File: Root_for_spheres_2_3.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (244 lines) | stat: -rw-r--r-- 8,920 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (c) 2005-2006  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// Partially supported by the IST Programme of the EU as a Shared-cost
// RTD (FET Open) Project under Contract No  IST-2000-26473 
// (ECG - Effective Computational Geometry for Curves and Surfaces) 
// and a STREP (FET Open) Project under Contract No  IST-006413 
// (ACS -- Algorithms for Complex Shapes)
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Algebraic_kernel_for_spheres/include/CGAL/Root_for_spheres_2_3.h $
// $Id: Root_for_spheres_2_3.h 46224 2008-10-13 11:22:46Z pmachado $
//
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
//             Sylvain Pion
//             Pedro Machado
//             Julien Hazebrouck
//             Damien Leroy

#ifndef CGAL_ROOT_FOR_SPHERES_2_3_H
#define CGAL_ROOT_FOR_SPHERES_2_3_H

#include <iostream>
#include <CGAL/Polynomials_1_3.h>
#include <CGAL/Polynomials_2_3.h>
#include <CGAL/Polynomials_for_line_3.h>
#include <CGAL/Bbox_3.h>

CGAL_BEGIN_NAMESPACE

template < typename RT_ >
class Root_for_spheres_2_3 {

  typedef RT_                                        RT;
  typedef typename Root_of_traits< RT >::RootOf_2    Root_of_2;
  typedef typename Root_of_traits< RT >::RootOf_1    FT;
  typedef CGAL::Polynomial_1_3< FT >                 Polynomial_1_3;
  typedef CGAL::Polynomial_for_spheres_2_3< FT >     Polynomial_for_spheres_2_3;
  typedef CGAL::Polynomials_for_line_3< FT >         Polynomials_for_line_3;

  private:
    Root_of_2 x_;
    Root_of_2 y_;
    Root_of_2 z_;
    
  public:
  Root_for_spheres_2_3(){}
  
  
  Root_for_spheres_2_3(const Root_of_2& r1,
		       const Root_of_2& r2,
		       const Root_of_2& r3)
    : x_(r1), y_(r2), z_(r3)
  {
    // This assertion sont work if Root_of_2 is 
    // Interval_nt (and dont have is_rational, gamma, etc..)
    /*CGAL_assertion(
                ((r1.is_rational() && r2.is_rational()) ||
                 (r1.is_rational() && r3.is_rational()) ||
                 (r2.is_rational() && r3.is_rational()) ||
                 ((r1.is_rational()) && (r2.gamma() == r3.gamma())) ||
                 ((r2.is_rational()) && (r1.gamma() == r3.gamma())) ||
                 ((r3.is_rational()) && (r1.gamma() == r2.gamma())) ||
                 ((r1.gamma() == r2.gamma()) && (r2.gamma() == r3.gamma())))
    );*/
  }

  const Root_of_2& x() const 
  { return x_; }
    
  const Root_of_2& y() const 
  { return y_; }

  const Root_of_2& z() const 
  { return z_; }

  // On fait l'evaluation de (x,y,z) pour le plan 
  // aX + bY + cZ + d, donne
  const Root_of_2 evaluate(const Polynomial_1_3 &p) const {
    return (p.a() * x()) + (p.b() * y()) + (p.c() * z()) + p.d();
  }

  // On fait l'evaluation de (x,y,z) pour le plan 
  // (X-a)^2 + (Y-b)^2 + (Z-c)^2 - r_sq, donne
  const Root_of_2 evaluate(const Polynomial_for_spheres_2_3 &p) const {
    return square(x() - p.a()) +
           square(y() - p.b()) +
           square(z() - p.c()) -
           p.r_sq();
  }

  // On verifie si (x,y,z) fait partie la ligne donne
  bool is_on_line(const Polynomials_for_line_3 &p) const {
    Root_of_2 t;
    bool already = false;
    if(!is_zero(p.a1())) {
      t = (x() - p.b1())/p.a1(); 
      already = true;
    } else if(p.b1() != x()) return false;
    if(!is_zero(p.a2())) {
      if(!already) {
        t = (y() - p.b2())/p.a2(); 
        already = true;
      }
      else if((p.a2() * t + p.b2()) != y()) return false;
    } else if(p.b2() != y()) return false;
    if(!is_zero(p.a3())) {
      if(!already) return true;
      else if((p.a3() * t + p.b3()) != z()) return false;
    } else if(p.b3() != z()) return false;
    return true;
  }

  CGAL::Bbox_3 bbox() const
  {
    const Root_of_2 &ox = x();
    const Root_of_2 &oy = y();
    const Root_of_2 &oz = z();

