),
		      f->vertex(2)->point(),p);

  Orientation o = orientation(f->vertex(ccw(i))->point(),
			      f->vertex( cw(i))->point(),
			      p);
  if (o==COLLINEAR)
    return power_test(f->vertex(ccw(i))->point(),
		      f->vertex( cw(i))->point(),p);

  return o;
}

template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle& f, int i,
	   const Weighted_point &p) const
{
  // f,i is supposed to be a finite edge
  // p is supposed to be on  edge (f,i)
  // return ON_NEGATIVE_SIDE if p is above (f,i)
  // (p has to be hidden)
  CGAL_triangulation_precondition (!is_infinite(f,i) &&
	     orientation(f->vertex(ccw(i))->point(),
			 f->vertex( cw(i))->point(),
			 p) == COLLINEAR);
  return  power_test(f->vertex(ccw(i))->point(),
		     f->vertex( cw(i))->point(),
		     p);
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
	   const Weighted_point &q,
	   const Weighted_point &r,
	   const Weighted_point &s) const
{
  return geom_traits().power_test_2_object()(p,q,r,s);
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
	   const Weighted_point &q,
	   const Weighted_point &r) const
{
  return geom_traits().power_test_2_object()(p,q,r);
}

template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
	   const Weighted_point &r) const
{
  return geom_traits().power_test_2_object()(p,r);
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_face(Face_handle fh) const
{
  bool result = true;
  if(is_infinite(fh)) result = result && fh->vertex_list().empty();
  if (!result) { show_face(fh);}
  CGAL_triangulation_assertion(result);

  typename Vertex_list::iterator vlit = fh->vertex_list().begin(),
	                       vldone = fh->vertex_list().end();
  for (; vlit != vldone; vlit++)    {
    result = result && power_test(fh, (*vlit)->point()) == ON_NEGATIVE_SIDE;
    result = result && ((*vlit)->face() == fh);
    if (!result)     show_face(fh);
    CGAL_triangulation_assertion(result); 
  }
  return result;
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_vertex(Vertex_handle vh) const
{
  bool result = true;
  if (vh->is_hidden()) {
    Locate_type lt; 
    int li;
    Face_handle loc  = locate(vh->point(), lt, li, vh->face());
    if (dimension() == 0) {
        result = result && lt == Base::VERTEX;
        result = result && power_test (vh->face()->vertex(0)->point(), vh->point()) <= 0;
    } else {
        result = result && (!is_infinite(vh->face()));
        result = result && (loc == vh->face() ||
                (lt == Base::VERTEX && 
                 vh->face()->has_vertex(loc->vertex(li))) ||
                (lt == Base::EDGE && vh->face() ==
                 loc->neighbor(li)) );

        result = result && 
            power_test(vh->face(),vh->point()) == ON_NEGATIVE_SIDE;
//            if ( !result) {
//               std::cerr << " from is_valid_vertex " << std::endl;
//               std::cerr << "sommet cache " << &*(vh) 
//         		<< "vh_point " <<vh->point() << " " << std::endl;
//               std::cerr << "vh_>face " << &*(vh->face())  << " " << std::endl;
//               std::cerr <<  "loc      " <<  &*(loc )
//         	        << " lt " << lt  << " li " << li << std::endl;
//               show_face(vh->face());
//               show_face(loc);
//             }
    }
  }
  else { // normal vertex
    result = result && vh->face()->has_vertex(vh);
//     if ( !result) {
//       std::cerr << " from is_valid_vertex " << std::endl;
//       std::cerr << "normal vertex " << &(*vh) << std::endl;
//       std::cerr << vh->point() << " " << std::endl;
//       std::cerr << "vh_>face " << &*(vh->face())  << " " << std::endl;
//       show_face(vh->face());
//     }
  }
  CGAL_triangulation_assertion(result);
  return result;
}

template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid(bool verbose, int /* level */) const
{
  // cannot call for is_valid() of Base Triangulation class
  // because 1) number of vertices of base class does not match
  // tds.is_valid calls is_valid for each vertex
  // and the test is not fullfilled by  hidden vertices ...
  // result = result && Triangulation_2<Gt,Tds>::is_valid(verbose, level);
  bool result = true;
  for(All_faces_iterator fit = all_faces_begin(); 
      fit != all_faces_end(); ++fit) {
    result = result && is_valid_face(fit);
  }

  for(All_vertices_iterator vit = all_vertices_begin(); 
                            vit != all_vertices_end(); ++vit) {
    result = result && is_valid_vertex(vit);
  }

   for(Hidden_vertices_iterator hvit = hidden_vertices_begin(); 
                                hvit != hidden_vertices_end(); ++hvit) {
    result = result && is_valid_vertex(hvit);
  }