    CGAL::Interval_nt<> 
        ix=to_interval(ox),
        iy=to_interval(oy),
        iz=to_interval(oz);
      return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    /* 
    // Note: This is a more efficient version
    // but it won't work (in the future) 
    // with some Lazy_Curved_kernel_3
    // because is_rational(), gamma(), etc.. is not defined
    // for Interval_nt<false> data type	
    const Root_of_2 &ox = x();
    const Root_of_2 &oy = y();
    const Root_of_2 &oz = z();

    const bool x_rat = ox.is_rational();
    const bool y_rat = oy.is_rational();
    const bool z_rat = oz.is_rational();

    if(((x_rat?1:0) + (y_rat?1:0) +(z_rat?1:0)) > 1) {
      CGAL::Interval_nt<> 
        ix=to_interval(ox),
        iy=to_interval(oy),
        iz=to_interval(oz);
      return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    }

    if(z_rat) {
      const CGAL::Interval_nt<true> alpha1 = to_interval(ox.alpha());
      const CGAL::Interval_nt<true> beta1 = to_interval(ox.beta());
      const CGAL::Interval_nt<true> alpha2 = to_interval(oy.alpha());
      const CGAL::Interval_nt<true> beta2 = to_interval(oy.beta());
      const CGAL::Interval_nt<true> g = to_interval(ox.gamma());
      const CGAL::Interval_nt<true> sqrtg = CGAL::sqrt(g);
      const CGAL::Interval_nt<true> ix = alpha1 + beta1 * sqrtg;
      const CGAL::Interval_nt<true> iy = alpha2 + beta2 * sqrtg;
      const CGAL::Interval_nt<true> iz = to_interval(oz);
      return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    }

    if(y_rat) {
      const CGAL::Interval_nt<true> alpha1 = to_interval(ox.alpha());
      const CGAL::Interval_nt<true> beta1 = to_interval(ox.beta());
      const CGAL::Interval_nt<true> alpha2 = to_interval(oz.alpha());
      const CGAL::Interval_nt<true> beta2 = to_interval(oz.beta());
      const CGAL::Interval_nt<true> g = to_interval(ox.gamma());
      const CGAL::Interval_nt<true> sqrtg = CGAL::sqrt(g);
      const CGAL::Interval_nt<true> ix = alpha1 + beta1 * sqrtg;
      const CGAL::Interval_nt<true> iz = alpha2 + beta2 * sqrtg;
      const CGAL::Interval_nt<true> iy = to_interval(oy);
      return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    }

    if(x_rat) {
      const CGAL::Interval_nt<true> alpha1 = to_interval(oy.alpha());
      const CGAL::Interval_nt<true> beta1 = to_interval(oy.beta());
      const CGAL::Interval_nt<true> alpha2 = to_interval(oz.alpha());
      const CGAL::Interval_nt<true> beta2 = to_interval(oz.beta());
      const CGAL::Interval_nt<true> g = to_interval(oy.gamma());
      const CGAL::Interval_nt<true> sqrtg = CGAL::sqrt(g);
      const CGAL::Interval_nt<true> iy = alpha1 + beta1 * sqrtg;
      const CGAL::Interval_nt<true> iz = alpha2 + beta2 * sqrtg;
      const CGAL::Interval_nt<true> ix = to_interval(ox);
      return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    }

    const CGAL::Interval_nt<true> alpha1 = to_interval(ox.alpha());
    const CGAL::Interval_nt<true> beta1 = to_interval(ox.beta());
    const CGAL::Interval_nt<true> alpha2 = to_interval(oy.alpha());
    const CGAL::Interval_nt<true> beta2 = to_interval(oy.beta());
    const CGAL::Interval_nt<true> alpha3 = to_interval(oz.alpha());
    const CGAL::Interval_nt<true> beta3 = to_interval(oz.beta());
    const CGAL::Interval_nt<true> g = to_interval(ox.gamma());
    const CGAL::Interval_nt<true> sqrtg = CGAL::sqrt(g);
    const CGAL::Interval_nt<true> ix = alpha1 + beta1 * sqrtg;
    const CGAL::Interval_nt<true> iy = alpha2 + beta2 * sqrtg;
    const CGAL::Interval_nt<true> iz = alpha3 + beta3 * sqrtg; 
    return CGAL::Bbox_3(ix.inf(),iy.inf(),iz.inf(),
	                ix.sup(),iy.sup(),iz.sup());
    */
  }

};

template < typename RT >
bool 
operator == ( const Root_for_spheres_2_3<RT>& r1,
	      const Root_for_spheres_2_3<RT>& r2 )
{ return (r1.x() == r2.x()) && (r1.y() == r2.y()) && (r1.z() == r2.z()); }

template < typename RT >
std::ostream &
operator<<(std::ostream & os, const Root_for_spheres_2_3<RT> &r)
{ return os << r.x() << " " << r.y() << " " << r.z() << " "; }

template < typename RT >
std::istream &
operator>>(std::istream & is, Root_for_spheres_2_3<RT> &r)
{
  typedef typename Root_of_traits< RT >::RootOf_2         Root_of_2;
  Root_of_2 x,y,z;
  
  is >> x >> y >> z;
  if(is)
    r = Root_for_spheres_2_3<RT>(x,y,z);
  return is;
}

CGAL_END_NAMESPACE

#endif // CGAL_ROOT_FOR_SPHERES_2_3_H