   switch(dimension()) {
   case 0 :
     break;
   case 1:
     if (number_of_vertices() > 2 ) {
       Finite_vertices_iterator it1 = finite_vertices_begin(),
	 it2(it1), it3(it1);
       ++it2;
       ++it3; ++it3;
       while( it3 != finite_vertices_end()) {
	 Orientation s = orientation(it1->point(),
				    it2->point(),
				    it3->point()); 
	 result = result && s == COLLINEAR ;
	 CGAL_triangulation_assertion(result);
	 ++it1 ; ++it2; ++it3;
       }
     }
     break;
   case 2 :
    for(Finite_faces_iterator it=finite_faces_begin(); 
	 it!=finite_faces_end(); it++) {
      CGAL_triangulation_assertion( ! is_infinite(it));
      Orientation s = orientation(it->vertex(0)->point(),
				  it->vertex(1)->point(),
				  it->vertex(2)->point());
      CGAL_triangulation_assertion( s == LEFT_TURN );
      result = result && ( s == LEFT_TURN );

      for (int i = 0 ; i < 3 ; i++) {
	if (!is_infinite(it->vertex(i)))
	  result = result && ON_POSITIVE_SIDE != 
	    power_test(it->neighbor(i), it->vertex(i)->point());
	CGAL_triangulation_assertion(result);
      }
    }

     Vertex_circulator start = incident_vertices(infinite_vertex());
     Vertex_circulator pc(start);
     Vertex_circulator qc(start); ++qc;
     Vertex_circulator rc(start); ++rc; ++rc;
     do{
       Orientation s = orientation(pc->point(),
				   qc->point(),
				   rc->point());
       CGAL_triangulation_assertion( s != LEFT_TURN );
       result = result && ( s != LEFT_TURN );
       ++pc ; ++qc ; ++rc;
     } while(pc != start);
 
     // check number of faces. This cannot be done by the Tds
     // which does not know the number of components nor the genus
     result = result && (number_of_faces() == 2*(number_of_vertices()+1)
		                            - 4 
                                           - degree(infinite_vertex()));
     CGAL_triangulation_assertion( result);
     break;
   }
  
   // in any dimension
   if(verbose) {
     std::cerr << " nombres de sommets " << number_of_vertices() << "\t"
	       << "nombres de sommets  caches " << number_of_hidden_vertices()
	       << std::endl;
   }
   result = result && ( Base::number_of_vertices() ==
			number_of_vertices() + number_of_hidden_vertices());
   CGAL_triangulation_assertion( result);
   return result;
}


template <class Gt, class Tds >
void
 Regular_triangulation_2<Gt, Tds>::
show_face(Face_handle fh) const
{
  Base::show_face(fh);

  typename Vertex_list::iterator current;
  std::cerr << "  +++++>>>    ";
  for (current= fh->vertex_list().begin(); 
       current!= fh->vertex_list().end() ; current++ ) {
        std::cerr <<"[ "<< ((*current)->point()) << " ] ,  ";
  }
  std::cerr <<std::endl;
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
show_all() const
{
  std::cerr<< "AFFICHE TOUTE LA TRIANGULATION :" << std::endl;
  std::cerr << std::endl<<"====> "<< this ;
  std::cerr <<  " dimension " <<  dimension() << std::endl;
  std::cerr << "nb of vertices " << number_of_vertices() 
	    << " nb of hidden vertices " << number_of_hidden_vertices() 
	    <<   std::endl;

  if (dimension() < 1) return;
  if(dimension() == 1) {
    std::cerr<<" all edges "<<std::endl; 
    All_edges_iterator aeit;
    for(aeit = all_edges_begin(); aeit != all_edges_end(); aeit++){
      show_face(aeit->first);
    }
   }
  
  else{ //dimension ==2
    std::cerr<<" faces finies "<<std::endl;
    Finite_faces_iterator fi;
    for(fi = finite_faces_begin(); fi != finite_faces_end(); fi++) {
      show_face(fi);
    }

    std::cerr <<" faces infinies "<<std::endl;
    All_faces_iterator afi;
    for(afi = all_faces_begin(); afi != all_faces_end(); afi++) {
      if(is_infinite(afi)) show_face(afi);
    }
  }
  
  if (number_of_vertices()>1) {
    std::cerr << "affichage des sommets de la triangulation reguliere"
	      <<std::endl;
    All_vertices_iterator vi;
    for( vi = all_vertices_begin(); vi != all_vertices_end(); vi++){
      show_vertex(vi);
      std::cerr << "  / face associee : "
	     <<  &*(vi->face()) << std::endl;
      }
      std::cerr<<std::endl;
  }
  
   std::cerr << "sommets caches "  << std::endl;
   Hidden_vertices_iterator hvi = hidden_vertices_begin();
   for( ; hvi != hidden_vertices_end(); hvi++) {
     show_vertex(hvi);
      std::cerr << "  / face associee : "
	     << &*(hvi->face()) << std::endl;
   }
  return;
}



//DUALITY
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
dual (Face_handle f) const
{
  return weighted_circumcenter(f);
}

template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(Face_handle f) const
{
  CGAL_triangulation_precondition (dimension()==2 || !is_infinite(f));
  return weighted_circumcenter(f->vertex(0)->point(),
			       f->vertex(1)->point(),
			       f->vertex(2)->point());
}

template<class Gt, class Tds>
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(const Weighted_point& p0, 
		      const Weighted_point& p1, 
		      const Weighted_point& p2) const
{
  return 
    geom_traits().construct_weighted_circumcenter_2_object()(p0,p1,p2);
}

template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge &e) const
{
  typedef typename Geom_traits::Line_2        Line;
  typedef typename Geom_traits::Ray_2         Ray;
  typedef typename Geom_traits::Segment_2     Segment;
  
  CGAL_triangulation_precondition (! is_infinite(e));
  if( dimension()== 1 ){
    const Weighted_point& p = (e.first)->vertex(cw(e.second))->point();
    const Weighted_point& q = (e.first)->vertex(ccw(e.second))->point();
    Line l  = geom_traits().construct_radical_axis_2_object()(p,q);
    return make_object(l);
  }
  
  // dimension==2
  if( (! is_infinite(e.first)) &&
      (! is_infinite(e.first->neighbor(e.second))) ) {
    Segment s = geom_traits().construct_segment_2_object()
      (dual(e.first),dual(e.first->neighbor(e.second)));
    return make_object(s);
  } 

  // one of the adjacent faces is infinite
  Face_handle f; int i;
  if ( is_infinite(e.first)) {
    f=e.first->neighbor(e.second); i=f->index(e.first);
  } 
  else {
    f=e.first; i=e.second;
  }
  const Weighted_point& p = f->vertex( cw(i))->point();
  const Weighted_point& q = f->vertex( ccw(i))->point();
  Line l  = geom_traits().construct_radical_axis_2_object()(p,q);
  Ray r = geom_traits().construct_ray_2_object()(dual(f), l);
  return make_object(r);
}
  

template < class Gt, class Tds >
inline 
Object
Regular_triangulation_2<Gt,Tds>::  
dual(const Edge_circulator& ec) const
{
  return dual(*ec);
}
  
template < class Gt, class Tds >
inline 
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Finite_edges_iterator& ei) const
{
  return dual(*ei);
}

//INSERTION-REMOVAL
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
push_back(const Weighted_point &p)
{	
    return insert(p);
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Face_handle start)
{
  Locate_type lt;
  int li;
  Face_handle loc = locate(p, lt, li, start);
  return insert(p, lt, loc, li);
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Locate_type lt, Face_handle loc, int li) 
{
    Vertex_handle v;
    switch (lt) {
    case Base::VERTEX:
        {
            CGAL_precondition (dimension() >= 0);
            if (dimension() == 0) {
                // in this case locate() oddly returns loc = NULL and li = 4,
                // so we work around it.
                loc = finite_vertex()->face();
                li = 0;
            }

            Vertex_handle vv = loc->vertex(li);
	    CGAL::Oriented_side side = power_test (vv->point(), p);
	    
	    switch(side) {
	      
	    case ON_NEGATIVE_SIDE:
	      return hide_new_vertex (loc, p);
	      
	    case ON_POSITIVE_SIDE:
	      v = this->_tds.create_vertex(); 
	      v->set_point(p);
	      exchange_incidences(v,vv);
	      hide_vertex(loc, vv);
	      regularize (v);
	      return v;
	      
	    case ON_ORIENTED_BOUNDARY:
	      return vv;
	    }
        }
    case Base::EDGE:
        {
            CGAL_precondition (dimension() >= 1);
            Oriented_side os = dimension() == 1 ? power_test (loc, li, p) :
                                                  power_test (loc, p);

            if (os < 0) {
                if (is_infinite (loc)) loc = loc->neighbor (li);
                return hide_new_vertex (loc, p);
            }
            v = insert_in_edge (p, loc, li);
            break;
        }

    case Base::FACE:
        {
            CGAL_precondition (dimension() >= 2);
            if (power_test (loc, p) < 0) {
                return hide_new_vertex(loc,p);
            }
            v = insert_in_face (p, loc);
            break;
        }
    default:
        v = Base::insert (p, lt, loc, li);
    }

    if (lt == OUTSIDE_AFFINE_HULL) {
        //clear vertex list of infinite faces which have been copied
        for ( All_faces_iterator afi = all_faces_begin();
                afi != all_faces_end(); afi++)
            if (is_infinite (afi))
                afi->vertex_list().clear();
    }

    regularize (v);

    return v;
}

/*
The reinsert function  insert a weighted point which was in a hidden
vertex.
The new and old vertices are then exchanged ; this is required
if the regular triangulation is used with a hierarchy because
the old vertex has its up and down pointers set and other vertices
pointing on him
*/
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
reinsert(Vertex_handle v, Face_handle start)
{
  CGAL_triangulation_assertion(v->is_hidden());
  v->set_hidden(false);
  _hidden_vertices--;
 
//   //to debug 
//   std::cerr << "from reinsert " << std::endl;
//   show_vertex(v);
//   Locate_type lt;
//   int li;
//   Face_handle loc = locate(v->point(), lt, li, start);
//   std::cerr << "locate " << &(*loc) << "\t" << lt << "\t" << li <<
//     std::endl;
//   show_face(loc);
//    std::cerr << std::endl;

  Vertex_handle vh = insert(v->point(), start);
  if(vh->is_hidden()) exchange_hidden(v,vh);
  else  exchange_incidences(v,vh);
  this->_tds.delete_vertex(vh);
  return v;
}

 
//push va instead of vb in the list of the face fb hiding vb
// vb must be the last inserted vertex in the list of fb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_hidden(Vertex_handle va, Vertex_handle vb)
{ 
  CGAL_triangulation_assertion (vb->is_hidden());
  CGAL_triangulation_assertion (vb == vb->face()->vertex_list().back());
 
//   //to debug 
//   std::cerr << "from exchange hidden 1" << std::endl;
//   show_vertex(vb);
//   std::cerr << "  / face associee : "
// 	     << &*(vb->face()) << std::endl;
  
  vb->face()->vertex_list().pop_back();
  _hidden_vertices--;
  hide_vertex(vb->face(), va);

//  //to debug 
//   std::cerr << "from exchange hidden 1" << std::endl;
//   show_vertex(va);
//   std::cerr << "  / face associee : "
// 	     << &*(va->face()) << std::endl << std::endl; 
}

// set to va the incidences of vb 
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_incidences(Vertex_handle va, Vertex_handle vb)
{
  CGAL_triangulation_assertion ( !vb->is_hidden());
  std::list<Face_handle> faces;
  if (dimension() == 0) {
    faces.push_back (vb->face());
  } else if (dimension() == 1) {
    faces.push_back(vb->face());
    int i = vb->face()->index(vb);
    faces.push_back(vb->face()->neighbor(1-i));
  }
  else {
    CGAL_triangulation_assertion (dimension() == 2);
    Face_circulator fc = incident_faces(vb), done(fc);
    do {
      faces.push_back(fc);
      fc++;
    }while(fc != done);
  }

  va->set_face(*(faces.begin()));
  for(typename std::list<Face_handle>::iterator it = faces.begin();
      it != faces.end(); it++){
    Face_handle fh = *it;
    fh->set_vertex(fh->index(vb), va);
  }
  return;
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_face(const Weighted_point &p, Face_handle f)
{
  Vertex_handle v = Base::insert_in_face(p,f);
  update_hidden_points_1_3(f, 
			   f->neighbor(ccw(f->index(v))), 
			   f->neighbor( cw(f->index(v))) );
  return v;
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_edge(const Weighted_point &p, Face_handle f, int i)
{
  Vertex_handle v;
  if (dimension() == 1) {
    v = Base::insert_in_edge(p,f,i);
    Face_handle g = f->neighbor(1 - f->index(v));
    update_hidden_points_2_2(f,g);
  }
  else { //dimension()==2
    // don't use update_hidden_points_2_2 any more to split
    // hidden vertices list because new affectation of f and n
    // around new vertex is unknown
    Face_handle n = f->neighbor(i);
    Vertex_list p_list;
    p_list.splice(p_list.begin(),f->vertex_list());
    p_list.splice(p_list.begin(),n->vertex_list());
    v = Base::insert_in_edge(p,f,i);
    Face_handle loc;
    while ( ! p_list.empty() ){
      loc = locate(p_list.front()->point(), n);
      if (is_infinite(loc)) loc = loc->neighbor(loc->index(infinite_vertex()));
      hide_vertex(loc, p_list.front());
      p_list.pop_front();
    }
  }
  return v;
} 

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
regularize(Vertex_handle v)
{
  CGAL_triangulation_precondition( v != infinite_vertex());
  Faces_around_stack faces_around;

  if (dimension() < 1) return;

  //initialise faces_around
  if (dimension() == 1) {
    faces_around.push_back(v->face());
    faces_around.push_back(v->face()->neighbor(1- v->face()->index(v)));
  }
  else{ //dimension==2
    Face_circulator fit = incident_faces(v), done(fit);
    do {
      faces_around.push_back(fit++);
    } while(fit != done);
  }

  while( ! faces_around.empty() )
    stack_flip(v, faces_around);
  return;
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
flip(Face_handle f, int i)
{
  Face_handle n = f->neighbor(i);
  Base::flip(f,i);
  update_hidden_points_2_2(f,n);
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_degree_3(Vertex_handle v, Face_handle f) 
{
  if (f == Face_handle())    f=v->face();
  update_hidden_points_3_1(f, f->neighbor( cw(f->index(v))),
			   f->neighbor(ccw(f->index(v))));
  Base::remove_degree_3(v,f);
  if (is_infinite(f)) { //the list of f is given to its finite neighbor
    Face_handle fn = f->neighbor(f->index(infinite_vertex()));
    set_face(f->vertex_list(),fn);
    fn->vertex_list().splice(fn->vertex_list().begin(),f->vertex_list());
  }

}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_hidden(Vertex_handle v )
{
  _hidden_vertices--;
  v->face()->vertex_list().remove(v);
  delete_vertex(v);
  return;
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove(Vertex_handle v )
{
    CGAL_triangulation_precondition( v != Vertex_handle() );
    CGAL_triangulation_precondition(!is_infinite(v));

    if (v->is_hidden())
        return remove_hidden (v);

    Face_handle hint;
    int ihint = 0;

    Vertex_list to_reinsert;
    switch (dimension()) {
    case 0:
        to_reinsert.splice (to_reinsert.begin(), v->face()->vertex_list());
        break;
    case 1:
        {
            Face_handle f1 = v->face();
            ihint = f1->index(v);
            hint = f1->neighbor(ihint);
            Face_handle f2 = f1->neighbor(1 - ihint);
            ihint = mirror_index (f1, ihint);

            to_reinsert.splice (to_reinsert.begin(), f1->vertex_list());
            to_reinsert.splice (to_reinsert.begin(), f2->vertex_list());
            break;
        }
    case 2:
        {
            Face_circulator f = incident_faces (v), end = f;
            ihint = f->index(v);
            hint = f->neighbor(ihint);
            ihint = mirror_index (f, ihint);
            do to_reinsert.splice (to_reinsert.begin(), f->vertex_list());
            while (++f != end);
            break;
        }
    }

    if (number_of_vertices() <= 2) {
        this->_tds.remove_dim_down(v);
    } else if (dimension() < 2) {
        Base::remove (v);
    } else {
        remove_2D (v);
    }

    if (hint != Face_handle()) hint = hint->neighbor(ihint);

    for (typename Vertex_list::iterator i = to_reinsert.begin();
            i != to_reinsert.end(); ++i)
    {
        hint = reinsert (*i, hint)->face();
    }
}

template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
  if (test_dim_down(v)) {  this->_tds.remove_dim_down(v);  }
  else {
    std::list<Edge> hole;
    make_hole(v, hole);
    fill_hole_regular(hole);
    delete_vertex(v);
  }
  return;   
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
fill_hole_regular(std::list<Edge> & first_hole)
{
  typedef std::list<Edge> Hole;
  typedef std::list<Hole> Hole_list;
  
  Hole hole;
  Hole_list hole_list;
  Face_handle ff, fn;
  int i, ii, in;
	
  hole_list.push_front(first_hole);
  
  while (! hole_list.empty())
    {
      hole = hole_list.front();
      hole_list.pop_front();
      typename Hole::iterator hit = hole.begin();
	    
      // if the hole has only three edges, create the triangle
      if (hole.size() == 3)
	{
	  Face_handle  newf = create_face();
	  hit = hole.begin();
	  for(int j=0; j<3; j++)
	    {
	      ff = (*hit).first;
	      ii = (*hit).second;
	      hit++;
	      ff->set_neighbor(ii,newf);
	      newf->set_neighbor(j,ff);
	      newf->set_vertex(newf->ccw(j),ff->vertex(ff->cw(ii)));
	    }
	  continue;
	}
  
      // else find an edge with two finite vertices
      // on the hole boundary
      // and the new triangle adjacent to that edge
      //  cut the hole and push it back
 
      // first, ensure that a neighboring face
      // whose vertices on the hole boundary are finite
      // is the first of the hole
      bool finite = false;
      while (!finite)
	{
	  ff = hole.front().first;
	  ii = hole.front().second;
	  if ( is_infinite(ff->vertex(cw(ii))) ||
	       is_infinite(ff->vertex(ccw(ii))))
	    {
	      hole.push_back(hole.front());
	      hole.pop_front();
	    }
	  else
	    finite = true;
	}
 
      // take the first neighboring face and pop it;
      ff = hole.front().first;
      ii = hole.front().second;
      hole.pop_front();
 
      Vertex_handle  v0 = ff->vertex(ff->cw(ii)); 
      const Weighted_point& p0 = v0->point();
      Vertex_handle  v1 = ff->vertex(ff->ccw(ii)); 
      const Weighted_point& p1 = v1->point();
      Vertex_handle  v2 = infinite_vertex(); 
      Weighted_point p2;
      Vertex_handle  vv;
      Weighted_point p;
 
      typename Hole::iterator hdone = hole.end();
      hit = hole.begin();
      typename Hole::iterator cut_after(hit);
 
      // if tested vertex is c with respect to the vertex opposite
      // to NULL neighbor,
      // stop at the before last face;
      hdone--;
      while (hit != hdone) 
	{
	  fn = (*hit).first;
	  in = (*hit).second;
	  vv = fn->vertex(ccw(in));
	  if (is_infinite(vv))
	    {
	      if (is_infinite(v2))
		cut_after = hit;
	    }
	  else 
	    {	// vv is a finite vertex
	      p = vv->point();
	      if (orientation(p0,p1,p) == 
		  COUNTERCLOCKWISE)
		{
		  if (is_infinite(v2))
		    {
		      v2=vv;
		      p2=p;
		      cut_after=hit;
		    }
		  else if (power_test(p0,p1,p2,p) == 
			   ON_POSITIVE_SIDE)
		    {
		      v2=vv;
		      p2=p;
		      cut_after=hit;
		    }
		}
	    }
	  ++hit;
	}
 
      // create new triangle and update adjacency relations
      Face_handle newf = create_face(v0,v1,v2);
      newf->set_neighbor(2,ff);
      ff->set_neighbor(ii, newf);
 
      //update the hole and push back in the Hole_List stack
      // if v2 belongs to the neighbor following or preceding *f
      // the hole remain a single hole
      // otherwise it is split in two holes
 
      fn = hole.front().first;
      in = hole.front().second;
      if (fn->has_vertex(v2, i) && i == (int)fn->ccw(in)) 
	{
	  newf->set_neighbor(0,fn);
	  fn->set_neighbor(in,newf);
	  hole.pop_front();
	  hole.push_front(Edge(newf,1));
	  hole_list.push_front(hole);
	}
      else
	{
	  fn = hole.back().first;
	  in = hole.back().second;
	  if (fn->has_vertex(v2, i) && i == (int)fn->cw(in)) 
	    {
	      newf->set_neighbor(1,fn);
	      fn->set_neighbor(in,newf);
	      hole.pop_back();
	      hole.push_back(Edge(newf,0));
	      hole_list.push_front(hole);
	    }
	  else
	    { // split the hole in two holes
	      Hole new_hole;
	      ++cut_after;
	      while (hole.begin() != cut_after)
		{
		  new_hole.push_back(hole.front());
		  hole.pop_front();
		}
 
	      hole.push_front(Edge(newf,1));
	      new_hole.push_front(Edge(newf,0));
	      hole_list.push_front(hole);
	      hole_list.push_front(new_hole);
	    }
	}
    }
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
set_face(Vertex_list& vl, const Face_handle& fh)
{
  for(typename Vertex_list::iterator it = vl.begin(); it != vl.end(); it++)
    (*it)->set_face(fh);
}

// add the vertex_list of f2 and f3 to the point list of f1
// for the 3-1 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2, 
			 const Face_handle& f3)
{
  set_face(f2->vertex_list(), f1);
  set_face(f3->vertex_list(), f1);
  (f1->vertex_list()).splice(f1->vertex_list().begin(),f2->vertex_list());
  (f1->vertex_list()).splice(f1->vertex_list().begin(),f3->vertex_list());
  return;				  
}


// the points of the lists of 2 faces are sorted
// because of a 2-2 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2)
{	
  CGAL_triangulation_assertion(f1->has_neighbor(f2));
    
  Vertex_list p_list;
  p_list.splice(p_list.begin(),f1->vertex_list());
  p_list.splice(p_list.begin(),f2->vertex_list());

  // if one of the face is infinite, 
  // the other face hide all the points
  if ( is_infinite(f1)) {
    set_face(p_list, f2);
    (f2->vertex_list()).splice(f2->vertex_list().begin(),p_list);
    return;
  }
  if ( is_infinite(f2)) {
    set_face(p_list, f1);
    (f1->vertex_list()).splice(f1->vertex_list().begin(),p_list);
    return;
  }

  if (dimension() == 1) {
    const Weighted_point& a1 = f1->vertex(f1->index(f2))->point();
    const Weighted_point& a  = f1->vertex(1-f1->index(f2))->point();
    while ( ! p_list.empty() ) {
      if ( compare_x(a, p_list.front()->point()) == 
	   compare_x(a, a1)  &&
	   compare_y(a, p_list.front()->point()) == 
	   compare_y(a, a1))
	{
	  hide_vertex(f1, p_list.front());
	} else {
	hide_vertex(f2, p_list.front());
	}
      p_list.pop_front();
    }
    return;
  }

  // from here f1 and f2 are finite 2-dimensional faces
  int idx2 = f1->index(f2);
  Vertex_handle v0=f1->vertex(ccw(idx2));
  Vertex_handle v1=f1->vertex(cw(idx2));
  CGAL_triangulation_assertion( !is_infinite(v0) && !is_infinite(v1)); 

  while ( ! p_list.empty() )
    {
      if (orientation(v0->point(), v1->point(), p_list.front()->point()) ==
	  COUNTERCLOCKWISE)
	hide_vertex(f1, p_list.front());
	else
	hide_vertex(f2, p_list.front());
      p_list.pop_front();
    }
}
	  
// The point list of f1 is separated into 3 lists
// for a 1-3 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2, 
			 const Face_handle& f3)
{
    CGAL_triangulation_assertion(f1->has_neighbor(f2) &&
			      f2->has_neighbor(f3) &&
			      f3->has_neighbor(f1));


    Vertex_list p_list;
    p_list.splice(p_list.begin(),f1->vertex_list());
    if (p_list.empty())
	return;

    // the following does not work if 
    // two of f1,f2 and f3 are twice neighbors
    // but this cannot appear taking the assertion into account;
    int idx2 = f1->index(f2),
        idx3 = f1->index(f3);
    Vertex_handle v2 = f1->vertex(idx2),
                  v3 = f1->vertex(idx3),
                  v0 = f1->vertex(3-(idx2+idx3)),
                  v1 = f2->vertex(f2->index(f1));

    CGAL_triangulation_assertion(f2->has_vertex(v0) && f1->has_vertex(v0));
    CGAL_triangulation_assertion(f3->has_vertex(v1));
    CGAL_triangulation_assertion( ! is_infinite(v0));

    // if two of f1, f2,and f3 are infinite
    // the list goes entirely to the third finite face
    // no orientation test necessary
    // because the point list of an infinite face
    // is only made of point projecting on its finite edge
    if ( is_infinite(f1 ) && is_infinite(f2)) {
      set_face(p_list, f3);
      f3->vertex_list().splice(f3->vertex_list().begin(), p_list);
      return;
    }
    if ( is_infinite(f1) && is_infinite(f3)) {
      set_face(p_list, f2);
      f2->vertex_list().splice(f2->vertex_list().begin(), p_list);
      return;
    }
    if ( is_infinite(f2) && is_infinite(f3)){
      set_face(p_list, f1);
      f1->vertex_list().splice(f1->vertex_list().begin(), p_list);
      return;
    }
    
    // if here, v1,v2,v3 and v0 are finite vertices
    while(! p_list.empty())
    {
      Vertex_handle v(p_list.front());
//       if(orientation(v2->point(),v0->point(), v->point()) !=
// 	 orientation(v2->point(),v0->point(),v3->point()) )
//       { // not in f1
// 	if (orientation(v1->point(), v0->point(), v->point() ) !=
// 	    orientation(v1->point(), v0->point(), v3->point() ) )
// 	  // not in f2
// 	    hide_vertex(f3, v);
// 	   else
// 	    hide_vertex(f2, v);
//       }
//       else
// 	  hide_vertex(f1, v);
      if(orientation(v2->point(),v0->point(), v->point()) ==
 	 orientation(v2->point(),v0->point(),v3->point())  &&
	 orientation(v3->point(),v0->point(), v->point()) ==
	 orientation(v3->point(),v0->point(), v2->point()))
	hide_vertex(f1, v);
      else if (orientation(v1->point(), v0->point(), v->point()) ==
	       orientation(v1->point(), v0->point(), v3->point()) )
	hide_vertex(f2,v);
      else hide_vertex(f3,v);
      p_list.pop_front();
    }
}

// the vertex is a degree three vertex which has to removed
// and hidden
// create first  a new hidden vertex and exchange with the vertex
// to be removed by the tds : 
// this is required to keep up and down pointers right when using a hierarchy
template < class Gt, class Tds >
void 
Regular_triangulation_2<Gt,Tds>::
hide_remove_degree_3(Face_handle fh, Vertex_handle vh)
{
 Vertex_handle vnew= this->_tds.create_vertex();
 exchange_incidences(vnew,vh);
 remove_degree_3(vnew, fh);
 hide_vertex(fh,vh);
}

// create a vertex and hide it
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
hide_new_vertex(Face_handle f, const Weighted_point& p)
{
  Vertex_handle v = this->_tds.create_vertex(); 
  v->set_point(p);
  hide_vertex(f, v);
  return v;
}

// insert the vertex to the hidden vertex list
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_vertex(Face_handle f, Vertex_handle vh)
{
  // no hidden vertex in infinite face
  if(is_infinite(f) && dimension() > 0) f = f->neighbor(f->index(infinite_vertex()));
 
  if(! vh->is_hidden()) {
    vh->set_hidden(true);
    _hidden_vertices++;
  }
  vh->set_face(f);
  f->vertex_list().push_back(vh);
}

// template < class Gt, class Tds >
// void
// Regular_triangulation_2<Gt,Tds>::
// hide_vertex(Face_handle f, void* ptr)
// {
//   Vertex_handle v(static_cast<Vertex*>(ptr));
//   hide_vertex(f, v);
// }



template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip(Vertex_handle v, Faces_around_stack &faces_around)
{
  Face_handle f=faces_around.front();
  faces_around.pop_front();
  int i = f->index(v);
  Face_handle n = f->neighbor(i);
    
  if (dimension() == 1 ) {
    if ( is_infinite(f)  || is_infinite(n) ) return;
    if ( power_test( v->point(),
		     n->vertex(n->index(f))->point(),
		     f->vertex(1-i)->point()) ==  ON_NEGATIVE_SIDE)
      stack_flip_dim1(f,i,faces_around);
    return;
  }  

  // now dimension() == 2
  //test the regularity of edge (f,i)
  //if( power_test(n, v->point()) == ON_NEGATIVE_SIDE)
  if( power_test(n, v->point()) != ON_POSITIVE_SIDE)
    return;
    
  if(is_infinite(f,i))
    {
      int j = 3 - ( i + f->index(infinite_vertex()));
      if ( degree(f->vertex(j)) == 4)
	stack_flip_4_2(f,i,j,faces_around);
      return;
    }

    // now f and n are both finite faces
    int ni = n->index(f);
    Orientation occw = orientation(f->vertex(i)->point(),
				   f->vertex(ccw(i))->point(),
				   n->vertex(ni)->point());
    Orientation ocw  = orientation(f->vertex(i)->point(),
				   f->vertex(cw(i))->point(),
				   n->vertex(ni)->point());
    if (occw == LEFT_TURN && ocw == RIGHT_TURN) {
      // quadrilater (f,n) is convex
      stack_flip_2_2(f,i, faces_around);
      return;
    }
    if (occw == RIGHT_TURN && degree(f->vertex(ccw(i))) == 3) {
      stack_flip_3_1(f,i,ccw(i),faces_around);
      return;
    }
    if (ocw == LEFT_TURN && degree(f->vertex(cw(i))) == 3) {
      stack_flip_3_1(f,i,cw(i),faces_around);
      return;
    }
    if (occw == COLLINEAR && degree(f->vertex(ccw(i))) == 4) {
      stack_flip_4_2(f,i,ccw(i),faces_around);
      return;
    }
    if (ocw == COLLINEAR && degree(f->vertex(cw(i))) == 4)
      stack_flip_4_2(f,i,cw(i),faces_around);
    
    return;
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_4_2(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
    int k = 3-(i+j);
    Face_handle g=f->neighbor(k);
    if (!faces_around.empty())
    {
      if (faces_around.front() == g)
	  faces_around.pop_front();
      else if (faces_around.back() == g) 
	  faces_around.pop_back();
    }
    
    //union f with  g and f->neihgbor(i) with g->f->neihgbor(i)
    Face_handle fn = f->neighbor(i);
    //Face_handle gn = g->neighbor(g->index(f->vertex(i)));
    Vertex_handle vq = f->vertex(j);
    
    this->_tds.flip( f, i); //not using flip because the vertex j is flat.
    update_hidden_points_2_2(f,fn);
    Face_handle h1 = ( j == ccw(i) ? fn : f);
    //hide_vertex(h1, vq);
    hide_remove_degree_3(g,vq);
    if(j == ccw(i)) {
      faces_around.push_front(h1); 
      faces_around.push_front(g);
    }
    else {
      faces_around.push_front(g);
      faces_around.push_front(h1); 
    }
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_3_1(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
  int k = 3-(i+j);
  Face_handle g=f->neighbor(k);
  if (!faces_around.empty())
  {
    if (faces_around.front()== g)
	faces_around.pop_front();
    else if ( faces_around.back() == g)
	faces_around.pop_back();
  }

  Vertex_handle vq= f->vertex(j);
  //hide_vertex(f,vq);
  hide_remove_degree_3(f,vq);
  faces_around.push_front(f);
}


template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_2_2(Face_handle f, int i, Faces_around_stack & faces_around)
{
    Vertex_handle vq = f->vertex(ccw(i));
    flip(f,i);
    if(f->has_vertex(vq)) {
      faces_around.push_front(f->neighbor(ccw(i)));
      faces_around.push_front(f);
    }
    else { 
      faces_around.push_front(f);
      faces_around.push_front(f->neighbor(cw(i)));
    }
}
  
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_dim1(Face_handle f, int i, Faces_around_stack &faces_around)
{
  Vertex_handle va = f->vertex(1-i);
  Face_handle n= f->neighbor(i);
  int in = n->index(f);
  Vertex_handle vb = n->vertex(in);
  f->set_vertex(1-i, n->vertex(in));
  vb->set_face(f);
  f->set_neighbor(i, n->neighbor(1-in));
  n->neighbor(1-in)->set_neighbor(n->neighbor(1-in)->index(n), f);
  (f->vertex_list()).splice(f->vertex_list().begin(),n->vertex_list());
  set_face(f->vertex_list(),f);
  delete_face(n);
  hide_vertex(f,va);
  faces_around.push_front(f);
  return;
}


template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
all_vertices_begin () const
{
  return CGAL::filter_iterator(Base::all_vertices_end(), 
			 Hidden_tester(),
			 Base::all_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
all_vertices_end () const
{
  return CGAL::filter_iterator(Base::all_vertices_end(), 
			 Hidden_tester() ); 
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
finite_vertices_begin () const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(), 
			 Hidden_tester(),
			 Base::finite_vertices_begin());
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle 
Regular_triangulation_2<Gt,Tds>::
finite_vertex () const
{
  CGAL_triangulation_precondition (number_of_vertices() >= 1);
  return (finite_vertices_begin());
}



template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
finite_vertices_end () const
{

  return CGAL::filter_iterator(Base::finite_vertices_end(), 
			 Hidden_tester() );

}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_begin () const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(), 
			 Unhidden_tester(), 
			 Base::finite_vertices_begin() );

}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator 
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_end () const
{
  return CGAL::filter_iterator(Base::finite_vertices_end(), 
			 Unhidden_tester() );
}

template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
nearest_power_vertex(const Bare_point& p) const
{
  if ( dimension() == -1 ) { return Vertex_handle(); }

  if ( dimension() == 0 ) { return this->finite_vertex(); }

  typename Geom_traits::Compare_power_distance_2 cmp_power_distance =
    geom_traits().compare_power_distance_2_object();

  Vertex_handle vclosest;
  Vertex_handle v = this->finite_vertex();

  //  if ( dimension() == 1 ) {
  //  }

  do {
    vclosest = v;
    Weighted_point wp = v->point();
    Vertex_circulator vc_start = incident_vertices(v);
    Vertex_circulator vc = vc_start;
    do {
      if ( !is_infinite(vc) ) {
	if ( cmp_power_distance(p, vc->point(), wp) == SMALLER ) {
	  v = vc;
	  break;
	}
      }
      ++vc;
    } while ( vc != vc_start );
  } while ( vclosest != v );

  return vclosest;  
}


CGAL_END_NAMESPACE 

#endif // CGAL_REGULAR_TRIANGULATION_2_H